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Abstract

This note introduces shape orderings for stationary time series autocorrelation and partial
autocorrelation functions and explores some of their convergence rate ramifications. The
shapes explored include decreasing hazard rate and new better than used, orderings that
are familiar from stochastic processes settings. Time series models where these shapes
arise are presented. The shapes are used to obtain explicit geometric convergence rates
for mean squared errors of one-step-ahead forecasts.
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1. Introduction

Stochastic shape orderings for the autocorrelation (ACF) and partial autocorrelation (PACF)
functions of stationary time series are introduced and explored here. The orderings examined
include new worse than used, new better than used, decreasing hazard rate, and increasing hazard
rate. The utility of such orderings and their variants is well known in stochastic processes
(see Brown (1980), Shaked and Shanthikumar (1994), Liggett (1989), Hansen and Frenk
(1991), Kijima (1997), Berenhaut and Lund (2001), (2002), Müller and Stoyan (2002), and
Lund et al. (2006), amongst others) and appears to be a promising addition to the time series
analyst’s toolbox. We are unaware of any previous literature on shapes of time series.

2. Definition of orderings

Let {Xt } be a zero-mean stationary series with autocovariance function (ACVF) γ (h) =
cov(Xt+h,Xt ) at lag h. We denote the lag-h autocorrelations and partial autocorrelations
by ρ(h) = corr(Xt+h,Xt ) and α(h) = corr(Xh+1, X1 | X2, X3, . . . , Xh), respectively. To
clarify, a conditional correlation at lag h ≥ 2 refers to correlation or residuals after best linear
prediction from X2, . . . , Xh, i.e.

α(h) = corr(Xh+1 − P(Xh+1 | X2, . . . , Xh),X1 − P(X1 | X2, . . . , Xh)),

where P(Y | Z1, . . . , Zk) denotes the best prediction of Y from linear combinations of
Z1, . . . , Zk .
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The ACF ρ(·) is said to be new better than used if

ρ(i + j) ≤ ρ(i)ρ(j), i, j ≥ 0, (2.1)

and is said to be new worse than used if

ρ(i + j) ≥ ρ(i)ρ(j), i, j ≥ 0. (2.2)

The ACF ρ(·) is said to be log-convex if

ρ(h+ 1)2 ≤ ρ(h)ρ(h+ 2), h ≥ 0, (2.3)

and is said to be log-concave if

ρ(h+ 1)2 ≥ ρ(h)ρ(h+ 2), h ≥ 0. (2.4)

Log-convexity is also called decreasing hazard rate and log-concavity is also called increasing
hazard rate, though the term increasing hazard rate is preferably used when ρ(·) can be negative
(hence, not permitting a logarithm), which is allowed here. The acronyms NWU, NBU, DHR,
and IHR are used for new worse than used, new better than used, decreasing hazard rate, and
increasing hazard rate, respectively.

We say that {Xt } has a monotone autocorrelation function if ρ(h) is nonincreasing with
increasing h. A stationary autocorrelation ρ(·) cannot be monotone increasing since |ρ(h)| ≤ 1
for all h ≥ 1 and ρ(0) = 1. Finally, {Xt } is said to have a convex ACF if ρ(h) is convex in
h, i.e.

ρ(h)− 2ρ(h− 1)+ ρ(h− 2) ≥ 0, h ≥ 2. (2.5)

As many convex sequences with ρ(0) > 0 are nonnegative definite (this is Polya’s criterion),
such sequences are legitimate stationary ACFs (Billingsley (1995, Problem 26.3) provided
sufficient conditions). Not every stationary ACF satisfies (2.5):

ρ(h) =
{( 1

2

)h/2 for h ≥ 0 even,

0 otherwise,

is one such example.
The above shapes apply equally well to the ACVF and PACF; we just replace ρ(h)with γ (h)

and α(h), respectively. We will not, however, attempt to attach meaning to NBU and NWU
ACVFs as this would lead to inconsistent units on the two sides of (2.1) and (2.2) (correlations
are unitless but autocovariances are not).

3. Some general results

Consider a causal linear process

Xt =
∞∑
k=0

ψkZt−k, (3.1)

where {Zt }∞t=−∞ is zero-mean white noise with variance σ 2 and
∑∞
k=0 |ψk| < ∞. Causal

linear processes comprise a large class of stationary processes. Any ARMA process whose
autoregressive polynomial is root-free on and inside the unit circle, for example, can be
expressed as in (3.1); see Brockwell and Davis (1991, Chapter 3).
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Theorem 3.1. Consider the causal linear process in (3.1).

(a) Ifψk is nonnegative and nonincreasing in k, then γ (h) is nonnegative and nonincreasing
in h.

