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EPIS ARE ONTO FOR FINITE REGULAR SEMIGROUPS

by T. E. HALL and P. R. JONES

(Received 11th March 1981)

After preliminary results and definitions in Section 1, we show in Section 2 that any
finite regular semigroup is saturated, in the sense of Howie and Isbell [8] (that is, the
dominion of a finite regular semigroup U in a strictly containing semigroup S is never
S). This is equivalent of course to showing that in the category of semigroups any epi
from a finite regular semigroup is in fact onto. Note for inverse semigroups the stronger
result, that any inverse semigroup is absolutely closed [11, Theorem VII. 2.14] or [8,
Theorem 2.3]. Further, any inverse semigroup is in fact an amalgamation base in the
class of semigroups [10], in the sense of [5]. These stronger results are known to be
false for finite regular semigroups [8, Theorem 2.9] and [5, Theorem 25]. Whether or
not every regular semigroup is saturated is an open problem.

In Section 3 we show that if a regular semigroup has a full subsemigroup (one
containing all the idempotents) which is a band of groups, then it has a maximum such
subsemigroup. This is to enable us to prove later an amalgamation result for bands of
groups.

In Section 4 we show that epis are onto in the categories consisting of the finite
members from the following classes, together with all semigroup homomorphisms as
morphisms (we note that it is not known if Isbell's Zigzag Theorem also determines
dominions in these categories other than that in (i)): (i) regular semigroups; (ii) orthodox
semigroups; (iii) unions of groups; (iv) orthodox unions of groups; (v) quasi-orthodox
semigroups; (vi) bands of groups; and (vii) orthodox bands of groups.

In Section 5 we show that epis are onto in the category consisting of the finite
members from each of the varieties of bands; for the variety of all bands this is due to
H. E. Scheiblich [14, Corollary 3.4].

We note at this point that a proof of P. G. Trotter [15, Theorem 1.1] that monos are
one-to-one in the category of all regular semigroups is also valid for each of the
categories considered in Sections 4 and 5. Hence these categories are balanced, in the
usual sense of [13].

1. Preliminaries

Let # be any class of semigroups and take any U, S e t? with U a subsemigroup of S.
We say that U dominates an element deS within <£ if, for every semigroup We^ and all
homomorphisms

4>:S^W, i/z-.S^W, 4>{u) = \}){u) for all ueU
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implies <p{d) = ip(d). The set of all elements of S dominated within <tf by U is called the
dominion of U in S within c€\ it is obviously a subsemigroup of S containing U. We call
U closed in S within %> if the dominion of U in S within ^ is just U.

A semigroup U e <£ is called absolutely closed within %? if 1/ is closed within # in every
containing semigroup S e ^ . A semigroup U e %? is called saturated within t? if for every
semigroup S e # having U as a proper subsemigroup, the dominion of U in S within %?
is not all of S.

When ^ is the class of all semigroups we allow ourselves to omit the phrase "within
•<f", and then our definitions are precisely those of Howie and Isbell [8].

We may regard ^ as a category by taking morphisms to be all semigroup
homomorphisms between members of <€. The epis of ^ are of course the right
cancellable morphisms in <̂ , as in [13].

For any U,Se^, we say that U is epimorphically embedded in S within %> if U is a
subsemigroup of S with dominion equal to S within %>. The insertion of U in S is then
an epi in the category c€; in fact, obviously a morphism (j>: T->S in ^ is an epi if and
only if the dominion of Tcp in S within ^ is all of S.

The following result is of basic importance.

Result 1. (Isbell's Zigzag Theorem [12, Theorem 2.3] or [11, Theorem VII.
2.13]) Let U be any subsemigroup of any semigroup S and let d be any element of S.
Then d is in the dominion of U in S if and only if either deU or there are elements

uu vu u2, v2,..., un, vn, un+leU, s1; s2,..., sn, tut2,...,tneS

such that

d = s1ul, u1=vltl, ui + iti = vi+lti+l, sivi = si + lui+1,

The equations in Result 1 are called a zigzag of length n over U with value d, and with
spine u1,v1,u2,v2,...,un,vn,un + i.

