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In favour of a concise discussion of the basic concept of meso­

turbulence we have refrained from presenting a comprehensive review 

of the work done in this field. Completeness, however, was aimed at 

in the references at the end of the contribution by E. Sedlmayr. 

Abstract 

The influence of a stochastic velocity field with a finite scale 

length 1 on the transfer of line radiation is described by means of 

a generalization of the transfer equation. Micro- and macroturbulence 

are contained in this mesoturbulence approach as limiting cases 1 -» 0 

and 1 •* <*> respectively. 

Introductory Remarks 

In hydrodynamics the term "turbulence" describes velocity fields 

which are dominated by inertial forces and of which only the statisti­

cal properties are controlled by initial- and boundary conditions. 

The meaning of the same word as used by spectroscopists is quite dif­

ferent. It encompasses any flow of unresolved pattern which - in ad­

dition to thermal motion - contributes to the Dopplerbroadening of 

spectral lines. So this term describes a situation which is characte­

rized by a lack of information concerning the underlying velocity 

field. It is for this reason that the spectroscopist takes recourse to 

a description in statistical terms. 

First of all, the basic information is contained in the mean square 
2 2 velocity <v > = a , where v is the velocity component parallel to the 

ray. The second important parameter, the scale length 1, is more dif­

ficult to determine. 

Struve and Elvey (1934) discussed the limiting case K,. .1 <<1- with 

K., [cm 1 being the line absorption coefficient - where the hydro-

dynamic flow simply acts as an additional thermal broadening of the 

atomic absorption profile. In this case the saturation in the line 

decreases with the consequence that the curve of growth (say of stellar 
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absorption lines) changes due to increasing equivalent widths. This is 

the microturbulence limit. Macroturbulence, on the other hand, is de­

fined by K.. .1 >> 1. Then there is no velocity gradient along the ray 

and the radiative transfer is not affected. The profile in the radiation 

leaving the source has to be convoluted with the velocity distribution, 

a procedure which does not alter the equivalent widths. 

The need for an approach based on the assumption of a finite 1, which 

bridges the gap between these two limits, becomes obvious if one reali­

zes that: 

a) There is no doubt that"microturbulence"is a well established 

phenomenon in stellar spectroscopy. So 1 cannot have been 

large compared to K,. 

b) One has to exclude very small values of 1 since they would imply 

strong velocity gradients and hence excessive dissipation of 

kinetic energy. 

Indeed, we note that under very general conditions the energy dissipa­

tion in a turbulent hydrodynamic flow is 

| | = 15 v <v2> A - 2 [ e r g g~1 s e c - 1 ] (1) 

if v is the kinematic viscosity, which is roughly given by 

v ~ vthermal " 1free path 

and A the microscale of the flow defined by 

<v2>/X2 - <(g)2>. (3) 

dE 2 

If the flow is stationary -r-r- must be equal to <v >/2 divided by a time 

which is characteristic for the renewal of the hydrodynamic energy. 

Let this time be the ratio of the equivalent height H of the atmosphere 

to the velocity of the flow; an assumption which seems to be reasonable 

either in case of buoyancy forces driving the turbulence or of con-

vective transport of kinetic energy. If all velocities are of the same 

order of magnitude one finds that the smallest possible scale for 

hydrodynamic fields (in stellar atmospheres) is of the order of 
A = (30 H 1, ,, ) 1 / 2 . (4) 

free path' 
4 5 r i 

Inserting data for the solar photosphere yields A~10 ..10 I cmI which 

is of the same order of magnitude as the mean free path of a photon in 

an absorption line of medium strength. 
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If the effects of microturbulence are caused by sound waves of sawtooth 

form/ Hearn (1974) has shown that the observed microturbulence veloci­

ties require a flux of mechanical energy which is about 100times the 

acoustic energy generated by the convection zones. 

Hence, one cannot escape the conclusion that the naive interpretation 

of line broadening by small scale hydrodynamic flow as microturbulence 

has to be abandoned since it interfers with basic laws of hydrodyna­

mics. 

The Microturbulence Criterion Revisited 

In the following we consider in more detail the condition for the 

validity of the microturbulence approach. Let 

|i + K(V) 1 = 0 (5) 

be the transfer equation for the monochromatic intensity I in case of 

pure absorption. The inclusion of a non-zero source function S would 

make the formulae more involved without altering our conclusions. Note 

that I(s) depends on all values of v(s') for s'<s so that I(s) is not 

a function but a functional of v. 