(b) If ψk is nonnegative and convex in k, then γ (h) is nonnegative and convex in h.

(c) If ψk is nonnegative and DHR in k, then γ (h) is nonnegative and DHR in h.

(d) If {Xt } is the unique (in mean square) solution to the causal ARMA equation

Xt −
p∑
k=1

φkXt−k = Zt +
q∑
k=1

θkZt−k, (3.2)

and the coefficients φ1, . . . , φp and θ1, . . . , θq are nonnegative, then γ (h) ≥ 0 for all
h ≥ 1.

Proof. The autocovariance γ (h) is obtained from (3.1) as follows:

γ (h) = σ 2
∞∑
k=0

ψkψk+h. (3.3)

Hence, the nonnegativity assertions in parts (a)–(c) follow. The monotonicity in part (a) is
established by using (3.3) and ψk+h+1 ≤ ψk+h. Part (b) follows from (3.3) and the convex
structure assumed on {ψk}. Part (c) is proven using (2.3) and the Cauchy–Schwarz inequality,
i.e. for each h ≥ 0, we obtain

γ (h+ 1) = σ 2
∞∑
k=0

ψkψk+h+1

≤ σ 2
∞∑
k=0

√
ψkψk+h

√
ψkψk+h+2

≤
√√√√σ 2

∞∑
k=0

ψkψk+h

√√√√σ 2
∞∑
k=0

ψkψk+h+2

= √
γ (h)γ (h+ 2).

Part (d) is established by showing that ψk ≥ 0 for each k ≥ 0. This can be done inductively
with the ARMA recursion for ψj , with ψ0 = 1 and

ψj =
min (p,j)∑
k=1

φkψj−k + 1{j≤q} θj , j ≥ 1, (3.4)

where 1{·} is the indicator function. (Equation (3.4) is Equations (3.3.3) and (3.3.4) from
Brockwell and Davis (1991).)

Turning to shapes of common time series models, we offer the following structure on second-
order autoregressions (AR(2)). Here, the series {Xt } is the unique (in mean square) solution to
the second-order difference equation Xt − φ1Xt−1 − φ2Xt−2 = Zt , where {Zt } is zero-mean
white noise with variance σ 2.
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Theorem 3.2. Suppose that the roots of the autoregressive polynomial 1 − φ1z − φ2z
2 lie

outside the unit circle (the model is causal) and are complex conjugates or repeated real roots.
Then the ACF of this series is log-concave (IHR).

Proof. Expressing the AR(2) polynomial in terms of its roots ξ1 and ξ2 gives

(1 − ξ−1
1 B)(1 − ξ−1

2 B)Xt = Zt ,

where B is the usual backshift operator and causality implies that |ξ1| > 1 and |ξ2| > 1.
The roots and AR(2) parameters are related by φ1 = ξ−1

1 + ξ−1
2 and φ2 = −ξ−1

1 ξ−1
2 .

Equation (3.3.14) in Brockwell and Davis (1991) identifies the following form for the ACVF:

γ (h) = σ 2ξ2
1 ξ

2
2

(ξ1ξ2 − 1)(ξ2 − ξ1)
[(ξ2

1 − 1)−1ξ1−h
1 − (ξ2

2 − 1)−1ξ1−h
2 ]. (3.5)

For the case of complex conjugate roots, we write ξ1 = reiθ and ξ2 = re−iθ for some θ ∈ (0, π ]
and r > 1 in (3.5), to get

γ (h) = σ 2r4r−h sin(hθ + ψ)

(r2 − 1)(r4 − 2r2 cos(2θ)+ 1)1/2 sin θ
, (3.6)

where tanψ = (r2 + 1)(r2 − 1)−1 tan θ and cosψ has the same sign as cos θ . Hence,

ρ(h) = r−h sin(hθ + ψ)

sinψ
=

(
sin(hθ)

tanψ
+ cos(hθ)

)
r−h. (3.7)

Some tedious but straightforward manipulations of (3.7) now give

ρ2(h+ 1)− ρ(h)ρ(h+ 2) =
(

1

2
+ 1

2 tan2 ψ

)
(1 − cos(2θ))r−2(h+1).

As 1 − cos(2θ) ≥ 0, r > 1, and tan2 ψ ≥ 0, the result now follows for the case of complex
conjugate roots. With repeated real roots (i.e. ξ1 = ξ2), the form of (3.6) is ρ(h) = A0ξ

−h
1 +

A1hξ
−h
1 , for some constants A0 and A1, which satisfies

ρ2(h+ 1)− ρ(h)ρ(h+ 2) = A2
1(ξ

2
1 )

−(h+1)

and is, hence, IHR.