We will see below that Isbell's Zigzag Theorem is also valid for ^ the class of finite
semigroups, of regular semigroups, and of finite regular semigroups (Theorem 2). It is
still an open problem whether it is valid for ^ the class of bands (raised by Scheiblich
[14]).

Result 2. ([1, Proposition 2] or [11, Proposition II. 4.5]) Let U be any regular
subsemigroup of any semigroup S. For any elements u,veU, u£fv if and only if u$£v
in S.

Result 3. ([3] or [11, Chapter II, Exercise 15]) For any regular semigroup S, the
subsemigroup <£> generated by the set E of idempotents of S is also regular. Further
V(E") = En + \ for n = 1,2, 3 , . . . .

Result 4. [4, Theorem 5] The maximum congruence contained in 34? on any regular
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semigroup S, \i = fi(S) say, is given by

H = {(a, b)eSx S: for some inverses a' of a and b' of b, ad = bb', a'a = b'b
and a'ea = b'ebfor each idempotent ef^ad}.

Result 5. [4, Corollary 6] Let U be any regular subsemigroup of a regular
semigroup S such that U is full in S, i.e. contains all the idempotents of S. Then n(U)
= fi(S)n(UxU).

Result 6. [4, Theorem 14] Let E be any set of idempotents of any semigroup S.

(i) There is a regular subsemigroup of S with E as its set of all idempotents if (and only
if) <£), the subsemigroup generated by E, is such a semigroup, i.e., a regular semigroup
with E as its set of idempotents.

(ii) / /<£> is a regular subsemigroup with E as its set of idempotents then

Ec={aeS: for some a'e V(a), ad, da, dea, afdeE for all e,feE such that
e :§ ad, f 5£ da}

is the maximum regular subsemigroup of S with E as its set of idempotents.

Result 7. Let U be any regular subsemigroup of any regular semigroup S. If U
contains elements from each $£-class and each 3t-class ofS then U is full in S.

Proof. Take any idempotent eeS. Then there exist u,veU such that u£Ce0lv, whence
uMuv&v in S [2, Theorem 2.17] and hence in U, by Result 2 and its dual, so again by
[2, Theorem 2.17] there is an idempotent feU such that u££f0lv, i.e. such that ftfe.
Hence e=feU and U is full in S.

We use, whenever possible, and often without comment, the notations and
conventions of Clifford and Preston [2] or Howie [11].

2. Epis from finite regular semigroups

Theorem 1. Any completely semisimple semigroup with a finite number of /-classes is
saturated. In particular, any finite regular semigroup is saturated.

Proof. For the moment, let us just take any completely semisimple semigroup U and
any properly containing semigroup S such that the dominion of U in S is all of S.
Henceforth, the symbol Jx shall mean a /-class of 5 (rather than of U) and Jf, !£, 01,
3>, / shall mean Green's relations on S.

For any element seS\U let s = slu1 and u1 = v1t1 be the first two equations of a
zigzag of least possible length over V with value s. Then

JUl^Jtl and uteU, ^
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Hence the set {JueS/J!:ueU, JU^J, for some teS\U} is nonempty. Thus, if S
satisfies the ascending chain condition on ^/-classes, or if U has only finitely many J-
classes, there is a maximal member in the above set of ^/-classes, say J.

Take any J'eS/f such that J<J'. We show that J'^U. Suppose to the contrary that
there is an element seJ'n(S\U). Then

for some u-^elJ, t1eS\U as above, contradicting the maximality of J; hence J'^U as
required. It follows also that J contains elements of S\U (since J^J, for some teS\U).

Let D be any ^-class (or equivalently ,/-class) of U contained in J. Now D is not a
complete ®-class of S, since otherwise, containing idempotents minimal among its set of
idempotents, it would be a complete ./-class of S by [4, proof of Result 6], a
contradiction. Hence there are elements ueD, seS\U such that u3)s in S. Thus uMt^s
for some teS. Now either teS\U or teUr\Ruc.D so we have either

u0lt for some ueD, teS\U

or

t^Cs for some teD, seS\U.

