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1. Introduction

Until 1965, when Janko [7] established the existence of his finite simple
group Jt, the five Mathieu groups were the only known examples of isolated
finite simple groups. In 1951, R. G. Stanton [10] showed that M12 and M24 were
determined uniquely by their order. Recent characterizations of M22 and M23

by Janko [8], M22 by D. Held [6], and M u by W. J. Wong [12], have facilitated
the unique determination of the three remaining Mathieu groups by their orders.
D. Parrott [9] has so characterized M22 and M u , while this paper is an outline
of the characterization of M23 in terms of its order.

MAIN THEOREM. Let G be a non-abelian simple group of order 10,200,960.
Then G is isomorphic to M23.

2. Some known results

1. The results used in the proof of the main theorem were obtained by R.
Brauer [1], [2], [3], H. F. Tuan [4] and applied by R. G. Stanton [10], D. Parrott
[9] and S. K. Wong [11]. Some of the important theorems are given here without
proof.

2. If G is a group of order \G\ containing k classes Kt, • • •, Kk of conjugate
elements, then there exists exactly k distinct irreducible characters Ci(ff),'"'» £*(#)
where g denotes a variable element of G. Let p be a prime which divides \G\,
then the k characters are distributed into a certain number of /^-blocks B^p),
Bi{p),'' '• The principal p-block Bt(p) is always taken as the block containing
the 1-character Ci(g) = 1 for all geG. Suppose p" T \G\; if for all characters
£„ of Ba(p) the degrees zM of CM is divisible by p* while at least one of the degrees
zM is not divisible by px+1 then Ba(p) is a block of defect (j—a), or type a. In
particular if p T \G\ a />-block Ba(p) is of defect 0 (highest type) or of defect 1
(lowest type).

An element g is p-regular if its order is prime to p, otherwise g is called
p-singular.

385

https://doi.org/10.1017/S1446788700010247 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010247


386 N. Bryce [2]

3. We assume in this section that/? T |G|. Let Gp be a Sylow/7-subgroup of G.
Then CG(GP) = GpxVp.lf Vp has / conjugate classes in the group NG(GP) then G
has / blocks of defect 1. Let t denote the number of conjugate classes of elements
of order p in G. To each of the / /^-blocks Ba(p) of defect 1 there corresponds a
certain multiple ta of t, where ta\p — \, such that Ba(p) has (p — l)fta characters £„
which are /^-conjugate only to themselves and one exceptional family of ta p-
conjugate characters.

THEOREM 2.1 ([2]. Theorem 11). For the block B^p), we have tt = t. The
degrees z^ of the characters £„ of BAjp) satisfy:

(2.1) z^ = dp = ±l(modp), l g / i ^ ( a = (p—\)/t

(2.2) tza+1 = 5a+1 = ±l(modp),

where za+1 is the degree of a representative of the exceptional family.

eo+l

Moreover, for p-singular elements P of G we have

Up) = K ( l g ^ co).

COROLLARY 1. Let G be a group of order pqbg* where p and q are distinct
primes, b and g* positive integers and (pq, g*) = 1. Suppose that G has an element
oforder pq, then qb cannot divide the degree of any irreducible character £̂  in BAjj).

We shall say a character £ of Bt(p) is of type 0 for the prime p if £(1) =
l(mod/>) or if £ belongs to the exceptional family of B±{p) and £(1) = —{p —1)11
(modp); £ is of type 1 if £(1) = — l(mod/>) or if % belongs to the exceptional
family and £(1) = +(p~l)[t(modp).

THEOREM 2.2 ([10] Lemma 6). Let G be a group of order \G\. Assume p and
p' are distinct primes which divide \G\ to the first power only and that G has no
elements of order pp'. Let a y be the number of characters in Bt{p) n By(p') which
are of type i for p and type j for p', the indices i and j being 0 or 1 as described
above. Then

It is clear that a character £ in BAj>) n BAjp') cannot be exceptional for both
primes/? and/;'.