When the AR(2) polynomial is causal and has two distinct real roots, the ACVF will be IHR
whenever the product of the two roots, ξ1ξ2, is positive (or, equivalently, when φ2 < 0). In the
event that ξ1ξ2 is negative, the ACVF will be neither IHR or DHR. However, in all cases, the
subsequence {γ (2h)}∞h=0 can be shown to be IHR.

We close this section with an example of a log-convex (DHR) PACF.

Proposition 3.1. A causal and invertible ARMA(1, 1) series has a PACF whose square is
monotonically decreasing and is DHR.

Proof. The ARMA(1, 1) difference equation is

Xt − φXt−1 = Zt + θZt−1, (3.8)
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where {Zt } is zero-mean white noise with variance σ 2. Causality and invertibility imply that
|φ| < 1 and |θ | < 1.

The partial autocorrelation function of an ARMA(1, 1) series can be explicitly identified
from the result of Problem 5.13 in Brockwell and Davis (1991) as follows:

α2(n) = θ2n−2(1 − θ2)2(θ + φ)2(1 + θφ)2

[(θ + φ)2(1 − θ2n)+ (1 − φ2)(1 − θ2)]2 . (3.9)

The claimed monotonicity follows from (3.9) since

α2(n− 1)

α2(n)
= 1

θ2

[(θ + φ)2(1 − θ2n)+ (1 − φ2)(1 − θ2)]2

[(θ + φ)2(1 − θ2n−2)+ (1 − φ2)(1 − θ2)]2

≥ 1

θ2

≥ 1,

which implies that α2(n) is nonincreasing in n. The DHR structure of α2(·) follows from the
fact that α2(n− 1)/α2(n) is decreasing in n, which can be verified from (3.9).

4. Convergence rates

As a short application, this section briefly explores convergence rate consequences of the
above orderings in one-step-ahead linear prediction settings. This topic was also studied in
Pourahmadi (2001, Section 7.6.2). We assume here that {Xt } is stationary with zero mean and
has ACVF γ (·), ACF ρ(·), and PACF α(·).

Let X̂t+1 = P(Xt+1 | X1, . . . , Xt ) be the best one-step-ahead prediction of Xt+1 from
linear combinations of X1, . . . , Xt and let vt = E[(Xt+1 − X̂t+1)

2] denote the unconditional
mean squared error of this prediction. Let v∞ = limt→∞ vt denote the limiting mean squared
prediction error; this limit exists as vt is nonincreasing in t . The mean squared prediction error
can be expressed, via the square of the PACF, as

vt = γ (0)
t∏

j=1

(1 − α2(j)); (4.1)

see Brockwell and Davis (1991, Proposition 5.2.1) and Pourahmadi (2001, Section 7.5). To
avoid trivialities, we assume that the covariance matrix of (X1, . . . , Xn)

′ is invertible for all
positive integers n (otherwise, we would have perfect prediction). A sufficient condition for
this is merely that γ (h) → 0 as h → ∞ (see Brockwell and Davis (1991, Proposition 5.1.1)),
as is the case for any causal ARMA(p, q) series.

From (4.1), we deduce that

|vt − v∞| = γ (0)
t∏

j=1

(1 − α2(j))

[
1 −

∞∏
j=t+1

(1 − α2(j))

]

≤ γ (0)
t∏

j=1

(1 − α2(j))

∞∑
j=t+1

α2(j), (4.2)
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where the inequality 1 − ∏∞
j=t+1(1 − α2(j)) ≤ ∑∞

j=t+1 α
2(j) has been applied. Note that

(4.2) is tight for an autoregression of order p; specifically, the right-hand side of (4.2) is zero
for lags t > p, implying that vt ≡ σ 2 = v∞ for t > p.

Now consider the case where {Xt } has a nonnegative and NBU PACF. Then α(t + h) ≤
α(t)αh(1) for all t, h ≥ 0. Using this in (4.2) produces a very clean and explicit convergence
bound,

|vt − v∞| ≤ γ (0)α2(1)

[ t∏
j=2

(1 − α2(j))

]
α2(t) ≤ γ (0)α2(t),

where 0 ≤ ∏t
j=2(1 − α2(j)) ≤ 1 and α2(1) ≤ 1 have been applied.

For bounds with a different shape, suppose that α2(·) is DHR (as in Proposition 3.1). By
monotonicity of α2(n)/α2(n−1), we defineM∞ = limn→∞ α2(n)/α2(n−1). Then we obtain

∞∑
j=t+1

α2(j) = α2(t + 1)

α2(t)
α2(t)+ α2(t + 2)

α2(t + 1)

α2(t + 1)

α2(t)
α2(t)+ · · ·

≤ α2(t)[M∞ +M2∞ + · · · ]

= M∞α2(t)

1 −M∞
, (4.3)

if M∞ < 1. Substituting (4.3) into (4.2) gives

|vt − v∞| ≤ γ (0)
M∞α2(t)

1 −M∞
. (4.4)

Other shapes could lead to different inequalities; the theme is simply that a shape constraint
can provide clean explicit convergence rates of the mean squared prediction errors to their limit.