Since these two situations are dual to each other, we may assume without loss of
generality that uS&t for some ueD, teS\U. We show further that t can be taken to be
an idempotent. Take any idempotent e in U such that efflu arid let

* = * ! « ! , Ul=Vltu Ui+lti = Vi+lti+1

be any zigzag over U with value t of least possible length, so that tusneS\U. Since
effiuMt we have et = t so we can assume without loss of generality that

esi = sh eun + 1=un+l, i=\,2,...,n,

(since otherwise each s{ can be replaced by esh and un+1 by eun + i). Since also t = siviti

= un+1tn, we have e@t@Sj&un + l, i=l,2,...,n.
N o w un + l=snvn = snvau'n+1un+1=snvn where u'n+leV(un + l)nU and vn

= » X + A + A + i ' F rom vnSCun+10lsn and «B + 1=sBi7B we have by [2, Theorem 2.17]
that Ls nRin contains an idempotent, / say.

We s"how that feS\U. Suppose to the contrary that feU. Then un+1£'vn@f=f2 so
there is a unique element xeRUii+inLj-nU such that xvn = un+1, by Green's Lemma [11,
Lemma II. 2.1] for U and Result 2. Now sneRUn+inLf and sBi7n = un + 1, so again by
Green's lemma, this time for S, we have sn = xeU, a contradiction; thus feS\U, and
f0tvn e D, so without loss of generality we may in fact assume that the element t above
is an idempotent.

First, from t2 = t$un + 1 we have tun + l=un + 1 and from t = t2 = s1u1t we have tJZu^t, so
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that, since ££ is a right congruence on S, we also have

Since ul = vlt1 and ^eSXC/, from

we have that JUl = J, by the maximality of J, i.e. u, e J.
So far D has been an arbitrary ./-class of (7 in J, but we shall henceforth assume that

it is in fact maximal among the ./-classes of U in J (let us assume, say, that U satisfies
the ascending chain condition on ./-classes).

From u1eJ and uxun+leD (ulun + lS^un+l^e in S and hence in U) we have uteD
also, by the maximality of D. From uu un+i, uiun+leD we have that LUir\RUn+inU
contains an idempotent, g say (since the principal factor Du{0} of U is of course
completely 0-simple).

From t = slul we have L,^LUi=Lg whence tg = t, and from t^un+l0tg we have tg = g,
giving that t=geU, a contradiction. Thus the dominion of U in S is not S, as required,
under the assumption that the completely semisimple semigroup U has only a finite
number of its own ./-classes, or that both S and U satisfy the ascending chain condition
on their own ^/-classes. This completes the proof.

An amalgam of semigroups is a list (Sh i e /; U) of semigroups such that U is a
subsemigroup of Sh is I. The amalgam (St, is I; U) is strongly embeddable in a
semigroup W if there exist monomorphisms ^fS^W, is I, such that (i) #,-|l/ = 0j|l/ for
all ijsl and (ii) ̂ ^ ( S / ^ l / ^ , - , for all distinct ijsl.

Theorem 2. Let <€ denote any one of the following categories, where morphisms are
taken to be semigroup homomorphisms:

(i) finite semigroups;

(ii) regular semigroups;

(iii) finite regular semigroups.

Take any semigroups U, S in <& with U a subsemigroup of S. Then the dominion of U in S
within %> is the same as within the category of all semigroups.

Proof. We denote by D the dominion of U in S within the category of all
semigroups.

(i) From [6, Remark 1] we see that the amalgam (S, S; D) is strongly embeddable in a
finite semigroup (not just a semigroup).

(ii) Since any semigroup is embeddable in a regular semigroup, we have that the
amalgam (S, S; D) is strongly embeddable in a regular semigroup.

