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Abstract

A finite dinilpotent group G is one that can be written as the product of two finite nilpotent groups, A and
B say. A finite dinilpotent group is always soluble. If A is abelian and B i s metabelian, with | A \ and | B |
coprime, we show that a bound on the derived length given by Kazarin can be improved. We show that
G has derived length at most 3 unless G contains a section with a well defined structure; in particular if
G is of odd order, G has derived length at most 3.
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1. Introduction

If a finite group G can be written as the product A B of two nilpotent subgroups, A
and B, we will call G a dinilpotent group. If A and B are of coprime order and G is
soluble, Hall and Higman proved that the derived length of G is at most the sum of
the nilpotency classes of A and B (as a special case of [3, Theorem 1.2.4]). Wielandt
proved that a dinilpotent group G must indeed be soluble if the factors are of coprime
order([9]) and Kegel then proved that a dinilpotent group is always soluble ([8]).
However a bound for the derived length of dinilpotent groups has proved elusive.

When A and B are coprime, the bound of Hall and Higman is best possible for
small values of the nilpotency classes of A and B. However it seemed likely that for
larger values of the nilpotency classes this bound is too large and should be replaced
by a function of the derived lengths of A and B. Such a bound has recently been
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[2] Finite dinilpotent groups 319

provided by Kazarin [7] in a more general setting. We denote by d{H) the derived
length of a soluble group H. For a dinilpotent group G with A and B of coprime
order he establishes that d{G) < 2d(A)d(B) + d(A) + d(B) and if G is of odd order
then d(G) < d(A)d(B) + max{d(A), d(B)} ([7, Theorem 3]) and (in the proof of [7,
Corollary]) he observes that if A is abelian then d(G) < 2d(B) + 1 and if further G
is of odd order then d(G) < 2d(B).

The purpose of this paper is to give more precise information about the derived
length of the dinilpotent group G in the case when A and B are of coprime orders and
A is abelian, B metabelian. In this case, Kazarin's bounds give G of derived length
at most 5 and, if G is of odd order, of derived length at most 4. We will show that
the bounds can be improved to 4 and 3, respectively and that these bounds are best
possible. Our main result is however rather more technical and shows that in most
situations the bound will be 3 and that the groups with derived length 4 have a well
defined structure. In particular, we obtain that the derived length is at most 3 if G has
odd order.

If A is abelian and B is metabelian then A wr B, the wreath product of A and B has
derived length 3 and so the bound of 3 can not be improved. If we take G — GL (2, 3),
then G — AB, where A is a Sylow 3-subgroup and B is a Sylow 2-subgroup. We
then have G of derived length 4, A abelian and B metabelian, so that the bound of
4 for dinilpotent groups of even order can not be improved. This group is typical of
the groups of derived length 4. We say that a group G is of type (E) if it has the
following structure: F(G) is an extraspecial 2-group, G/F(G) is dihedral of order
2q for some odd prime q and F(G)/O(F(G)) is either a minimal normal subgroup
of G/<&(F(G)) or the product of 2 minimal normal subgroups of G/<t>(F(G)). We
give examples to show that for any odd prime q both these possibilities occur.

Our main result is then the following theorem.

THEOREM 1. Suppose that G is a finite group and G = AB with A abelian and B
metabelian and nilpotent. Suppose further that the order of A and the order of B are
coprime. Then G is soluble of derived length at most 4. Further, the derived length is
at most 3 unless G has a section of type (E); in which case it has derived length 4.

