J. Austral. Math. Soc. (Series A) 67 (1999), 318-328

FINITE DINILPOTENT GROUPS OF SMALL DERIVED LENGTH

JOHN COSSEY and YANMING WANG

Dedicated to Mike (M. F.) Newman on the occasion of his 65th birthday

(Received 16 October 1998; revised 30 August 1999)

Communicated by R. B. Howlett

Abstract

A finite dinilpotent group G is one that can be written as the product of two finite nilpotent groups, A and B say. A finite dinilpotent group is always soluble. If A is abelian and B is metabelian, with |A| and |B| coprime, we show that a bound on the derived length given by Kazarin can be improved. We show that G has derived length at most 3 unless G contains a section with a well defined structure; in particular if G is of odd order, G has derived length at most 3.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 20D60. Keywords and phrases: finite soluble groups, dinilpotent groups, derived length.

1. Introduction

If a finite group G can be written as the product AB of two nilpotent subgroups, A and B, we will call G a *dinilpotent* group. If A and B are of coprime order and G is soluble, Hall and Higman proved that the derived length of G is at most the sum of the nilpotency classes of A and B (as a special case of [3, Theorem 1.2.4]). Wielandt proved that a dinilpotent group G must indeed be soluble if the factors are of coprime order([9]) and Kegel then proved that a dinilpotent group is always soluble ([8]). However a bound for the derived length of dinilpotent groups has proved elusive.

When A and B are coprime, the bound of Hall and Higman is best possible for small values of the nilpotency classes of A and B. However it seemed likely that for larger values of the nilpotency classes this bound is too large and should be replaced by a function of the derived lengths of A and B. Such a bound has recently been

^{© 1999} Australian Mathematical Society 0263-6115/99 \$A2.00 + 0.00

provided by Kazarin [7] in a more general setting. We denote by d(H) the derived length of a soluble group H. For a dinilpotent group G with A and B of coprime order he establishes that $d(G) \leq 2d(A)d(B) + d(A) + d(B)$ and if G is of odd order then $d(G) \leq d(A)d(B) + \max\{d(A), d(B)\}$ ([7, Theorem 3]) and (in the proof of [7, Corollary]) he observes that if A is abelian then $d(G) \leq 2d(B) + 1$ and if further Gis of odd order then $d(G) \leq 2d(B)$.

The purpose of this paper is to give more precise information about the derived length of the dinilpotent group G in the case when A and B are of coprime orders and A is abelian, B metabelian. In this case, Kazarin's bounds give G of derived length at most 5 and, if G is of odd order, of derived length at most 4. We will show that the bounds can be improved to 4 and 3, respectively and that these bounds are best possible. Our main result is however rather more technical and shows that in most situations the bound will be 3 and that the groups with derived length 4 have a well defined structure. In particular, we obtain that the derived length is at most 3 if G has odd order.

If A is abelian and B is metabelian then A wr B, the wreath product of A and B has derived length 3 and so the bound of 3 can not be improved. If we take G = GL(2, 3), then G = AB, where A is a Sylow 3-subgroup and B is a Sylow 2-subgroup. We then have G of derived length 4, A abelian and B metabelian, so that the bound of 4 for dinilpotent groups of even order can not be improved. This group is typical of the groups of derived length 4. We say that a group G is of type (E) if it has the following structure: F(G) is an extraspecial 2-group, G/F(G) is dihedral of order 2q for some odd prime q and $F(G)/\Phi(F(G))$ is either a minimal normal subgroup of $G/\Phi(F(G))$ or the product of 2 minimal normal subgroups of $G/\Phi(F(G))$. We give examples to show that for any odd prime q both these possibilities occur.

Our main result is then the following theorem.

THEOREM 1. Suppose that G is a finite group and G = AB with A abelian and B metabelian and nilpotent. Suppose further that the order of A and the order of B are coprime. Then G is soluble of derived length at most 4. Further, the derived length is at most 3 unless G has a section of type (E); in which case it has derived length 4.