THEOREM 2.3 ([4], Lemma 1). Let G be a finite group which is identical with
its commutator group G', and assume that the principalp-block B±(p) contains an
irreducible faithful character £ of degree z < 2p. Then the order of the centralize}
CG(Gp) of a Sylow p-subgroup Gp of G is a power of p.
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3. The Sylow 23-normalizer of G

We assume from now on, that G is an non-abelian finite simple group of
order 10,200,960 = 27 • 32 • 5 • 7 • 11 • 23.

Let S23 be a Sylow 23-subgroup of G and let n23 = |G : iVG(523)|. Then n23

has the following possibilities: (1) 27 • 32 • 5 • 7, (2) 26 • 5 • 11, (3) 26 • 3, (4)
2 4 - 3 - 5 - 7 , (5) 23 • 32 • 7 • 11, (6) 23 • 3, (7) 2 • 32 • 5 • 11, (8) 2 - 5 - 7 , (9)
3 - 7 - 1 1 .

We know that G has either 1, 2, or 11 classes of elements of order 23 according
as t for prime 23 (written as f(23)) is 1, 2, or 11. Using equations (2.1), (2.2), and
(2.3), and Theorem 2.3 t(23) = 11 is ruled out, consequently \NG(S23)/(CG(S23)\ =
11 or 22. Hence cases (2), (5), (7), and (9) above, for w23

 a r e not possible. The
impossibility of cases (4) and (8) follows almost as quickly, because otherwise G
has no elements of order 5 • 23, 7 • 23, or 11-23 thus facilitating the use of
Stanton's block intersection theorem (Theorem 2.2). Suppose n23 = 23 • 3,
case (6). Then |JVG(S23)| = 24 • 3 • 5 • 7 • 11 • 23. G then contains elements of
order 2 • 23, 3 • 23, 5 • 23, and 7 • 23. From this it follows that 528 is the only
possible degree of a nonexceptional character and 264 the only possible excep-
tional degree. But both of these degrees are even, and for (2 • 3) to be satisfied
2^(23) must contain a character of odd degree. Case (3) is ruled out similarly.
Hence we have proved

LEMMA 3.1. The Sylow 23-normalizer NG(S23) is a Frobenius group of order
23-11.

COROLLARY 3.1. The principal 23-block 5t(23) is the only 23-block of defect 1,
and consists of 11 non-exceptional characters and a family of 2 exceptional charac-
ters. All other characters of G have degrees divisible by 23.

4. The Sylow 11-normalizer of G

Let Su be a Sylow 11-subgroup of G and n u = \G : N^S^)]. Lemma 3.1
reduces the possible values for nn to the following: (1) 32 • 5 • 23, (2) 2 • 3 • 5 • 7 • 23,
(3) 22 • 3 • 23, (4) 22 • 7 • 23, (5) 23 • 32 • 5 • 7 • 23, (6) 24 • 32 • 23, (7) 25 • 3 • 7 • 23,
(8) 26 • 5 • 23, (9) 27 • 32 • 7 • 23.

Using the same methods as for the prime 23, one proves quickly that f(11) # 5
and so \NG(Sll)[CG(Sil)\ = 5 or 10. This in turn eliminates cases (1), (2), (5)
and (8), from the above list for ntl.

Suppose \Ne(Sn)\ = 25 • 3 • 5 • 7 • 11, case (3). Then \CG(Sn)\ = 25 • 3 • 7 • 11
or 2 4 - 3 - 7 - 11.