2. Preliminaries

We begin with the observation that groups of type (E) are easy to find and it is
probably not difficult to classify them completely. For a given odd prime q we show
that we can construct groups of type (E). Let D denote the dihedral group of order
2q and let U be a faithful irreducible module for D over the field of 2 elements. Then
| U\ = 2r, where r is the order of 2 modulo q if this order is even and twice the order
of 2 modulo q if this order is odd. It is not difficult to see that U is isomorphic to
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its dual V (see Doerk and Hawkes [2, Definition B.6.6] for the definition of duality).
It then follows that the trivial module is a quotient of U ® V and we can use the
construction of Huppert [5, Hilfssatz 6.7.22] to give an extraspecial group F of order
p2r+i on which D acts so that F' is trivial and F/F' = U © V as D-modules. Put
G = FD. Then G is clearly a group of type (E). For another example, we note that
there exists a non-singular D-invariant quadratic form on U (Huppert and Blackburn
[6, Theorem 7.8.13 and Theorem 7.8.30]). Thus D may be regarded as a subgroup
of one of the two orthogonal groups GO* (2) (e = +1 or — 1; see [1, page (xii)]).
It then follows follows from Huppert [5, Satz 3.13.8 and Bemerkung 3.13.9(b)] that
there is an extraspecial group F of order 2r+1 whose automorphism group contains a
subgroup Do = D for which the action of Do on F/F' is the same as that of D on
U. We set G = FD and again G is clearly a group of type (£). We can vary these
examples to produce non-splitting examples of a similar structure.

LEMMA 1. Let p be a prime and K afield of characteristic p. Let G be a p-
nilpotent group, P a Sylow p-subgroup of G and Q— OP\G) a Hall p'-subgroup of
G. Suppose that U is a faithful irreducible KG-module. Then if Q is abelian and P
is nonabelian, the semidirect product of U and P has derived length at least 3.

PROOF. Note that for p an odd prime, the result is an immediate corollary of Kazarin
[7, Lemma 9]. A direct proof is easy however and we include it here.

We assume that the result is false and G has been chosen to have order as small
as possible with UP metabelian. Thus if Po is a nonabelian maximal subgroup
of P and Uo is an irreducible submodule of UQPo then it is an easy consequence
of Clifford's Theorem (Huppert [5, Hauptsatz V.17.3]) that Uo and QPo/CQpo(Uo)
satisfy the hypotheses of the lemma and hence (/0P0 < UP has derived length at least
3, a contradiction. It follows that Po is abelian and so every maximal subgroup of P
is abelian. We then have that P is generated by two elements, x and y say, <t>(P), the
Frattini subgroup of P, is central (and so <J>(P) = £(P), the centre of P), and P' is
central of order p. For a maximal subgroup Po of P and an irreducible submodule Uo

of UQPO, it is again an easy consequence of Cliffords Theorem that, if any element of
£(P) centralises Uo, it will centralise all irreducible components of UQPO and hence
U, a contradiction. Set Gx = (QPo)/CQPo(Uo) and let Q{ and P, denote the images
of Q and Po in Gu We now claim that f/0, regarded as a KGi-module by deflation
contains a submodule isomorphic to KP\ when restricted to P\. To see this note first
that we may assume that K is algebraically closed. Then (Uo) g, can be written as a
direct sum of homogeneous components by Clifford's Theorem. Since Q\ is abelian
and K is algebraically closed we have that the homogeneous components are one
dimensional and moreover no element of Pi can fix every homogeneous component.
It now follows that P\ acts faithfully and transitively as permutation group on the
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homogeneous components. But then Pt acts regularly as permutation group on the
homogeneous components (Wielandt [10, Proposition 4.4]). It is then clear that Uo is
isomorphic to AT Pi (as A" Pi-module).

Suppose now that |£(P) | > 2. We have shown above that £(P) n CQPo(U0) = 1
and hence we have (Uo\{P) contains a submodule V say isomorphic to Ki; (P) . If now
c is an element of order p in P ' and C = (c) and W is the unique maximal submodule
of V then Wc contains a submodule isomorphic to KC unless C = f (P) , in which
case we must have p > 3 and W uniserial of length p — 1. In either case we have that
for some element we W, wc ^ w. Next suppose that |f (P ) | = 2. Then P contains
a cyclic subgroup of order 4; we may assume that Po has been chosen to be cyclic (of
order 4). In this case we have CPo(Uo) = 1 and so (Uo)Po contains a submodule V
isomorphic to KP0. If W is the unique maximal submodule of V, then W^P) contains
a submodule isomorphic to AT£(P). Again if 1 ^ c e P' there is an element w e W
such that wc ^ w.