2. Preliminaries

We begin with the observation that groups of type (E) are easy to find and it is probably not difficult to classify them completely. For a given odd prime q we show that we can construct groups of type (E). Let D denote the dihedral group of order 2q and let U be a faithful irreducible module for D over the field of 2 elements. Then $|U| = 2^r$, where r is the order of 2 modulo q if this order is even and twice the order of 2 modulo q if this order is odd. It is not difficult to see that U is isomorphic to 320

[3]

its dual V (see Doerk and Hawkes [2, Definition B.6.6] for the definition of duality). It then follows that the trivial module is a quotient of $U \otimes V$ and we can use the construction of Huppert [5, Hilfssatz 6.7.22] to give an extraspecial group F of order p^{2r+1} on which D acts so that F' is trivial and $F/F' \cong U \oplus V$ as D-modules. Put G = FD. Then G is clearly a group of type (E). For another example, we note that there exists a non-singular D-invariant quadratic form on U (Huppert and Blackburn [6, Theorem 7.8.13 and Theorem 7.8.30]). Thus D may be regarded as a subgroup of one of the two orthogonal groups $GO_r^{\epsilon}(2)$ ($\epsilon = +1$ or -1; see [1, page (xii)]). It then follows follows from Huppert [5, Satz 3.13.8 and Bemerkung 3.13.9(b)] that there is an extraspecial group F of order 2^{r+1} whose automorphism group contains a subgroup $D_0 \cong D$ for which the action of D_0 on F/F' is the same as that of D on U. We set G = FD and again G is clearly a group of type (E). We can vary these examples to produce non-splitting examples of a similar structure.

LEMMA 1. Let p be a prime and K a field of characteristic p. Let G be a pnilpotent group, P a Sylow p-subgroup of G and $Q = O_{p'}(G)$ a Hall p'-subgroup of G. Suppose that U is a faithful irreducible KG-module. Then if Q is abelian and P is nonabelian, the semidirect product of U and P has derived length at least 3.

PROOF. Note that for p an odd prime, the result is an immediate corollary of Kazarin [7, Lemma 9]. A direct proof is easy however and we include it here.

We assume that the result is false and G has been chosen to have order as small as possible with UP metabelian. Thus if P_0 is a nonabelian maximal subgroup of P and U_0 is an irreducible submodule of U_{OP_0} then it is an easy consequence of Clifford's Theorem (Huppert [5, Hauptsatz V.17.3]) that U_0 and $QP_0/C_{OP_0}(U_0)$ satisfy the hypotheses of the lemma and hence $U_0P_0 \leq UP$ has derived length at least 3, a contradiction. It follows that P_0 is abelian and so every maximal subgroup of P is abelian. We then have that P is generated by two elements, x and y say, $\Phi(P)$, the Frattini subgroup of P, is central (and so $\Phi(P) = \zeta(P)$, the centre of P), and P' is central of order p. For a maximal subgroup P_0 of P and an irreducible submodule U_0 of U_{OP_0} , it is again an easy consequence of Cliffords Theorem that, if any element of $\zeta(P)$ centralises U_0 , it will centralise all irreducible components of U_{QP_0} and hence U, a contradiction. Set $G_1 = (QP_0)/C_{QP_0}(U_0)$ and let Q_1 and P_1 denote the images of Q and P_0 in G_1 . We now claim that U_0 , regarded as a KG_1 -module by deflation contains a submodule isomorphic to KP_1 when restricted to P_1 . To see this note first that we may assume that K is algebraically closed. Then $(U_0)_{O_1}$ can be written as a direct sum of homogeneous components by Clifford's Theorem. Since Q_1 is abelian and K is algebraically closed we have that the homogeneous components are one dimensional and moreover no element of P_1 can fix every homogeneous component. It now follows that P_1 acts faithfully and transitively as permutation group on the

homogeneous components. But then P_1 acts regularly as permutation group on the homogeneous components (Wielandt [10, Proposition 4.4]). It is then clear that U_0 is isomorphic to KP_1 (as KP_1 -module).

Suppose now that $|\zeta(P)| > 2$. We have shown above that $\zeta(P) \cap C_{QP_0}(U_0) = 1$ and hence we have $(U_0)_{\zeta(P)}$ contains a submodule V say isomorphic to $K\zeta(P)$. If now c is an element of order p in P' and $C = \langle c \rangle$ and W is the unique maximal submodule of V then W_C contains a submodule isomorphic to KC unless $C = \zeta(P)$, in which case we must have $p \ge 3$ and W uniserial of length p - 1. In either case we have that for some element $w \in W$, $wc \neq w$. Next suppose that $|\zeta(P)| = 2$. Then P contains a cyclic subgroup of order 4; we may assume that P_0 has been chosen to be cyclic (of order 4). In this case we have $C_{P_0}(U_0) = 1$ and so $(U_0)_{P_0}$ contains a submodule V isomorphic to KP_0 . If W is the unique maximal submodule of V, then $W_{\zeta(P)}$ contains a submodule isomorphic to $K\zeta(P)$. Again if $1 \neq c \in P'$ there is an element $w \in W$ such that $wc \neq w$.