If |CG(5U)| = 2s • 3 • 7 • 11, then t(11) = 2 and ^ ( 1 1 ) consists of 5 non-
exceptional characters 1G, %2, #3, #4 and %s and a family of 2 exceptional charac-
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ters with representative / 6 . Since G has elements of order 2 • 11, 3 • 11 and 7 - 1 1 ,

the possible degrees for the non-exceptional characters are

TABLE 1

1,

230,

egree

115,
138,

23,

736,

s for X6 are

368,

160,

276

2760

TABLE 2

1380

1920

III
 

III

= +5
= -5

(mod 11)

(mod 11)

(mod 11)

(mod 11)

Then the degrees in B1(23) n 2^(11) are 1 and 160, and so ^ ( l ) = 160. Applying
theorem 2.2 to 2?i(ll) n -Si(5) we see that only degrees 1 and 736 lie in this
intersection. Let £2(1) = 736. Substitute the values 1, 160 and 736 in the degree
equation (2.3). Then

<53z3 + (54z4 + <55z5 = -(1-736+160) = 575

and so z3 — 23, z4 = z5 = 276. The characters 1G, #2, / 3 and /6 are real on 11-
regular elements, but this implies that in the tree for B^ll), two characters
having the same sign 5 = +1 are joined by one edge contrary to a result of
Brauer ([2], Theorem 5).

Thus \CG(Sn)\ = 24 • 3 • 7 • 11, and so fn = 1 and 1^(11) consists of 10
non-exceptional characters whose possible degrees are given by Table I. But then
the only character which could lie in the principal 23-block and the principal
11-block is the principal character which is impossible.

Using similar arguments cases (4), (6) and (8) are removed and so we have

LEMMA 4.1. The Sylow W-normalizer NQ^S^) is a Frobenius group of order
5-11.

COROLLARY 4.1. The principal W-block B^W) is the only W-block of defect 1.
All other characters ofG have degrees divisible by \\, and lie in W-blocks of defect 0.

5. The determination of degrees and blocks of characters of G

We know now that G has no elements of order 23 • 11, 23 • 7, 23 • 5, 23 • 3,
11 • 7, 11 • 5 or 11 • 3. Applying Theorem 2.2 to the intersection of i?i(23) and
2?! (5) we see that both blocks contain a character of degree 896. This character is
then the exceptional character for 2>i(ll) and using the degree equation (2.3)
together with Theorem 2.2, we have

https://doi.org/10.1017/S1446788700010247 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010247


[5] On the Mathieu Group M23 389

LEMMA 5.1. The principal W-block -Bi(ll) contains only characters with the
following degrees 1, 45, 45, 1035, 230, 896. AH other characters of G have degrees
which are divisible by 11.

Since a character of degree 896 = 27 • 7 lies in 2*i(5) then G has no elements
of order 7 • 5, or 2 • 5. As shown earlier, G has no elements o orderf 23 • 5 or 11 • 5
and so a Sylow 5-subgroup £5 of G can be centralized only by elements of order
3 or 9. Further \NG(S5)/CG(SS)\ S 4, whence \NG(SS)\ = 2 • 5 or 22 • 3 • 5. But
in l?i(5) we have already 3 non-exceptional characters and so I-A^S^)! = 22 • 3 • 5.
Hence t(s) = 1 and #i(5) contains exactly 5 characters. These are found easily
using equation (2.3).

LEMMA 5.2. |iVG(55)| = 22 • 3 • 5. 5X(5) consists of 5 characters with the
following degrees: 1, 896, 896, 231, 2024.

Using the same methods we have

LEMMA 5.3. The principal 23-block 2^(23 ) contains only characters with the
following degrees: 1, 22, 45, 45, 231, 231, 231, 896, 896, 990, 990 and 770. All
other degrees of characters of G are divisible by 23.

LEMMA 5.4. \NG(ST)ICG(ST)\ = 3. The principal 1-block B^l) contains only
characters with the following degrees: 1, 2024, 1035 and 990.

We have determined 16 characters of G, the sum of squares of degrees is
(10200960-64009). Further, the degrees of the remaining characters must be
divisible by both 23 and 11. However (11 • 23)2 = 64009, so G has only one
more character and that is of degree 253 = 11-23.

LEMMA 5.5. G has 17 characters with the following degrees: 1, 22, 45, 45, 230,
231, 231, 231, 253, 770, 770, 896, 896, 990, 990, 1035 am/2024.