We now translate the claims above in the semidirect product P U. We have an
element 1 ^ c e P' and w in the radical of U such that wc — w^0. In the semidirect
product, w e [{/, P] and wc — w may be written [w, c\. But both u> and c are in
(UP)' and so ( t /P ) " ^ 1. This completes the proof of the lemma. •

The next lemma generalises a result from modular representation theory in a form
we need.

LEMMA 2. Let p be a prime, G a group with U an abelian normal p -subgroup and
G/ U a p -nilpotent group. Then U = U\ x • • • x U, where each Uj is normal in G,
all chief factors of G contained in £/, are isomorphic as G-modules and if i ^ j no
chief factor of C/, is isomorphic to a chief factor of Uj.

PROOF. When U is elementary abelian, we can regard U as a G/ f/-module and
the result is then essentially a restatement of a theorem of Srinivasan (Huppert and
Blackburn [6, Theorem 7.16.10]). We proceed by induction on the length of a G
chief series from U to 1; the result is clearly true for 1. By our observation we
can assume that U is not elementary abelian. If U has exponent pa then Up° '
is elementary abelian and moreover isomorphic (as an G-module) to a quotient of
U/<t>(U). Since Up'~' < 4>(C/), we have that for some minimal normal subgroup
V of G contained in U U/ V contains a G-chief factor isomorphic to V (as G-
modules). Now by our inductive hypothesis U/ V can be written as a direct product
U/ V = (U*J V) x (U*J V) x • • • x (U*J V), where the U* / V satisfy the requirements
of the lemma and U*/ V has been chosen so that each chief factor of G contained in
£/*/ V is isomorphic to V. For i > 1 we have the length of U* is less than the length
of U and so U* = V x Ut, since no chief factor of U*/ V is isomorphic to V. Set
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U\ = U*. Then it is easy to see that U = U\ x • • • x U, and that the £/, satisfy the
requirements of the lemma. •

The next result is a technical one we need in the proof of the main theorem.

LEMMA 3. Let p, q be distinct primes and suppose G = AB, where A is the unique
minimal normal subgroup of G and is ofq-power order and B is cyclic of order p'.
Let U be a faithful irreducible F G-module, where F is a finite field of characteristic
p. Let V be the radical of UB. Then UB is a free FB-module (of rank t say) and for
any element 1 ^ a € A we have V + Va = U. Further, U/( V n Va) has dimension
at most It.

PROOF. Recall that the radical of a module is the smallest submodule with com-
pletely reducible quotient (Doerk and Hawkes [2, Definition B.3.7] and remarks
following). If F is a splitting field for G, then U is induced from a 1-dimensional
irreducible for A (by Clifford's Theorem) and so by the Mackey Subgroup Theorem
(Huppert [5, Satz V.I6.9]) UB is a free FB-module. It then follows easily that UB is
free for any field F of characteristic p. If the dimension of U over Fist, then t = p'r
and UB is free of rank r. Note that if a e A, then Va is the radical of UB-. There are
now two cases to consider.

Suppose first that UA is reducible, so that UA — Uo © • • • © f/p=_i, where s < t
and each Uj is a distinct irreducible FA -module of dimension p'~sr. If B = (b),
then B permutes the Uj, say Uob* = Uj, with 0 < j < ps — 1. We then have
that Y — [u — ub : u e Uo} is a subspace of U contained in V. Now suppose
1 7̂  a € A. Then [b, a] ^ 1 and so [b, a] does not act trivially on some £/,; we
may suppose that Uo has been chosen so that [b, a] does not act trivially on Uo. Let
W ={u-uba :u€ Uo}. Suppose now that fffl V ^ 0. Since U = Uo © • • • © Up-U

we have u — ub" = x + y, with x € f/0 and y € U\. Since Uob
a = U\ we then have

x = u and since x — xb e V we also have y + xb e U\ n V = 0, giving y = —xb.
Thus we now have uba = ub and so u[b, a] = u. But then [b, a] acts trivially on f/0,
contradicting the choice of a. We thus have W n V = 0, Since W has dimension r
and V has dimension (p — l)r , we have W+V has dimension /?r and so £/ = W+V.
Then we have [/ = V + Va since W < Va.