We now translate the claims above in the semidirect product PU. We have an element $1 \neq c \in P'$ and w in the radical of U such that $wc - w \neq 0$. In the semidirect product, $w \in [U, P]$ and wc - w may be written [w, c]. But both w and c are in (UP)' and so $(UP)'' \neq 1$. This completes the proof of the lemma.

The next lemma generalises a result from modular representation theory in a form we need.

LEMMA 2. Let p be a prime, G a group with U an abelian normal p-subgroup and G/U a p-nilpotent group. Then $U = U_1 \times \cdots \times U_i$ where each U_i is normal in G, all chief factors of G contained in U_i are isomorphic as G-modules and if $i \neq j$ no chief factor of U_i is isomorphic to a chief factor of U_j .

PROOF. When U is elementary abelian, we can regard U as a G/U-module and the result is then essentially a restatement of a theorem of Srinivasan (Huppert and Blackburn [6, Theorem 7.16.10]). We proceed by induction on the length of a G chief series from U to 1; the result is clearly true for 1. By our observation we can assume that U is not elementary abelian. If U has exponent p^a then $U^{p^{a-1}}$ is elementary abelian and moreover isomorphic (as an G-module) to a quotient of $U/\Phi(U)$. Since $U^{p^{a-1}} \leq \Phi(U)$, we have that for some minimal normal subgroup V of G contained in U U/V contains a G-chief factor isomorphic to V (as Gmodules). Now by our inductive hypothesis U/V can be written as a direct product $U/V = (U_1^*/V) \times (U_1^*/V) \times \cdots \times (U_t^*/V)$, where the U_j^*/V satisfy the requirements of the lemma and U_1^*/V has been chosen so that each chief factor of G contained in U_1^*/V is isomorphic to V. For i > 1 we have the length of U_i^* is less than the length of U and so $U_i^* = V \times U_i$, since no chief factor of U_i^*/V is isomorphic to V. Set

[5]

 $U_1 = U_1^*$. Then it is easy to see that $U = U_1 \times \cdots \times U_t$ and that the U_i satisfy the requirements of the lemma.

The next result is a technical one we need in the proof of the main theorem.

LEMMA 3. Let p, q be distinct primes and suppose G = AB, where A is the unique minimal normal subgroup of G and is of q-power order and B is cyclic of order p^i . Let U be a faithful irreducible FG-module, where F is a finite field of characteristic p. Let V be the radical of U_B . Then U_B is a free FB-module (of rank t say) and for any element $1 \neq a \in A$ we have V + Va = U. Further, $U/(V \cap Va)$ has dimension at most 2t.

PROOF. Recall that the radical of a module is the smallest submodule with completely reducible quotient (Doerk and Hawkes [2, Definition B.3.7] and remarks following). If F is a splitting field for G, then U is induced from a 1-dimensional irreducible for A (by Clifford's Theorem) and so by the Mackey Subgroup Theorem (Huppert [5, Satz V.16.9]) U_B is a free FB-module. It then follows easily that U_B is free for any field F of characteristic p. If the dimension of U over F is t, then $t = p^i r$ and U_B is free of rank r. Note that if $a \in A$, then Va is the radical of U_{B^a} . There are now two cases to consider.