(iii) Since any finite semigroup is embeddable in a finite regular semigroup, we have
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from the proof of (i) that the amalgam (S, S; D) is strongly embeddable in a finite regular
semigroup.

It follows that in each case D is also the dominion of U in S within <̂ . From
Theorems 1 and 2 we have the following corollaries.

Corollary 3. In the categories of semigroups, regular semigroups and finite semigroups,
episfrom completely semisimple semigroups with a finite number of /-classes are onto.

Corollary 4. In the category of finite regular semigroups, epis are onto.

Remark 1. The proof of Theorem 1 can be greatly shortened when one assumes that
the semigroup S is finite, and such a proof appears in [7]. This weaker result is
sufficient to yield Corollary 4, and also Corollary 3 for the category of finite semigroups.

Example 1. This example, due to Isbell [12, Example 3.1], shows that epis are not
onto in the category of finite semigroups. Let S = {0, e, f a, a"1} be the combinatorial
Brandt semigroup with five elements, where a and a~l denote the nonidempotent
elements. The subsemigroup U = {0, e, f, a} is easily seen to be epimorphically
embedded in S within the category of [finite] semigroups.

Whether or not epis are onto in the category of regular semigroups is an open
problem.

3. The maximum full band-of-groups subsemigroup

For an amalgamation result proved in Section 4 for bands of groups, we require the
main result of this section, namely that if a regular semigroup has a full subsemigroup
which is a band of groups, then it has a maximum such subsemigroup.

Lemma 5. Let S be any regular semigroup, E its sets of idempotents, and [i = /i(S) its
maximum idempotent-separating congruence. There is a full band-of-groups subsemigroup
of S if and only if <£>, the subsemigroup generated by E, is a band of groups, and this is
the case if and only if S/n is orthodox. In this case, there is a maximum full band-of-groups
subsemigroup ofS, namely.

ker fi = <u{efi

= {aeS: for some a' e V(a), ad = a'a and a'ea = e

for each idempotent e^

Proof. Suppose there is a full band-of-groups subsemigroup T of S. The
subsemigroup <£> of T is regular, by Result 3, and K T «£» = <£> also by Result 3, so
<£> is a union of groups and hence a band of groups (of course K r « £ » denotes the set
of inverses in T of all elements in <£» . This proves the first "if and only i f statement.

To prove the second such statement, let us suppose first that S/n is orthodox. From
Lallement's Lemma [11, Lemma II. 4.6] the band of idempotents of S/fi is {e/i:ee£}.
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Since fiZJt, each e\i is a group and {e/r.eefi} is a set of disjoint groups, and thus
u{e/i :ee£} = ker^, for example, is a full band-of-groups subsemigroup of S, as required.

Conversely, suppose that <£> is a band of groups and let B be any full subsemigroup
of S which is also a band of groups; we wish to show that S//x is orthodox and that

From Result 5 we have that

i.e. that the function </>: B/(i(B)->S/n(S) mapping x/i(B) to xfi(S), for each xeB, is well-
defined and one-to-one, and hence is a monomorphism, and by Lallement's Lemma, is
onto a full subsemigroup of S/n(S). But B/n(B) is a band, so S/fi{S) is orthodox as
required.

Now (B/(i(B))<f>, the range of <p, is the band of S/n(S), namely {efieS/^-.eeE}. But
(B/n(Bj)4> = Bn(B)i<t> = Bix(S)$, whence, for each beB, we have bebii(S)e{en(S):eeE}.
Thus B £ u {^M(S): e e £} = ker n(S). We have already seen that ker \i is a band of groups,
and so it is the maximum full subsemigroup of S which is a band of groups. The
alternative description of ker n follows routinely from Result 4.

Corollary 6. Let S be any semigroup and E any set of idempotents of S. There is a
subsemigroup of S which is a band of groups with E as its set of all idempotents if and only
if <£> is such a subsemigroup. In this case, there is a maximum such subsemigroup, namely

EB = {aeS: for some a'e V{a), ad = a'aeE and a'ea = e

for each idempotent e^

Proof. This follows quite easily from Result 6 and the lemma above.