Next we suppose that UA is irreducible. It follows that A is cyclic of order q and
p|<7 — 1. Let E be the field of order | F | p r . Then we can regard U as the additive
group of E, A as a subgroup of the multiplicative group of E and B as a subgroup
of the Galois group of E over F. Note that q divides | F | p r — 1 but not \F\S — 1 for
any s < pr. If D denotes the subfield of E fixed element-wise by B, then E has
dimension p as a vector space over D. We now regard £ as a D G-module and we
then have EB is isomorphic to DB as DB-module. The radical W of EB then has
dimension p — \ (over D). Since the radical of £B« is Wa for any a e A and Wa ^ W
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ifa^l (otherwise W would be G-invariant, a contradiction) we have W+ Wa = E.
Since W regarded as an FB-module has dimension r{p — 1) and E/ W is trivial as
FB-module, W is the radical of E as Ffi-module. But U is isomorphic to E as
FG-module and the result follows.

The final statement of Lemma 3 comes immediately from the fact that the free
Ffi-module of rank t modulo its radical has dimension t. •

3. Proof of Theorem 1

We suppose that G satisfies the following hypothesis:

(*) G = AB with A abelian, B metabelian and nilpotent and A and B of coprime
orders. Further, G has no section isomorphic to one of the groups P(p, i).

We want to show that if G satisfies (*) then G has derived length at most 3. So we
suppose that G has been chosen to have order as small as possible with derived length
greater than 3 and satisfying (*). We begin with some standard reductions.

Since any quotient of a group satisfying (*) also satisfies (*), it follows quickly that
G has a unique minimal normal subgroup N whose quotient G/N has derived length
3. We also have that F{G) is a p-group for some prime p. Further if n(A) is the set
of primes dividing \A\, then G has 7T(A)-length 1. If p e n(A) then A centralises
F(G) and so is contained in F(G) (Huppert [5, Satz 3.4.2]). Thus A = F(G),
G/F(G) = B and G clearly has derived length at most 3, a contradiction. Hence we
must have p e n(B). If H is the Hall p'-subgroup of B then centralises F(G) and so
H < F(G), giving H = 1. Thus B is a p-group. If B = F(G) then G/B = A and
again G has derived length at most 3, a contradiction.

We now have M = F(G)A a normal subgroup of G with G/M a nontrivial p-
group. We suppose first that G/M is nonabelian, so that there are elements x and y
in B with [x, y] not in M. It then follows from Huppert [5, Satz 3.4.2] that there is a
chief factor F(G)/K of G with [x, y] i CG(F(G)/K). Let H/K be a complement
for F(G)/K in G/K. Then the semidirect product (F(G)/K)(H/CH(F(G)/K))
= G/CH(F(G)/K) satisfies the hypotheses of Lemma 1 and so has Sylowp-subgroup
of derived length at least 3, a contradiction. Thus we must have G/M abelian. Note
that this immediately gives a bound of 4 for the derived length, since G/M and
M/F(G) are abelian and F(G) is metabelian. Our aim now is to show that F(G)
must be abelian unless G has a section isomorphic to some P,.

Since we have assumed that G has derived length greater than 3 and is minimal,
we have N = G'" < G" < F(G). Let L denote the smallest normal subgroup of G
contained in F(G) for which every chief factor X/YoiG with L < X < Y < F(G)
satisfies G/ CG(X/ Y) abelian. Note that L < G". Also we have that G/L is nilpotent-
by-abelian and so since any nilpotent subgroup of G is metabelian we have G/L of
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derived length at most 3. In particular 1 ^ L and so N < L. Since G" is not abelian
and G" = N we have N < £(G") and so G" has nilpotency class 2. Suppose that
F(G) ± L.

Suppose that L is abelian and let D be a maximal abelian normal subgroup
containing L. Then D < F(G) and we must have F(G)/D nonabelian. Let
E/D = {F{G)/D)' and suppose that L is not contained in £(£). We choose L/K to
be a chief factor of G with £(£) n L < K. If x is a p-power element not in F(G)
we have L/K as an (x)-module is nontrivial and so for some element y K e L/K we
have [x, v] £ A". If c e F(G)', then if P is a Sylow p-subgroup of G containing x, c
and [x, y] are both in P'. Thus [c, [x, y]] = 1. Since £ is generated by F(G)' and D
we have [JC, y] e £(£), a contradiction. It follows that L is not abelian.