Suppose first that U_A is reducible, so that $U_A = U_0 \oplus \cdots \oplus U_{p^s-1}$, where $s \leq t$ and each U_j is a distinct irreducible FA-module of dimension $p^{t-s}r$. If $B = \langle b \rangle$, then B permutes the U_j , say $U_0b^j = U_j$, with $0 \leq j \leq p^s - 1$. We then have that $Y = \{u - ub : u \in U_0\}$ is a subspace of U contained in V. Now suppose $1 \neq a \in A$. Then $[b, a] \neq 1$ and so [b, a] does not act trivially on some U_j ; we may suppose that U_0 has been chosen so that [b, a] does not act trivially on U_0 . Let $W = \{u - ub^a : u \in U_0\}$. Suppose now that $W \cap V \neq 0$. Since $U = U_0 \oplus \cdots \oplus U_{p-1}$, we have $u - ub^a = x + y$, with $x \in U_0$ and $y \in U_1$. Since $U_0b^a = U_1$ we then have x = u and since $x - xb \in V$ we also have $y + xb \in U_1 \cap V = 0$, giving y = -xb. Thus we now have $ub^a = ub$ and so u[b, a] = u. But then [b, a] acts trivially on U_0 , contradicting the choice of a. We thus have $W \cap V = 0$. Since W has dimension r and V has dimension (p-1)r, we have W + V has dimension pr and so U = W + V. Then we have U = V + Va since $W \leq Va$.

Next we suppose that U_A is irreducible. It follows that A is cyclic of order q and p|q-1. Let E be the field of order $|F|^{pr}$. Then we can regard U as the additive group of E, A as a subgroup of the multiplicative group of E and B as a subgroup of the Galois group of E over F. Note that q divides $|F|^{pr} - 1$ but not $|F|^s - 1$ for any s < pr. If D denotes the subfield of E fixed element-wise by B, then E has dimension p as a vector space over D. We now regard E as a DG-module and we then have E_B is isomorphic to DB as DB-module. The radical W of E_B then has dimension p - 1 (over D). Since the radical of E_{B^a} is Wa for any $a \in A$ and $Wa \neq W$

if $a \neq 1$ (otherwise W would be G-invariant, a contradiction) we have W + Wa = E. Since W regarded as an FB-module has dimension r(p-1) and E/W is trivial as FB-module, W is the radical of E as FB-module. But U is isomorphic to E as FG-module and the result follows.

The final statement of Lemma 3 comes immediately from the fact that the free FB-module of rank t modulo its radical has dimension t.

3. Proof of Theorem 1

We suppose that G satisfies the following hypothesis:

(*) G = AB with A abelian, B metabelian and nilpotent and A and B of coprime orders. Further, G has no section isomorphic to one of the groups P(p, i).

We want to show that if G satisfies (*) then G has derived length at most 3. So we suppose that G has been chosen to have order as small as possible with derived length greater than 3 and satisfying (*). We begin with some standard reductions.

Since any quotient of a group satisfying (*) also satisfies (*), it follows quickly that G has a unique minimal normal subgroup N whose quotient G/N has derived length 3. We also have that F(G) is a p-group for some prime p. Further if $\pi(A)$ is the set of primes dividing |A|, then G has $\pi(A)$ -length 1. If $p \in \pi(A)$ then A centralises F(G) and so is contained in F(G) (Huppert [5, Satz 3.4.2]). Thus A = F(G), $G/F(G) \cong B$ and G clearly has derived length at most 3, a contradiction. Hence we must have $p \in \pi(B)$. If H is the Hall p'-subgroup of B then centralises F(G) and so $H \leq F(G)$, giving H = 1. Thus B is a p-group. If B = F(G) then $G/B \cong A$ and again G has derived length at most 3, a contradiction.

We now have M = F(G)A a normal subgroup of G with G/M a nontrivial pgroup. We suppose first that G/M is nonabelian, so that there are elements x and y in B with [x, y] not in M. It then follows from Huppert [5, Satz 3.4.2] that there is a chief factor F(G)/K of G with $[x, y] \notin C_G(F(G)/K)$. Let H/K be a complement for F(G)/K in G/K. Then the semidirect product $(F(G)/K)(H/C_H(F(G)/K))$ $\cong G/C_H(F(G)/K)$ satisfies the hypotheses of Lemma 1 and so has Sylow p-subgroup of derived length at least 3, a contradiction. Thus we must have G/M abelian. Note that this immediately gives a bound of 4 for the derived length, since G/M and M/F(G) are abelian and F(G) is metabelian. Our aim now is to show that F(G)must be abelian unless G has a section isomorphic to some P_i .