An analogous result for unions-of-groups subsemigroups is Theorem 10 of [6].

4. Epis in some categories of finite regular semigroups

In this section, we will show that epis are onto in certain categories of finite regular
semigroups.

We note that (see the appendix in [16] due to Hall) quasi-orthodox semigroups are
precisely those regular semigroups such that for all idempotents e, f g such that
e$£' f0tg there exists an idempotent h such that e0lhS£g.

Theorem 7. Let <€ be any one of the following classes of semigroups: (i) regular
semigroups; (ii) orthodox semigroups; (iii) unions of groups; (iv) orthodox unions of groups;
(v) quasi'Orthodox semigroups; (vi) bands of groups; and (vii) orthodox bands of groups.

Let (Si ,iel; U) be any amalgam from <€ such that U' is full in each S,-, iel. Then the
amalgam is strongly embeddable in some semigroup W from ^, with fineness being
preserved.

Proof. By [6, Theorem 8] the amalgam (Sf, ieI;V) is strongly embeddable in a
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regular semigroup W such that U and each S,- (or isomorphic copies) are full in W, with
W finite if / and each S,- is finite. Immediately then, for ^ one of the classes in (i), (ii) or
(v), we have We^ and the required result. For %> either of the classes in (iii) or (iv), the
result is part of [6, Corollary 12]. For <6 either of the classes in (vi) or (vii) the result
follows from [6, Theorem 8] and Lemma 5.

Corollary 8. Take any semigroups U, S in ^ with U a full subsemigroup of S. Then the
amalgam (S, S; U) is strongly embeddable in some semigroup W from <€, with finiteness
being preserved. In particular U is closed in S within <€.

Theorem 9. Let %> be any one of the classes listed above in Theorem 7 and let SF be
the category consisting of all the finite semigroups of <£ together with all morphisms
between these semigroups. Then in !F, epis are onto.

Proof. Take any semigroups U, S in J5", with U being a proper subsemigroup of S.
To prove the theorem it suffices to show that the insertion iv:U^S is not an epi (for if
a:T-*S is an epi and Ta = U then ly-.U-tS is also an epi). Suppose then, to the
contrary, that U is epimorphically embedded in S.

Take a maximal /-class of S among those /-classes of S containing elements of S\U,
J say; then of course for any /-class J' of S such that J'>J we have J ' £ ( / . Put

an ideal of S, when nonempty. For the convenience of having / nonempty, let us
assume, without loss of generality, that S = S° and Oe U (since we can adjoin a (further)
zero if necessary).

Let P denote the canonical morphism from S onto S/I. Then Up is a proper
subsemigroup of Si? and Up is epimorphically embedded in Sp (i.e. iUf:UP^>-SP is an epi
in SF). Thus by replacing U and S by UP and Sp respectively if necessary, we can
assume without loss of generality that J is the minimum nonzero /-class of S, whence

If U is full in S, then by Corollary 8, U is closed in S within J* (as well as in ^), so
ly-.U-tS is not an epi.

We can assume therefore that U is not full in S, so from Result 7 we have that either
U does not meet every J?-class of S or that U does not meet every ^2-class of S. By
duality considerations, we can assume without loss of generality that there is an JS?-class
class Lof S such that UnL=Q- Put

Clearly V±S, since KnL = D- We show that V is a subsemigroup of S. Take any
Uj, v2 e V. Then v^uu v2S£>u2, for some uu u2 e U. If v2 e U, then (from J? being a right
congruence) we have
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giving that vlv2eV. If v2eV\U £ J, then

L ^ g L , , (in Sand in Ju{0})

so either v1v2 = 0eU^V or vlv2£Cv2£Cu2eU (since Ju{0} is a completely O-simple
ideal of S), whence v1v2 e K In either case then vtv2 e V so V is a subsemigroup.