The microturbulent solution I . satisfies the equation 
mic ^ 

^2iH + « > I . = o (6) 
ds mic 

with 
+» 

<K> = / K(V) P1(v)dv (7) 
— CO 

where P.(v) is the one-point distribution function for the velocities 

along the ray. Defining u(s) by 

I(s) = u(s) - I . (s) (8) 
mic 

we obtain for u(s) the differential equation 

—• + AK(V)-u = 0 (9) 

as 

with 

AK(V) = K(v) - <«> . (10) 

Solving eq. (9) with the initial value u(s=0)=1 by means of Picard's 
iteration one obtains 

s s s-i s s-| S2 
u(s)=1-/ds 1A< 1 + /ds1/ds2A<1Aic2-/ds./ds2J'ds3Aic1AK2AK:3. . . (11) 

o o o o o o 
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where 

AK ± = A K ( S 1 , v(si)) . (12) 

Recalling that by means of the definition eq. (10) we have 

<AK> = 0 (13) 

we obtain for the lowest order deviation from unity of the expectation 
value of u(s) 

S S-| 
<u(s)> - 1«j'ds1 7ds2 <AK 1AK,> . (14) 

o o 

Thus the lowest order deviation from the microturbulent case is deter­

mined by the two-point correlation of A< which is calculated by means 

of the two-point velocity distribution IP-(v., s.., v, ,s2) according to 

<AK.A< 2> = /dv1 /dv, AK..AK2 IP, (v.. ,s., v,,s2) . (15) 

v1 v2 

If s.-s,*! the two point velocity distribution factorizes into two one-

point distributions so that due to eq. (13) the contribution to the 

integral is zero. Taking this into account the rhs. of eq. (14) can be 

estimated as 

<u(s)>-1 « ^ (<<2> - <K> 2) . (16) 

So we obtain the following condition for the validity of the microtur­

bulence approach 

Tl Ts <<2> 

——- ( j - 1)<< 1 (17) 
2 «> 

where the optical depths T,=1-<K:> and T =S<K> have been introduced. 

Since in all cases of interest T will be of the order one, we see that 
s 

microturbulence is a good approach if T,<<1 (the usual assumption) and/ 
2 2 or if <K >/<<> - 1 approaches zero. This is a condition which limits 

the amplitude of the velocity distribution. It should be mentioned that 
2 2 2 

<< >/<<> -1 is zero at the line center for small <v > if the distribu­

tion functions are symmetric. 

Approach to Mesoturbulence 

The foregoing discusssion provides a first step towards a more general 

description of the radiative transfer which incorporates the to para-
2 

meters <v > and 1 from the very beginning. Indeed, eq. (11) can be 

considered as the formal solution of such a transfer problem. One 

clearly sees that all higher order correlations of the velocity field 

enter. 
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An approach by means of a perturbation expansion - which bears at least 

some relation to the above formalism - has been formulated by Rybicki 

(1975). He developed all relevant quantities in orders of the pertur­

bation by the velocity field. 

K = K ( 0 )
 + K ( 1 )

 + < ( 2 )
 + ... 

I = I<°> + I < 1 > + I < 2 > + ... (18) 

s = s ( 0 ) + s ( 1 )
 + s

( 2 ) + ... . 

S is the monochromatic source function which in case of scattering or 

non-LTE may depend on the velocity. Inserting these expansions into the 

transfer equation and equating terms of different order individually 

one obtains the perturbation expansion of the transfer equation. It 

turns out that the formal solution of the order (n-1) can be inserted 

as inhomogeneous term into the rhs. of the equation of order n. So 

there exists no closure problem since there is no dependence of the 

low order equations on the higher order solutions. It is by ireans of 

these rhs. terms that the correlations of the velocity field enter. 

Apparently no attempts have been made to work out in more detail this 

formalism, into which correlations of all orders enter, but which -

for practical reasons - is restricted to weak turbulence. 

Obviously the problem is to determine the order of correlations which 

have to be taken into account. Apart from all theoretical considerations 

the answer to this question depends on the amount of information con­

cerning the pattern of the velocity field which can be derived from the 

observed profiles. Apparently at present we can hardly expect to deter­

mine by such an analysis more than the influence of the lowest order 

correlations on the radiative transfer. Thus the assumption that all 

higher order correlations factorize into two-point correlations seems 

to be adequate.Approaches of this type which lead to simple formulae 
2 

and which do not impose any constraints to <v > have been followed in­
dependently by Auvergne et al. (1973) and by Gail et al. (1974). 