Since we have assumed that G has derived length greater than 3 and is minimal, we have $N = G''' < G'' \le F(G)$. Let L denote the smallest normal subgroup of Gcontained in F(G) for which every chief factor X/Y of G with $L \le X < Y \le F(G)$ satisfies $G/C_G(X/Y)$ abelian. Note that $L \le G''$. Also we have that G/L is nilpotentby-abelian and so since any nilpotent subgroup of G is metabelian we have G/L of

[6]

derived length at most 3. In particular $1 \neq L$ and so $N \leq L$. Since G'' is not abelian and G''' = N we have $N \leq \zeta(G'')$ and so G'' has nilpotency class 2. Suppose that $F(G) \neq L$.

Suppose that L is abelian and let D be a maximal abelian normal subgroup containing L. Then $D \leq F(G)$ and we must have F(G)/D nonabelian. Let E/D = (F(G)/D)' and suppose that L is not contained in $\zeta(E)$. We choose L/K to be a chief factor of G with $\zeta(E) \cap L \leq K$. If x is a p-power element not in F(G)we have L/K as an $\langle x \rangle$ -module is nontrivial and so for some element $yK \in L/K$ we have $[x, y] \notin K$. If $c \in F(G)'$, then if P is a Sylow p-subgroup of G containing x, c and [x, y] are both in P'. Thus [c, [x, y]] = 1. Since E is generated by F(G)' and D we have $[x, y] \in \zeta(E)$, a contradiction. It follows that L is not abelian.

Now let F(G)/K be a chief factor with $L \leq K$. Then F(G)/K is complemented in G, by H say. We then have that H satisfies (*). Moreover $L \leq H''$, since if not there is a chief factor L/J of G with L not contained in H''J. But then L/J is a chief factor of H with $H'' \cap L \leq J$ and $H/C_H(L/J)$ abelian. But then we have $G/C_G(L/J)$ abelian, a contradiction. It follows that $L \leq H''$ and then H has derived length 4, a contradiction. Thus we must have F(G) = L.

Since $L < G'' \le F(G)$ we have G'' = F(G). Then we have $N = G''' \le \zeta(F(G))$ and so F(G) is of nilpotency class 2. Moreover, since F(G)' is elementary abelian, p^{th} powers are central in F(G), giving $\Phi(F(G))$ central in F(G). We have G/F(G)*p*-nilpotent and so by Lemma 2 we can write $F(G)/N = (U_1/N) \times \cdots \times (U_n/N)$, where all chief factors between U_i and N are isomorphic and if $i \neq j$ no chief factor between U_i and N is isomorphic to a chief factor between U_i and N. Note now that no chief factor F(G)/K can have $G/C_G(F(G)/K)$ nilpotent, for we would then have $G/C_G(F(G)/K)$ abelian. It follows that F(G)/N is the metanilpotent residual of G/N and so is complemented, by H/N say (Huppert [5, Satz 6.7.15]). If F(G)/Kis a chief factor of G we put E = KH. If K is nonabelian then E satisfies (*) and has derived length 4, a contradiction. Hence K must be abelian. Suppose that $F(G)/\Phi(G) = (V_1/\Phi(G)) \times \cdots \times (V_m/\Phi(G))$ with $V_i/\Phi(G)$ a chief factor of G. If m > 2 then the product of any m - 1 of the V_i is abelian and so in particular $[V_i, V_i] = 1$ and then since F(G) is generated by the V_i we have F(G) abelian, a contradiction. Thus $F(G)/\Phi(G)$ is either a minimal normal subgroup or the product of two minimal normal subgroups of $G/\Phi(G)$.

We now consider the structure of G/F(G). We have B a Sylow p-subgroup of G and we let K be a maximal subgroup of B containing F(G). Then KA is a normal subgroup of index p in G and also satisfies (*). It follows that KA must have derived length 3 and hence that (KA)'' must be properly contained in F(G). Regarded as a $\mathbb{Z}_p(KA)$ -module, $F(G)/\Phi(G)$ is completely reducible by Clifford's Theorem and so if F(G)/L is a chief factor of G with $(KA)'' \leq L$ we have that KA acts on each composition factor of F(G)/L as an abelian group. It follows that K