Now let F(G)/K be a chief factor with L < K. Then F(G)/K is complemented
in G, by / / say. We then have that H satisfies (*). Moreover L < H", since if not
there is a chief factor L/J of G with L not contained in H" J. But then L/J is a
chief factor of H with H" n L < 7 and H/CH(L/J) abelian. But then we have
G/ CC{L/ J) abelian, a contradiction. It follows that L < H" and then H has derived
length 4, a contradiction. Thus we must have F(G) = L.

Since L < G" < F(G) we have G" = F(G). Then we have N = G'" < Z(F(G))
and so F(G) is of nilpotency class 2. Moreover, since F(G)' is elementary abelian,
p"1 powers are central in F(G), giving *(F(G)) central in F{G). We have G/F(G)
p-nilpotent and so by Lemma 2 we can write F(G)/N = (Ui/N) x • • • x (Un/N),
where all chief factors between £/, and N are isomorphic and if i ^ y no chief factor
between Ut and N is isomorphic to a chief factor between Uj and N. Note now that
no chief factor F(G)/K can have G/ CC(F(G)/K) nilpotent, for we would then have
G/CG(F(G)/K) abelian. It follows that F(G)/N is the metanilpotent residual of
G/N and so is complemented, by H/N say (Huppert [5, Satz 6.7.15]). If F(G)/K
is a chief factor of G we put E = KH. If AT is nonabelian then E satisfies (*)
and has derived length 4, a contradiction. Hence K must be abelian. Suppose that
F(G)/<I>(G) = (V!/<t>(G)) x • • • x (Vm/<i>(G)) with V;/<I>(G) a chief factor of G.
If m > 2 then the product of any m — 1 of the V; is abelian and so in particular
[V ,̂ Vj] = 1 and then since F(G) is generated by the V, we have F{G) abelian, a
contradiction. Thus F(G)/Q>(G) is either a minimal normal subgroup or the product
of two minimal normal subgroups of G/<1>(G).

We now consider the structure of G/F(G). We have B a Sylow p-subgroup of
G and we let K be a maximal subgroup of B containing F(G). Then ATA is a
normal subgroup of index p in G and also satisfies (*). It follows that KA must
have derived length 3 and hence that (KA)" must be properly contained in F(G).
Regarded as a Zp(A:A)-module, F(G)/<t>(G) is completely reducible by Clifford's
Theorem and so if F(G)/L is a chief factor of G with (KA)" < L we have that KA
acts on each composition factor of F(G)/L as an abelian group. It follows that K
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centralises F(G)/L. If F (G) / 4> (G) is irreducible or the direct sum of two isomorphic
irreducibles, then we must have K < F(G) and hence K = F(G). Now suppose
that F(G)/<P(G) = (1//4>(G)) x (V/<t>(G)), with U/Q(G), V/$(G) irreducible.
If B has two distinct maximal subgroups containing F(G), it has at least p + 1
maximal subgroups containing F(G). Thus we can find distinct maximal subgroups
Ku K2, K3 each containing F{G). We can not have both Kt and K2 centralising
U/<f>(G), for then we would have B centralising U/<t>(G) and G acting on U/<t>(G)
as an abelian group, a contradiction; suppose Kx centralises U/<&(G). On the other
hand, K3 must centralise one of U/<$(G), V/<t>(G), £//<!> (G) say. We then have
B centralises U/<t>(G), a contradiction. Thus we may assume that B has a unique
maximal subgroup containing F(G). It nows follows that B/F(G) is cyclic and
moreover that B/F{G) acts faithfully on one of £//4>(G) and V/<J)(G), £//4>(G) say,
and then (B/F(G))P centralises V/<J>(G).