It is thus clear there are two 7-blocks of defect 1, and hence two conjugate
classes of 7-regular elements of CG(S7) in NG(S7). Further since \NG(S7)/CG(S7)\
= 3, \NG(S7)\ has the following possible orders, 27 • 3 • 7, 24 • 3 • 7 and 2 • 3 • 7,
but only when \NG(S7)\ = 2 - 3 - 7 , are there the required two classes of 7-regular
elements. Finally, there is only one 3-block of defect 2 and so a Sylow 3-subgroup
is self centralizing.

6. Conclusion

The group G has 17 conjugate classes and we have so far determined 16 of
them, as is shown in the table below.

° r d e r o f 1 23 11 7 14 5 15 6 4 3 2
element
T f ° - O f 1 2 2 2 2 1 2 1 1 1 1
c l a s s e s
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There is at least one class of involutions, and at least one class of elements of
order 3 with one class to be determined.

By Sylow theorems, the order of the normaliser of a Sylow 3-subgroup of G
is either 2232 or 24 • 32, and consequently a Sylow 3-subgroup is elementary
abelian. Suppose G has two classes of elements of order 3. Let R be a Sylow
3-subgroup of G. We know that R is self centralising and that \NG(R)\ = 22 • 32,
and so NG(R)/R is cyclic of order 4. Let Q be a subgroup of order 3 in R and
CG(Q) the centraliser of Q in G. Then since NCGiQ)(R) = R, we have by Burnside's
result ([5], p. 252) that CG(Q) has a normal 3-complement, say TV. Let Q be the
subgroup of order 3 of R which is centralised by an element of order 5.

Then CG(Q) = RN where N is the normal 3-complement in CG(Q) and
5||JV|. But then by the Frattini argument ([5], p. 12), 9||TVG(G5)| where G5 is a
Sylow 5-subgroup of G, which is false. Hence G has only one class of elements of
order 3 and so we have proved

LEMMA 6.1. The group G has one class of elements of order 3. A Sylow 3-sub-
group is normalised by a semi-dihedral group of order 16, and so G has only one
class of involutions and one class of elements of order 8.

Let t be the involution in the normaliser of a Sylow 7-subgroup G1 of G,
and consider the centraliser of t in G, CG(t). It follows immediately that
NG(G7) <= CG(t). Since G has no elements of order 2 • 23, 2 • 11, or 2 • 5, then
CG(t) has order T • 3" • 7, where a ^ 7 and J? ^ 2. We know that G has only
one class of involutions, and because \CG(t) : NG(G7)\ = l(mod 7), the order of
CG(t) is 27 • 3 • 7.

Suppose the group CG(t) is soluble. Let G2 be a Sylow 2-subgroup of G which
is contained in C = CG(t). Let O2(C) be the maximal normal subgroup of 2-power
order in C. Then the factor group C/O2(C) is soluble. Let TV be a minimal normal
subgroup of C/O2(C). Then TV has order 7 and so O2(C) = G2. But then CG(t)
is 2-closed and so by a result of Suzuki ([5], p. 466). G is one of known list of finite
simple groups. However, none of these have the order 10, 200, 960, a contradic-
tion.

Hence we conclude that CG{t) = C is insoluble. Write E = O2(C). Because
we must have \C/E: TVC/£(G7)| = l(mod 7) where G7 is a Sylow 7-subgroup in
C/E, we have \E\ = 2 or 16.

Suppose we have \E\ = 2. Since 26 • 3 • 7 is not the order of any simple group,
C/E contains a normal subgroup. Let N be a minimal normal subgroup of C/E,
then N is either elementary abelian or a direct product of isomorphic simple
groups. Clearly N cannot be an elementary abelian 2-group. Further, N cannot be
of order 3 for then G would have elements of order 21, and N cannot be of order 7
for this would imply that |7VG(G7)| > 2 • 3 • 7. So we conclude that \N | = 23 • 3 • 7,
and JV a; PSL(2,1). Write TV = 02(C)N, then we have TV«a C = CG(t). Let TV7
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be a Sylow 7-subgroup of N. By the Frattini argument C = NNC(N7) and so
CjN ^ NC(N7)INN(N7). But then order of the normaliser of a Sylow 7-subgroup
is greater than 2 - 3 - 7 , which is a contradiction.