We construct now a semigroup We!F and two morphisms <t>,\j/:S-*W which agree
only on V (since t / c j / ^ S then we will have 1^ = 1^, 4>j=\\/, and iv is not an epi).
Take now any two sets S' and S", each disjoint from S and such that

\S'nS"\ = \V\,

\S'\(S'nS")\ = \S\V\,

\S"\(S'nS")\ = \S\V\

whence |S'| = |S"| = |S|. Let <^:S->5' be a bijection of S upon S' such that V is mapped
onto S'nS" and likewise let \j/:S->S" be a bijection of S upon S" such that K is mapped
onto S' n S" but further such that vcf> = vip for all v e V. For each s e S, denote s</>, si/f by
s',s" respectively and denote S'nS" by V and by V". Note that D' = I;" for all veV. We
make S' and S" into semigroups isomorphic to S by defining s't' = (st)' and s"t" = (st)", for
all s, teS. Now we put VF=S'uS" and we extend the binary operations on S' and S"
(which of course agree on S'nS"=V'=V") to one on W by defining, for all s,teS\V,

s"t' = {st)'.

We show now that this binary operation on W is associative. Take any x, y, z e W. If
x, y, z e S' or if x,y,ze S" then clearly (xy)z = x(yz). To cover the remaining cases, because
of the symmetry between S' and S" in the construction of the groupoid W, we can
assume without loss of generality that precisely one of x, y, z is in S"\V" and that at
least one of x, y, z is in S'\V.

Now there are elements r,s,teS such that x is r' or r", y is s' or s" and z is t' or t",
and of course each of {xy)z and ;c(yz) is one of (rst)' and (rst)". Now if steV then
s£eFn(Ju{0}) (since seS\JJcj Or teS\Ucj) whence meS[Fn( . /u{0}) ]£ K and
(rst)' = {rst)". Hence, if st e V we have (xy)z = x(yz).

We may assume now that steS\V (whence s or teS\V), and we now find that
entirely routine calculations will complete the verification of associativity, in each of the
following cases: Case I, xeS"\V"; Case II(a), yeS"\V" and zeS'\V; Case II(b),
yeS"\V" and zeV'=V; Case III, zeS"\V".

Thus W is a semigroup. Easy checking also shows that in fact WeSF. Since (f>:S-+W,
ip:S-+W are distinct morphisms in OF which agree on U we have that iu(t> = iuil/ and
that iy is not an epi, as required, completing the proof of Theorem 9.

Remark 2. The proof also shows that epis are onto in $F if J5" is taken to consist of
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all the completely semisimple semigroups from # satisfying the ascending chain
condition on ./-classes.

A class <€ of semigroups is said to have the strong amalgamation property if every
amalgam of semigroups from <€ is strongly embeddable in a semigroup from <if, and a
class ^ of semigroups is said to have the special amalgamation property if each amalgam
of the special form (S, S; U) is strongly embeddable in a semigroup from (€.

Theorem 10. The class of finite inverse semigroups has the special amalgamation
property.

Proof. We merely have to combine [6, Remark 1] with the last sentence of [5,
Section 6] to obtain a proof.

Corollary 11. Epis are onto in the category of finite inverse semigroups.

5. Epis in some categories of finite bands

In [14] Scheiblich showed that epis are onto in the category of all bands satisfying
the ascending chain condition on ./-classes [14, Corollary 3.3] and in the category of all
finite bands [14, Corollary 3.4]. We show in this section that his construction "preserves
the variety of S" when U meets every ^/-class of S, and thus we obtain the following
generalisation of his results.

Theorem 12. Let "V be any variety of bands, let J* be the category of all finite
members of "f" and let Jl be the category of all members of "V satisfying the maximal
condition (or equivalently the ascending chain condition) on /-classes. Then in both IF and
Jl, epis are onto.