Note that F(G)A is normal in G; we choose F(G)A0 normal in G and so that
(F(G)A)/(F(G)A0) is a chief factor. We then have BA0 satisfies (*) and so has
derived length at most 3. Thus we must have that BA0 acts as an abelian group on
some chief factor F(G)/ W. Since BA0 cannot act as an abelian group on F(G)/ W,
we must have B centralises (F(G)A0)/F(G) but not (F(G)A)/(F(G)A0). It now
follows from Higman's Lemma [3] that A = Ao x A{ with (F(G)A{)/F(G) a chief
factor of G. If F(G)/<t>(G) is irreducible, we have BAX of derived length 4 and so
G = BA\, giving A = A\. Hence suppose that F(G)/$>(G) is reducible, so that
F{G)/<i>(G) = (£//4>(G)) x (V/<&(//)), with £//<D(G) and V/*(G) chief factors
of G. If Ai does not centralise either of £//<!> (G) and V/<t>(G) then again BA\ has
derived length 4 and A{ = A. If A{ centralises U/<P(G) then it cannot centralise
V/ <t> (G) also. Moreover we must have A 0 centralises V/ $ (G), since it must centralise
one of i//4>(G) and V/4>(G) and if it centralised f//4>(G) A would centralise
U/<t>(G), a contradiction. Now choose F(G)A2 so that (F(G)A0)/(F(G)A2) is a
chief factor of G. We have then that BAXA2 has derived length at most 3 and so
we must have BA\A2 acts as an abelian group on [//4>(G). Since BA0 does not
act as an abelian group on t//<t>(G), we again see that Ao = A2 x A3. But then
BA1A3 has derived length 4 and so A3 = A u giving (F(G)Ai)/F(G) a chief factor
of G and A = A o x A|. Note that if Ao = Ai as B-modules then we may take a
diagonal submodule D and get BD of derived length 4, a contradiction. In particular
if A = A o x A | , w e must have |B/F(G)| > 2.

If F(G)/<t>(G) = (t//*(G)) x (V/d>(G)) is the direct product of two minimal
normal subgroups, then U and V are abelian and so <J>(G) = UH V is central in F(G).
If F(G)/<&{G) is a minimal normal subgroup then F(G)/<$>(F(G)) is indecompos-
able as G/F(G)-module. But F(G)/<t>(G) is faithful and free as S/F(G)-module
and so by Lemma 3 it is free as B/F(G)-module. But then it is projective as G/F(G)-
module (Huppert and Blackburn [6, Theorem 7.7.14]) and hence 4>(G) = <t>(F(G)).
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Since F(G)' = N is elementary abelian, we have p'h powers of elements of F(G)
are central in F(G) and so again O(G) < £(G). We also have B' < F(G) and
hence B'<1>(G) is an abelian normal subgroup of F(G). Regarding F(G)/<J>(G) as
a B/F(G)-module we have B'<J>(G)/<J>(G) generated by the elements u^u^iG),
with be B,ue F(G), so that B'<I>(G)/<J>(G) is just the radical of F(G)/<t>(G).

At this point it is convenient to break the proof into a number of different cases.
We have F(G)A/F(G) can be a chief factor of G or the direct product of two chief
factors of G, B/F(G) is cyclic and can have order either 2 or greater than 2. These
give rise to the following cases: F(G)A/F(G) the product of two chief factors
with \B/F(G)\ > 2 and F(G)A/F(G) a chief factor with \B/F(G)\ = p > 2
or \B/F(G)\ = 2. Using the Frattini argument we can choose b e B so that (b)
normalises A and G = F(G)A(b).

Suppose first that A = Ao x Ax and F(G)/<t>(G) = (U0/<i>(G)) x ([/,/<t>(G)),
with [UUAO] < <I>(G) and [Uo, A,] < 4>(G) and let V;/<I>(G) denote the radical of
Uil<&(G), i = 0,1. Suppose moreover that |B/F(G)| = pr and (b)/Cw(A0) has
order greater than 2. Let |C/0/<J>(G)| = p p ' ' and |{/,/<I>(G)| = pp*. We then have
VI4>(G) = (V0/<I>(G))x(Vi/<I>(G)) is the radical of F(G)/cJ>(G). By Lemma 3 we
can find elements a, such that V°'/<t>(G) is the radical of i/,/<t>(G) as (6)"'-module
and t/,/4>(G) = (V;/4>(G))(Vf/d>(G), i = 0, 1. If a = aoai then F(G) = VV.
Since V and Va are abelian normal subgroups of F(G), we have V n V < ^(F(G)).
ButbyLemma3,wehave|F(G)/(V°nV)| < p2/+2* < |F(G)/*(G)|,since2 < p r .
Thus %(F(G) > 4>(G) and hence must contain either Uo or f/i. But then since both
Uo and Ut are abelian, we must have F(G) abelian, a contradiction.