Explicit convergence bounds for other forecasting quantities can also be obtained via shapes.
Elaborating on this, suppose that {Xt } is a causal and invertible ARMA(p, q) series satisfying
(3.2). The innovations one-step-ahead recursive prediction equation is

X̂n+1 =
p∑
k=1

φkXn+1−k +
q∑
k=1

θn,k(X̂n+1−k −Xn+1−k), n ≥ max(p, q). (4.5)

The θn,k are defined as

θn,k = v−1
n−k E[Xn+1(Xn+1−k − X̂n+1−k)], 1 ≤ k ≤ q, n ≥ max(p, q);

see Brockwell and Davis (1991, Chapter 5). It is also known that θn,k → θk as n → ∞. In
our final result we derive an explicit bound for this convergence in the case of an ARMA(1, 1)
model.

Proposition 4.1. The causal and invertible ARMA(1, 1) difference equation (3.8) has θn,1 →
θ with explicit rate

|θn,1 − θ | ≤ √
2|θ |n + |θ |2n−1 (1 + φθ)2

(1 − φ2)(1 − θ2)
≤ 6|θ |n−1

(1 − φ2)(1 − θ2)
, (4.6)

for n ≥ 1.
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Proof. Write the ARMA(1, 1) model as in (3.8). Equation (4.5) is

X̂n+1 − φXn = θn,1(Xn − X̂n), n ≥ 1. (4.7)

Multiplying both sides of (4.7) by X̂n −Xn and taking expectations gives

θn,1 = E[(X̂n+1 − φXn)(Xn − X̂n)]
vn−1

.

The orthogonality of Xn − X̂n and Xn+1 − X̂n+1 and (3.8) provide

vn−1θn,1

= E[(Xn+1 − φXn)(Xn − X̂n)]
= E[Xn+1(Xn − X̂n − Zn)] + E[Xn+1Zn] − φ E[Xn(Xn − X̂n − Zn)] − φ E[XnZn]
= E[(Xn+1 − φXn)(Xn − X̂n − Zn)] + θσ 2.

This gives the following equation for θn,1 − θ :

θn,1 − θ = E[(Xn+1 − φXn)(Xn − X̂n − Zn)] + θ(σ 2 − vn−1)

vn−1
. (4.8)

To bound quantities in (4.8), the Cauchy–Schwarz inequality provides

|θn,1 − θ | ≤ var(Xn+1 − φXn)
1/2 E[(Xn − X̂n − Zn)

2]1/2

vn−1
+ |θ |(vn−1 − σ 2)

vn−1

= σ(1 + θ2)1/2 E[(Xn − X̂n − Zn)
2]1/2

vn−1
+ |θ |(vn−1 − σ 2)

vn−1
. (4.9)

A bound for E[(Xn − X̂n − Zn)
2] is obtained by noting that

E[(Xn − X̂n − Zn)
2] = θ2 E[(Zn−1 − P(Zn−1 | X1, . . . , Xn−1))

2].
Equation (3.8) provides

P(Zn−1 | X1, . . . , Xn−1) = Xn−1 − φXn−2 + θ P(Zn−2 | X1, . . . , Xn−1);
hence,

E[(Xn − X̂n − Zn)
2] = θ4 E[(Zn−2 − P(Zn−2 | X1, . . . , Xn−1))

2].
We recurse these arguments and use E[(Z0 − P(Z0 | X1, . . . , Xn−1))

2] ≤ σ 2, to get
E[(Xn − X̂n − Zn)

2] ≤ θ2nσ 2. Using this and vn ≥ σ 2, v∞ = σ 2, and |θ | ≤ 1 in (4.9)
gives

|θn,1 − θ | ≤ √
2|θ |n + |θ |(vn−1 − v∞)

σ 2 . (4.10)

To bound (vn−1 − v∞)/σ 2, we use the DHR shape established in Proposition 3.1, (4.4),
M∞ = θ2 < 1, γ (0) = σ 2(1 + 2φθ + θ2)(1 − φ2)−1, and some algebra, to obtain

vn−1 − v∞
σ 2 ≤ γ (0)α2(n− 1)M∞

(1 −M∞)σ 2 ≤ θ2n−2(1 + φθ)2

(1 − φ2)(1 − θ2)
. (4.11)

Substituting (4.11) into (4.10) produces the convergence rate quoted in (4.6).
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