Proof. Take any U, S in either J5" or Jl such that U is a proper subband of S. Once
again, we merely have to show that the injection iv:U-*S is not an epi, in #" or Jl.
Now if U consists only of rectangular bands it is easily seen that "V, IF and JI^'V
have the special amalgamation property, whence epis are onto in J* and in Jl. We
assume now that "V does not consist entirely of rectangular bands, with the convenience
of having S°ei/" and of having any semilattice as a member of 'f also. If U does not
meet every ^/-class of S and if / * denotes the natural map of S onto S/f, then UJ *
is a proper subsemilattice of S# * = S// whence Uje * is not epimorphically embedded
in S// within !F or Jl, which follows trivially from the fact that the class of semilattices
has the strong and hence the special amalgamation property [9, proof of Theorem 3.1];
it follows that U is not epimorphically embedded in S, so we assume henceforth that U
contains elements from every ,/-class of S.

Precisely as in the proof of Theorem 9, we can assume without loss of generality that
S = S°, OeU and S\U^J, where J is the minimum non-zero ,/-class of S.

Since U=fcS, there is an ^-class or an J5f-class of S not meeting U. First we consider
the case where some ^f-class of S does not meet U. From the dual of a result proved in
the proof of [14, Theorem 3.2] we have that p = i su(if n ( Jx J)) is a congruence on S,
so, by replacing U and S by Up * and Sp* = S/p if necessary, we can assume without
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loss of generality that &n(J xj) = ij, so that J is a single ^-class of S. We now
construct W precisely as in the proof of Theorem 9 (replacing V by I/), and
acknowledge that it is precisely the band constructed by Scheiblich in proving Theorem
3.2 of [14].

We now show that W e / . Take any identity, in variables x 1 , x 2 , . . . , x l say, satisfied
by S, say

w[xu x2,..., xk) = w(xu x2, • • •, xk), (1)

where w = w(xl,x2,...,xk) = xiixi2 •••x,-m and w = w(x1,x2,...,xk) = xJiXj2...Xjn, and take
any elements wuw2,...,wk in W; of course we wish to show that w(wu...,wk)
= w(wlt...,wk). Now there exist sus2,...,skeS such that wte{s',,s"), i = 1,2,...,fc, and of
course w(sl,...,sk) = w(sl,...,sk) = s, say, and

{w(wu..., wk), w{wly..., wk)} s {s1, s"}.

Suppose, by way of contradiction, that w{wu...,wk)j=w(wu...,wk). By the symmetry
between S' and S" in W, we can assume without loss of generality that w(w1,...,wk) = s'.
Then w(wlt...,wk) = s"^s' and seS\U. '

We show now that the band obtained by adjoining an identity element to a two-
element right zero semigroup is in V, in fact is a subband of S.

From WiW^... wim = s'^s" it is easily seen that for some i,,wii = s'iieS'\U' and
w i j + i , . . . , w,-me£/' = [/"; we show l<m (i.e. " w i | + , , . . . , Wj exist"). Since J contains elements
of V and S\U it is a nontrivial right zero subsemigroup of S, so the words w and w end
in the same variable; but if w and hence vv end in x,-, then ^ ( w ! , . . . , w t ) = s'
= w(w1, . . . , wk), a contradiction, so / < m . Put u = sI[+i . . . s ^ e f ) ; in fact u e t / \ ( J u { 0 } )
since s = w(si,...,sk) = sii...silueS\U. Take any veUnJ; then £ = {U,UM,S} is a band
with identity u, and with {vu, s} a two-element right zero subband, as required.

First, since S is not a rectangular band, we have that xit occurs in the word
w = XjixJ2...xJn. Second, since B^S, B also satisfies w = w and then we easily see that in
the word w = xJixJ-2...xJn only the variables x, / + i , . . . ,xi m can follow the last occurrence
of the variable x(|. It follows that vv(wu..., wk) = s', not s", a contradiction as required, so
W satisfies w = vv, and V is not epimorphically embedded in S in J* nor in Jt (in the
case where an .Sf-class of S does not meet U).

Dually, if some ^2-class of S does not meet U then we have again that U is not
epimorphically embedded in S in J* nor in Jl. Thus epis are onto in #" and in Jt. This
completes the proof.
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