Thus we conclude that |6>2(C)| = 16. Since CG(t) is insoluble, CG(t) is an
extension of E = O2(C) of order 16 by PSL(2, 7). Suppose that E = O2{C) is
non-abelian. Let Z(E) be the centre of E. It follows that \Z(E)\ # 4 for otherwise
the order of the centraliser of a Sylow 7-subgroup in C is 4 • 7. Hence Z(E) = <<>•
Let $(E) be the Frattini subgroup of E, then 4>(F) has order 4 or 2. If \<P(E)\ = 4
then <P(E)<i CG(t) and again we have that a Sylow 7-subgroup of C has a
normalizer of order 4.7. So <P(E) = Z(E) = E' = <?> and hence E is an extra
special 2-group, but this is impossible as \E\ = 24. So E is abelian.

By a result of Suzuki ([5], p. 177) a Sylow 7-subgroup H of C acts as an
automorphism group of E, and so E = (fyZ where <£> n Z = <1> and Z is an
//-admissible subgroup of E. The group Z is then of order 8 and so is elementary
abelian. Hence E is elementary abelian.

Let T be a Sylow 2-subgroup of CG(t). Clearly the centre of T, Z(T), is con-
tained in E. If Z(JT) is of order 8, then at least two involutions say z and z' in
Z(T)\(t} are conjugated in C by an element of order 7. But this contradicts the
result of Burnside ([5], p. 240) since they are not conjugate in NC(T) = T. Suppose
Z(T) is of order 4 and let z be an element in F,\<?>. Since z has 7 conjugates in
C, Cc{z) has order 27 • 3. Let Q be a Sylow 3-subgroup of Cc(z) and let f be a
Sylow 2-subgroup of Cc(z). It is clear that T is also a Sylow 2-subgroup of G.
We have F, <: Tand so <7, z> = Z ( f ) = C£(g). Further we have |C c (e) | = 22 • 3
and hence NC(Q) has order 23 • 3.

Let F* be a Sylow 2-subgroup of CG(Q) which contains <f, z> and suppose
by way of contradiction that <?, z> < F* has a subgroup Fx which contains
<?, z> properly and \Ft : </, z>| = 2. Since F t does not lie in C, Fx is contained
in CG(z) or in CG{tz) and so |CC(Z)(g) > 22 • 3 or |CC(/z )(e)| > 22 • 3. But G has
only one class of involutions and so this is impossible. Hence CG(Q) has order
22 • 32 • 5. By a result of Gaschutz ([5], p. 26) Q splits in CG{Q) and so we may
write CG{Q) = QxL where L i s a group of order 60. From the order of the
normalizer of a Sylow 5-subgroup of G (lemma 5.6) it follows that L is insoluble,
and so L is simple. But then L ^ A5 where As is the alternating group on 5 letters.
By a result of Gaschutz we may write NG(Q) = QK where \K\ = 23 • 3 • 5, and
so L -< K, where L s A5 and L s CG(Q).

Let F be the Sylow 2-subgroup of NG(Q), then F must be Abelian since a
dihedral group of order 8 cannot normalize a group of order 3. Consequently
K = LxS where 51 is a group of order 2. But then G has elements of order 10,
which is impossible. Hence a Sylow 2-subgroup of G has cyclic centre of order 2.
We have proved:

LEMMA 6.2. The centralizer C of an involution t in the centre of a Sylow
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2-subgroup T of G is an extension of an elementary abelian group E of order 16 by 
a group H, H S PSL(2, 7). Further the centre of T is cyclic. 

It now follows from a result of Janko [8] that G s M 2 3 . 
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