The essentials common to the work of both groups can be presented in 

a very simple way: Let us assume LTE and a source function S which does 

not depend on the velocities. Then the transfer equation can be written 

as 

dl = -ic(v) (I-S)ds (19) 

If the velocities v(s') for s'<1 are deterministic also I(s) is deter­

ministic, but in case of random velocities I(s) will be random. Consider 

all I(s) which are compatible with the constraint that at s the velocity 

https://doi.org/10.1017/S0252921100075369 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100075369


177 

is in the interval v...v+dv, the probability of which is |P..(v,s)dv. 

Let q(v,s) be the mean value of the intensities subjected to this 

constraint. We now define 

Q(v,s) = IP1(v,s) • q(v,s) (20) 

and obtain for the expectation value of the intensity 

<I(s)> = / Q(v,s)dv . (21) 
v 

We want to emphasize that in contrast to I(s), which is a functional 

of v, the quantities q(v,s) and Q(v,s) are functions of v. 

Aiming now at the transfer equations for q(v,s) or Q(v,s) we first 

restrict ourselves to the case of macroturbulence and assume constant 

v for all s. Then q(v,s) and I(s) have to comply with the same transfer 

equation since for v = const, both quantities are identical. Hence 

dq(v,s) = - K(V)(q(v,s)-S)ds (22) 

and by multiplication with IP.fv) - which we assume to be independent 

of s -

dQ(v,s) = - K(V) (Q(V,S) -P^vJSJds (23) 

We now relax the macroturbulence condition (v=const.) by assuming a 

random field, the structure of which is dominated by two-point correla­

tions or by the corresponding two-point distribution functions 

IP-(v-,s-,v_,s2), respectively. These can be written as the product of 

a one-point distribution function times a transition probability 

E>2 (v1,s1 ,v2,s2) =tt>1(vl,sl) • \Hv2\v^,s^,s2-s^) (24) 

where W(v2 | v.. ,s1 ,s_-s,. )dv_ is the probability of finding at s~ the 

velocity v2 in the interval dv_ provided that at s1 the velocity is 

V 
Any change of the velocities with the step ds will clearly affect the 

transfer equation (23). There will be an additional sink term for 

Q(v,s) which is Q(v,s) times the probability that with the step ds the 

velocity changes to any other velocity v". Also an additional source 

term occurs, given by Q(v",s) times the probability of a transition 

from any v" to v. It is by means of these transition probabilities 

that the 'scale length 1 is introduced. 
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Transitions of v which lead to 

sink terms 

in Q(v,s) 

ds 

source terms 

in Q(v,s) 

ds 

So, with W independent of s , eq. (23) tu rns i n t o 
+00 

dQ(v,s)= - K ( V ) ( Q ( V , s ) - P 1 ( V ) - S ) d s - / Q(v , s )W(v ' | v ,ds )dv ' 
—oo 

+oo (25) 

+ / Q(v",s)W(v|v" ,ds)dv" 

This is the central equation of the two-point correlation approach. 

It has some resemblance with the transfer equation in case of scatte­

ring of line radiation. Indeed, if one relates the transition proba­

bility W with the redistribution function in case of scattering one can 

interpret eq. (25) as describing the transfer of monochromatic line 

radiation subjected to a scattering process in velocity space. 

One can look at the problem from a different point of view. Let 

P(I,v,s)dIdv be the joint probability of finding at s the intensity I 

in dl and the velocity v in dv. Then with the assumption of a velocity 

field governed by two-point correlations only, the transition proba­

bility for the velocity depends only on v at s and on no other data. 

Since the transfer equation is a first order differential equation, 

the change of I depends also only on the values of I and v at s, so 

that one can consider I and v as being subjected to a Markovian process 

in s. In this case the smooth change of P(I,v,s) with s can be described 

by an equation of the Einstein-Smoluchowski type: 
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P(I,v,s)= / dv'/ dl'fid-I'+icCv') (I'-S)As) -W(v|v",As)P(I' ,v',s'). (26, 
v* I' 

In order to establish the relation to eq. (25) one has to make use of 

the fact that Q(v,s) is the first moment of P(I,v,s) with respect to I 

Q(v,s)= ; P(I,v,s)I dl. (27) 
I 

The relations of this mesoturbulence approach to the micro- and macro-

turbulence limits and to hydrodynamic turbulence can best be illustrated 

by means of the corresponding two-point velocity correlations 

2, p(s)= <v(s')v(s'+s)>/<v > . 

Qualitatively the graphs of p(s) are: 

(28) 

p(s) 

•> s 

In order to work out eq. (25) in more detail the transition probability 

for the velocities has to be specified. This is the point where diffe­

rent approaches have been followed. 

