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This paper discusses the propagation of coastal currents generated by a river outflow
using a 1 1/2-layer, quasigeostrophic model, following Johnson et al. (2017) (JSM17).
The model incorporates two key physical processes: Kelvin-wave-generated flow and
vortical advection along the coast. We extend JSM17 by deriving a fully nonlinear, long-
wave, dispersive equation governing the evolution of the coastal current width. Numerical
solutions show that, at large times, the flow behaviour divides naturally into three regimes:
a steady outflow region, intermediate regions consisting of constant-width steady currents
and unsteady propagating fronts leading the current. The widths of the steady currents
depend strongly on dispersion when the constant outflow potential-vorticity anomaly is
negative. Simulations using contour dynamics show that the dispersive equation captures
the full quasigeostrophic behaviour more closely than JSM17 and give accurate bounds on
the widths of the steady currents.
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1. Introduction
River outflows and their associated boundary fronts strongly influence the ocean and
thermohaline circulation (Rahmstorf 2003), where less dense freshwater flows entering
higher-density oceanic waters generate movement across the globe. Freshwater input from
rivers introduced by the Arctic Ocean has been found to slow the distribution of heat
throughout the Northern Hemisphere (Holliday et al. 2020). Moreover, the mixing of
ocean and coastal waters generated by outflow currents determines nutrient transport and
the subsequent distribution of phytoplankton populations (Ajani et al. 2020). Sun et al.
(2022) specifically emphasise how complex interactions between different river flows
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Figure 1. Winter sediment plumes from the Yangtze River spreading into the East China Sea forming a ‘shelf’
of water stretching leftwards (data from the MODIS satellite, 2017), made visible by tidal stirring of bottom
sediments (Luo et al. 2017).

affect the distribution of the phytoplankton community in coastal waters of South Korea.
On a smaller scale, the Hawkesbury River estuary in Australia is a source of nutrient-
dense waters transported by the river plume (Li et al. 2022), directly influencing the
marine taxonomy of the river mouth. Wang et al. (2022) further note that coastal and
estuarine fronts led by river discharges are responsible for the accumulation of pollutants
and microplastics.

Growing evidence relates increasing river discharge to rising coastal sea levels, as
currents can be trapped along the coast. With the intensifying hydrological cycle (Pratap &
Markonis 2022), Tao et al. (2014) predict up to a 60 % increase in discharge from the
Mississippi River basin over the next century, the largest source of water drainage from
North America into the Atlantic Ocean. Piecuch et al. (2018) examine how variable river
discharge influences oceanic circulation and how this contributes to rising sea levels on
the United States East Coast. Furthermore, from Atlantic and Gulf coast data, they suggest
that river discharge is responsible for up to 15 % of the annual sea-level variance.

Numerical studies of river outflows (Mestres et al. 2007) examine how changes in river
width, inlet transport and the Coriolis parameter affect the surface plume width given a
constant outflow discharge. Tides, wind forcing and unsteady outflows can also influence
the evolution of the coastal front (Southwick et al. 2017). In the Northern Hemisphere
freshwater from rivers could be expected to turn right (in the direction of the Coriolis
force). There are, however, clear indications of leftward propagation, such as the suspended
sediments that form the Yangtze River plume front (figure 1). Johnson et al. (2017, JSM17
herein) capture both phenomena by using a theoretical long-wave approximation to the
11/2-layer, quasigeostrophic (QG) equations where fluid expelled from a single-channel
outflow is driven along the coast by a Kelvin wave (KW) and vortical advection. They use
an idealised model where the current and upper layer have piecewise constant vorticity
following the model by Pratt & Stern (1986). This most closely applies to large-scale
fronts that are governed by near-geostrophic dynamics (Nagai et al. 2006) but remains
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useful in describing buoyant discharges by capturing much of the essential physics of
gravity-current outflows where less dense fluid enters denser fluid, including for surface-
advected buoyant estuarine outflows in the Hudson river (Chant et al. 2008). Kubokawa
(1991) gives contour dynamics (CD) simulations that closely match the outflow gyre
modes in the Tsugaru Strait. McCreary et al. (1997) add entrainment and horizontally
varying salinity, obtaining a 11/2-layer ageostrophic model that contains the simplified
model of Kubokawa (1991) in the small Rossby number limit. Horner-Devine et al.
(2006) and Thomas & Linden (2007) model river plumes in the laboratory as coastal
currents in geostrophic balance and note features like the upstream expanding bulge
captured in the theory of JSM17 and Johnson (2023). Gregorio et al. (2011) repeat the
experiments from Thomas & Linden (2007), obtaining good agreement with numerical
coastal outflow simulations (regional ocean modelling system, or ROMS) when horizontal
viscous forces are small. These models consider buoyant outflows that are not in contact
with the ocean floor and thus do not address the dynamics of outflows of fluid denser
than the ambient which are strongly affected by bottom drag. The QG models also
exclude internal waves involved in turbulent mixing when the outflow meets the ambient.
If the fluid density differences are large then turbulent stresses can become important,
particularly in sub-mesoscale fronts, although Pham & Sarkar (2019) still observe cold
freshwater-carrying surface gravity currents, including those far from the coast, in the Bay
of Bengal reminiscent of the laboratory experiments by Thomas & Linden (2007). Mendes
et al. (2021) note that such turbulence is unlikely to be important in the Duoro river
plume where fluid density differences are small. More sophisticated two-layer outflow
models describing the discharge of the Ganges-Brahmaputra-Meghna mega-delta (Kida
& Yamazaki 2020), a major freshwater source in the Bay of Bengal, also show how
fronts from the individual river branches that form the delta play an important role in
the dynamics of the geostrophically balanced freshwater river plume.