centralises F(G)/L. If $F(G)/\Phi(G)$ is irreducible or the direct sum of two isomorphic irreducibles, then we must have $K \leq F(G)$ and hence K = F(G). Now suppose that $F(G)/\Phi(G) = (U/\Phi(G)) \times (V/\Phi(G))$, with $U/\Phi(G)$, $V/\Phi(G)$ irreducible. If B has two distinct maximal subgroups containing F(G), it has at least p + 1maximal subgroups containing F(G). Thus we can find distinct maximal subgroups K_1, K_2, K_3 each containing F(G). We can not have both K_1 and K_2 centralising $U/\Phi(G)$, for then we would have B centralising $U/\Phi(G)$ and G acting on $U/\Phi(G)$ as an abelian group, a contradiction; suppose K_1 centralises $U/\Phi(G)$. On the other hand, K_3 must centralise one of $U/\Phi(G), V/\Phi(G), U/\Phi(G)$ say. We then have B centralises $U/\Phi(G)$, a contradiction. Thus we may assume that B has a unique maximal subgroup containing F(G). It nows follows that B/F(G) is cyclic and moreover that B/F(G) acts faithfully on one of $U/\Phi(G)$ and $V/\Phi(G), U/\Phi(G)$ say, and then $(B/F(G))^p$ centralises $V/\Phi(G)$.

Note that F(G)A is normal in G; we choose $F(G)A_0$ normal in G and so that $(F(G)A)/(F(G)A_0)$ is a chief factor. We then have BA_0 satisfies (*) and so has derived length at most 3. Thus we must have that BA_0 acts as an abelian group on some chief factor F(G)/W. Since BA_0 cannot act as an abelian group on F(G)/W, we must have B centralises $(F(G)A_0)/F(G)$ but not $(F(G)A)/(F(G)A_0)$. It now follows from Higman's Lemma [3] that $A = A_0 \times A_1$ with $(F(G)A_1)/F(G)$ a chief factor of G. If $F(G)/\Phi(G)$ is irreducible, we have BA_1 of derived length 4 and so $G = BA_1$, giving $A = A_1$. Hence suppose that $F(G)/\Phi(G)$ is reducible, so that $F(G)/\Phi(G) = (U/\Phi(G)) \times (V/\Phi(H))$, with $U/\Phi(G)$ and $V/\Phi(G)$ chief factors of G. If A_1 does not centralise either of $U/\Phi(G)$ and $V/\Phi(G)$ then again BA_1 has derived length 4 and $A_1 = A$. If A_1 centralises $U/\Phi(G)$ then it cannot centralise $V/\Phi(G)$ also. Moreover we must have A_0 centralises $V/\Phi(G)$, since it must centralise one of $U/\Phi(G)$ and $V/\Phi(G)$ and if it centralised $U/\Phi(G)$ A would centralise $U/\Phi(G)$, a contradiction. Now choose $F(G)A_2$ so that $(F(G)A_0)/(F(G)A_2)$ is a chief factor of G. We have then that BA_1A_2 has derived length at most 3 and so we must have BA_1A_2 acts as an abelian group on $U/\Phi(G)$. Since BA_0 does not act as an abelian group on $U/\Phi(G)$, we again see that $A_0 = A_2 \times A_3$. But then BA_1A_3 has derived length 4 and so $A_3 = A_1$, giving $(F(G)A_1)/F(G)$ a chief factor of G and $A = A_0 \times A_1$. Note that if $A_0 \cong A_1$ as B-modules then we may take a diagonal submodule D and get BD of derived length 4, a contradiction. In particular if $A = A_0 \times A_1$, we must have |B/F(G)| > 2.

If $F(G)/\Phi(G) = (U/\Phi(G)) \times (V/\Phi(G))$ is the direct product of two minimal normal subgroups, then U and V are abelian and so $\Phi(G) = U \cap V$ is central in F(G). If $F(G)/\Phi(G)$ is a minimal normal subgroup then $F(G)/\Phi(F(G))$ is indecomposable as G/F(G)-module. But $F(G)/\Phi(G)$ is faithful and free as B/F(G)-module and so by Lemma 3 it is free as B/F(G)-module. But then it is projective as G/F(G)module (Huppert and Blackburn [6, Theorem 7.7.14]) and hence $\Phi(G) = \Phi(F(G))$. Since F(G)' = N is elementary abelian, we have p^{th} powers of elements of F(G) are central in F(G) and so again $\Phi(G) \leq \zeta(G)$. We also have $B' \leq F(G)$ and hence $B'\Phi(G)$ is an abelian normal subgroup of F(G). Regarding $F(G)/\Phi(G)$ as a B/F(G)-module we have $B'\Phi(G)/\Phi(G)$ generated by the elements $u^{-1}u^b\Phi(G)$, with $b \in B$, $u \in F(G)$, so that $B'\Phi(G)/\Phi(G)$ is just the radical of $F(G)/\Phi(G)$.