We now suppose that F(G)A/F(G) is a chief factor and hence |B/F(G)| = p.
We consider the case p odd. Then if F(G)/4>(G) is an irreducible //-module, we
let |F(G)/*(G)| = ppk. If V/<!>(G) is the radical of F(G)/<t>(G) as a B-module,
it follows from Lemma 3 that if 1 ^ a e A we have F(G) = VV. Moreover,
V n V < S(F(G)) since V, V are abelian. From Lemma 3 we have |F(G)/( V n
V)| <p2k < |F(G)/4>(G)|. But then <(F(G)) = F(G), a contradiction. Hence we
suppose that F(G)/<t>(G) = (t/0/4>(G)) x (£/,/4>(G)) with U0/<t>(G) and £/,/<I>(G)
chief factors of G. We let V;/4>(G) be the radical of Ui/<t>(G) (considered as a B-
module) and take 1 ̂  a e A. As above we see from Lemma 3 that (Vo Vi)a n (Vo Vi)
is central and properly contains 4>(G), giving a contradiction.

We are now left with the case F{G)A/F(G) a chief factor and |B/F(G)| = 2.
We now have G/F(G) dihedral of order 2q. Suppose first that F(G)/<&(G) is a
chief factor and let V/<I>(G) be the radical of F(G)/<I>(G) as (b) -module. Again
if 1 ^ a € A, we have V, V both abelian, VV = F(G) and since p = 2 we
have V n V = <I>(G). Thus we may choose generators uu •••uk, vu ..., vk for F(G)
with [M,, I*,] = [u,, Vj] — 1 for all pairs 1 < /,y < k. Thus F(G)' is generated by
the commutators [«,, v,-], 1 < i,j < k. For a fixed M, and x e F(G) it is easy to
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check that the map x<&(G) ->• [H,, X] is a (fe)-module homomorphism with V/<b(G)
in its kernel. Thus the image is a completely reducible (i)-submodule of F(G)'. It
follows that F(G)' is a completely reducible (^)-module. Since F(G)' is irreducible
as (G/F(G))-module it cannot be faithful by Lemma 3 and hence it must be trivial.
Thus we have F(G)' central in G. Now suppose that <t>(G) ^ F(G)'. Since all
chief factors of G in F(G)/F(G)' are noncentral by Lemma 2 and all chief factors
of G in £(F(G)) = O(G) are central by Lemma 2, we have a contradiction. Thus
F(G)' = £(G) = O(G) = <i>(F(G)) and so F{G) is extraspecial and G is of type
(£), a contradiction. A similar argument applies if F(G)/O(G) is the direct product
of two minimal normal subgroups of G/<P(G), again leading to G being of type (£),
a final contradiction.

We are now left with proving that if G = AB, A abelian, B metabelian and nilpotent
and A and B of coprime order and G has a section of type (E), then G has derived
length 4. It is enough to show that every group of type (E) satisfies these conditions
and is of derived length 4. That a group of type (£) has derived length 4 is clear. If G
is of type (E), then we can write G = AB where A is a (cyclic) Sylow ^-subgroup and
B is a Sylow 2-subgroup. We need to show that B is metabelian to complete the proof.
The proof is similar to the argument above. If b is chosen so that G = F{G)A{b)
we then let V/<t>(G) be the radical of F(G)/<t>(G) as (fe)-module. If v 6 V is fixed
and x € F(G) then the map x$(G) -> [v, x] is a (b)-module homomorphism from
F(G)/<&(G) to <t>(G). Since the image is completely reducible we have V/<t>(G) in
the kernel, giving [v, x] = 1 for all x e V. Since this is true for any v e V, we have V
abelian. That B/ V is abelian comes immediately from the definition of V and hence
B is metabelian as required. •
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