Auvergne et al. (1973) conceived a process (the Kubo-Anderson process) 

in which the two-point velocity distribution is a linear combination 

of a) a completely uncorrelated part consisting of the product of two 

one-point distribution functions P.(v, D" IP..(v',s') and b) a part which 

is completely correlated IP.(v1,s')•6(v-v1). Then the transition proba­

bility is 

W(v|v\As) = (1-p(As) ) IP1 (v')+p(As)6 (v-v') 

Then with 

ds 
1 p(ds) = 1 

eq. (25) turns into 

3s 

+ 00 

=-K(Q-P1S)-1{Q-IP1 / Q(v
,)dv'}=-(K+l)Q+(<S+l<I>)|p 

(29) 

(30) 

(3T) 

https://doi.org/10.1017/S0252921100075369 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100075369


180 

The sink and source terms in the curly bracket can easily be interpreted 

as being due to "complete redistribution in velocity space" 

Gail et al. (1974), on the other hand, preferred Gaussian one- and two-

point velocity distributions with the consequence that 

2 ~y'2 v2 

IP1 = (2TTO ) exp (- - ^ ) (32) 

2a 
and 

-1/2 2 
W(v|v',As) = (27ra2(1-p2) exp (- (p^'"v' ) . (33) 

2a ( i V ) 

With these assumptions which define an Uhlenbeck-Ornstein process 

(Wang and Uhlenbeck, 1945) eq. (25) can be written as 

|2=-<(Q-|Pl S ) + l | ^ (v+a
2 |^) Q . (34) 

The differential operator on the rhs. of eq. (34) is consistent with 

the assumption of a continuous velocity field, hence only infinitesimal 

changes of v within ds have non zero probabilities; the"scattering"is 

almost "coherent". Eq. (34) is a partial differential equation of para­

bolic type which is easily solved by standard numerical techniques. 

The central eq. (25) and hence also eq. (31) and eq. (34) have been 

derived starting from the macroturbulence limit (l-»-°°). We use eq. (34) 

in order to show that they contain also the microturbulence limit (l-w>). 

Noting that the Hermite functions 

*n <£) = ^n (v) (35) 

are the eigenfunctions of the differential operator occurring in eq.(34) 

h (*+ y *n = - n K <36> 
we use the expansion 

CO 

Q(s,v) = S T (s) cf> (v) (37) 
n=0 

and obtain due to the orthonormality relations of the Hermite functions 

the following system of ordinary differential equations 

dT °° 
-j-E = - I K T + K S - 2 T , m = 0,1,2 (38) 
ds _ mn n mo 1 m 

n=0 
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with 
+°° -1 ~ . K

m„ =
 S <f>„ *n, *„ <(v)dV . (39) mn o m n 
—oo 

It is obvious that in the limit l-»-0 all modes with m =f 0 will have zero 

amplitude due to the last term on the rhs. of eq. (38). Hence in this 

limit eq. (38) reduces to 

dT 
-3-°- = - K (T -S) (40) 

ds oo o 

This is the microturbulence equation since 

<f,o(v) = IP1 (v ) (41) 

and 
+00 oo +00 

< I ( s ) > = / Q ( s , v ) d v = E T (s ) / <j>o
-1 <(!o <f>n dv = TQ . (42) 

-oo n=0 —<*> 

Conclusion 

1) The word "turbulence" denotes a velocity field which can be des­

cribed only in statistical terms. However, the reasons for such a 

description may be different. For a hydrodynamicist it is the very 

nature of the flow, for a spectroscopist, however, it is lack of 

information concerning the flow pattern. 

2) The basic parameter of such a velocity field is the mean square 
2 

velocity <v >. The scale length 1 is a further relevant informa­
tion. Micro- and macroturbulence are limiting cases l-»-0 and l->-<» 
respectively. 

3) If the limit l-»-0 is taken literally the spectroscopists concept of 

turbulence would be in conflict with basic principles of hydrody­

namics. Hence an approach v;ith finite 1 -Mesoturbulence- is needed. 

4) Whereas in principle the radiative transfer depends on all corre­

lations of the velocity field, the two-point correlation, which 

contains most of the coherence properties of the field, seems to 

provide a sensible first order approximation. 

5) The formalism of the mesoturbulent radiative transfer in this 

approximation is simple. It may be interpreted correctly in terms 

of scattering in velocity space. 

6) Efficient numerical methods exist for the solution of the resulting 

equations. 
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7) The possibility to extend the mesoturbulence formalism to non-LTE 

problems has not been touched upon (see Gail et al. 1975, Frisch 

and Frisch 1976, Traving 1976). 
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