At this point it is convenient to break the proof into a number of different cases. We have F(G)A/F(G) can be a chief factor of G or the direct product of two chief factors of G, B/F(G) is cyclic and can have order either 2 or greater than 2. These give rise to the following cases: F(G)A/F(G) the product of two chief factors with |B/F(G)| > 2 and F(G)A/F(G) a chief factor with |B/F(G)| = p > 2or |B/F(G)| = 2. Using the Frattini argument we can choose $b \in B$ so that $\langle b \rangle$ normalises A and $G = F(G)A\langle b \rangle$.

Suppose first that $A = A_0 \times A_1$ and $F(G)/\Phi(G) = (U_0/\Phi(G)) \times (U_1/\Phi(G))$, with $[U_1, A_0] \leq \Phi(G)$ and $[U_0, A_1] \leq \Phi(G)$ and let $V_i/\Phi(G)$ denote the radical of $U_i/\Phi(G)$, i = 0, 1. Suppose moreover that $|B/F(G)| = p^r$ and $\langle b \rangle / C_{\langle b \rangle}(A_0)$ has order greater than 2. Let $|U_0/\Phi(G)| = p^{p^r t}$ and $|U_1/\Phi(G)| = p^{pk}$. We then have $V/\Phi(G) = (V_0/\Phi(G)) \times (V_1/\Phi(G))$ is the radical of $F(G)/\Phi(G)$. By Lemma 3 we can find elements a_i such that $V_i^{a_i}/\Phi(G)$ is the radical of $U_i/\Phi(G)$ as $\langle b \rangle^{a_i}$ -module and $U_i/\Phi(G) = (V_i/\Phi(G))(V_i^{a_i}/\Phi(G), i = 0, 1$. If $a = a_0a_1$ then $F(G) = V^a V$. Since V and V^a are abelian normal subgroups of F(G), we have $V^a \cap V \leq \zeta(F(G))$. But by Lemma 3, we have $|F(G)/(V^a \cap V)| \leq p^{2i+2k} < |F(G)/\Phi(G)|$, since $2 < p^r$. Thus $\zeta(F(G) > \Phi(G)$ and hence must contain either U_0 or U_1 . But then since both U_0 and U_1 are abelian, we must have F(G) abelian, a contradiction.

We now suppose that F(G)A/F(G) is a chief factor and hence |B/F(G)| = p. We consider the case p odd. Then if $F(G)/\Phi(G)$ is an irreducible H-module, we let $|F(G)/\Phi(G)| = p^{pk}$. If $V/\Phi(G)$ is the radical of $F(G)/\Phi(G)$ as a B-module, it follows from Lemma 3 that if $1 \neq a \in A$ we have $F(G) = V^a V$. Moreover, $V^a \cap V \leq \zeta(F(G))$ since V, V^a are abelian. From Lemma 3 we have $|F(G)/(V^a \cap V)| \leq p^{2k} < |F(G)/\Phi(G)|$. But then $\zeta(F(G)) = F(G)$, a contradiction. Hence we suppose that $F(G)/\Phi(G) = (U_0/\Phi(G)) \times (U_1/\Phi(G))$ with $U_0/\Phi(G)$ and $U_1/\Phi(G)$ chief factors of G. We let $V_i/\Phi(G)$ be the radical of $U_i/\Phi(G)$ (considered as a B-module) and take $1 \neq a \in A$. As above we see from Lemma 3 that $(V_0V_1)^a \cap (V_0V_1)$ is central and properly contains $\Phi(G)$, giving a contradiction.

We are now left with the case F(G)A/F(G) a chief factor and |B/F(G)| = 2. We now have G/F(G) dihedral of order 2q. Suppose first that $F(G)/\Phi(G)$ is a chief factor and let $V/\Phi(G)$ be the radical of $F(G)/\Phi(G)$ as $\langle b \rangle$ -module. Again if $1 \neq a \in A$, we have V, V^a both abelian, $V^a V = F(G)$ and since p = 2 we have $V^a \cap V = \Phi(G)$. Thus we may choose generators $u_1, ..., u_k, v_1, ..., v_k$ for F(G) with $[u_i, u_j] = [v_i, v_j] = 1$ for all pairs $1 \leq i, j \leq k$. Thus F(G)' is generated by the commutators $[u_i, v_j], 1 \leq i, j \leq k$. For a fixed u_i and $x \in F(G)$ it is easy to Finite dinilpotent groups

check that the map $x\Phi(G) \rightarrow [u_i, x]$ is a $\langle b \rangle$ -module homomorphism with $V/\Phi(G)$ in its kernel. Thus the image is a completely reducible $\langle b \rangle$ -submodule of F(G)'. It follows that F(G)' is a completely reducible $\langle b \rangle$ -module. Since F(G)' is irreducible as (G/F(G))-module it cannot be faithful by Lemma 3 and hence it must be trivial. Thus we have F(G)' central in G. Now suppose that $\Phi(G) \neq F(G)'$. Since all chief factors of G in F(G)/F(G)' are noncentral by Lemma 2 and all chief factors of G in $\zeta(F(G)) = \Phi(G)$ are central by Lemma 2, we have a contradiction. Thus $F(G)' = \zeta(G) = \Phi(G) = \Phi(F(G))$ and so F(G) is extraspecial and G is of type (E), a contradiction. A similar argument applies if $F(G)/\Phi(G)$ is the direct product of two minimal normal subgroups of $G/\Phi(G)$, again leading to G being of type (E), a final contradiction.

We are now left with proving that if G = AB, A abelian, B metabelian and nilpotent and A and B of coprime order and G has a section of type (E), then G has derived length 4. It is enough to show that every group of type (E) satisfies these conditions and is of derived length 4. That a group of type (E) has derived length 4 is clear. If G is of type (E), then we can write G = AB where A is a (cyclic) Sylow q-subgroup and B is a Sylow 2-subgroup. We need to show that B is metabelian to complete the proof. The proof is similar to the argument above. If b is chosen so that $G = F(G)A\langle b \rangle$ we then let $V/\Phi(G)$ be the radical of $F(G)/\Phi(G)$ as $\langle b \rangle$ -module. If $v \in V$ is fixed and $x \in F(G)$ then the map $x\Phi(G) \rightarrow [v, x]$ is a $\langle b \rangle$ -module homomorphism from $F(G)/\Phi(G)$ to $\Phi(G)$. Since the image is completely reducible we have $V/\Phi(G)$ in the kernel, giving [v, x] = 1 for all $x \in V$. Since this is true for any $v \in V$, we have V abelian. That B/V is abelian comes immediately from the definition of V and hence B is metabelian as required.

References

- J. H. Conway, R. Curtis, S. Norton, R. Parker and R. Wilson, Atlas of finite groups (Clarendon Press, Oxford, 1985).
- [2] K. Doerk and T. O. Hawkes, *Finite soluble groups*, Expositions in Mathematics 4 (de Gruyter, Berlin, 1992).
- [3] P. Hall and G. Higman, 'The *p*-length of *p*-soluble groups and reduction theorems for Burnside's problem', *Proc. London Math. Soc.* (3) 7 (1956), 1–42.
- [4] G. Higman, 'Complementation of Abelian normal subgroups', Publ. Math. Debrecen 4 (1955-6), 455-458.
- [5] B. Huppert, Endliche Gruppen (Springer, Berlin, 1967).
- [6] B. Huppert and N. Blackburn, Finite groups II (Springer, Berlin, 1982).
- [7] L. S. Kazarin, 'Soluble products of groups', in: Infinite Groups 94 (eds. F. de Giovanni and M. Newell) (de Gruyter, New York, 1995) pp. 111-123.
- [8] O. H. Kegel, 'Produkte nilpotenter Gruppen', Arch. Math. 12 (1961), 90-93.
- [9] H. Wielandt, 'Über Produkte von nilpotenten Gruppen', Illinois J. Math. 2 (1958), 611-618.
- [10] ——, Finite permutation groups (Academic Press, New York, 1964).

John Cossey and Yanming Wang

Mathematics Department School of Mathematical Sciences Australian National University Canberra 0200 Australia e-mail: john.cossey@maths.anu.edu.au

Department of Mathematics Zhongshan University of Guangzhou 510275 P. R. China e-mail: stswym@zsulink.zsu.edu.cn

328

[11]