Jamshidi & Johnson (2019, JJ19 herein) extend JSM17 to order-unity Rossby numbers
using the semigeostrophic equations to investigate the validity of the QG approximation.
The extension admits a KW propagating along the coast at a finite speed contrasting
with the QG limit where the KW propagates infinitely fast. Even at Rossby numbers of
order unity, the outflow behaviour remains qualitatively similar: the KW simply sets the
boundary condition for the more slowly moving vortical fluid, as noted in § 2. We thus
continue with the simpler QG model of JSM17, but capture more detail in the solutions by
studying the dispersivepotential-vorticity(PV) equation which adds higher-order terms to
the leading-order hydraulic PV equation. The dispersive equation captures the dynamics of
the frontal waves that appear on the edge of the outflow current in the full CD integrations,
but are necessarily absent in the hydraulic theory of JSM17, and also the compound-wave
structures (described in § 4.2) seen in the CD integrations there. The dispersive equation
predicts new behaviour such as the formation of dispersive-shock waves (DSWs) and wall-
bounded wavetrains, not seen in the limited number of CD integrations in JSM17 but found
in the CD integrations here, indicating a dynamical regime where coastal outflows might
break into eddy trains. Perhaps the most important result is the demonstration that, in
certain parameter regimes, the width of the coastal current cannot be determined uniquely
from global quantities like the volume flux, PV and density contrast: the width also
depends on the details on the geometry of the outflow, which appears below simply as
the width of the outflow relative to the current width. Although a local theory can predict
the balance in the current, the width of the current varies with the width of the outflow
even when the global quantities are unchanged. The analysis builds on the methods in
Jamshidi & Johnson (2020, JJ20 herein) who derive the dispersive equation for a coastal

1010 A39-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

33
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.331


M. Nguyen and E.R. Johnson

current of constant flux along a wall and analyse the Riemann problem for the adjustment
of a step change in the width of an alongshore current using El’s dispersive-shock fitting
technique (El 2005).

Section 2 describes the idealised flow geometry considered here, governed by the
11/2-QG equations, and presents the leading-order hydraulic limit of the equations and
their first-order dispersive correction. Away from the source, the system supports travelling
waves of fixed form and the equations governing these are noted in § 2.3. The flow evolves
to divide naturally at large times into three regimes: a steady region containing the outflow,
constant-width currents leading away from the outflow regions and unsteady propagating
frontal regions leading the constant-width currents. Section 3 considers the outflow region,
presenting numerical solutions for the asymptotically steady flow there and discussing the
transition between subcritical and supercritical flow across the outflow. The widths of the
outflow currents for negative PV outflows are shown to depend strongly on the strength
of the dispersion. Section 4 describes the various compound-wave structures observed
in the fronts leading the constant-width currents, and § 5 compares predictions from the
dispersive long-wave theory with integrations of the full QG equations. The results are
summarised briefly in § 6.

2. Formulation
We consider a river outflow model where fluid is released from a constant depth inlet and
flows along the coast into a half-space consisting of an upper active layer, comprising
the expelled fluid and displaced ambient ocean water, and an ambient lower layer of
infinite depth. The flow geometry is shown from a plan view in figure 2(a) and a side
view in figures 2(b)(i), 2(b)(ii). We take Cartesian coordinates Oxyz, with x along the
coast, y offshore and z vertical. The system rotates with Coriolis parameter f about the
z-axis. Here, Ds denotes the depth of the inlet, D the depth of the upper ambient fluid
and L the half-width of the outflow lying along a vertical coast y = 0. We denote the
connected region of the expelled fluid by D, bounded by the contour C which separates
expelled fluid from the ambient. At times t > 0, fluid is released from the outflow into
the half-space y > 0 with a constant discharge rate that is independent of the width of the
source and constant non-zero PV denoted by Π�. The expelled and ambient fluid in the
upper layer has density ρ1 while the lower layer has zero PV and density ρ2 >ρ1, with
|ρ1 − ρ2| � ρ2 so the Boussinesq approximation is valid. This layered system satisfies the
11/2-layer QG equations provided the relative depth change between the inlet and the
active layer is small, i.e. |D − Ds | � D. Typical velocities are small compared with
the speed of long free-surface water waves, so the surface z = 0 can be taken as effectively
rigid with the dynamics restricted to the interface between the layers. The difference
between the potential vorticity of the expelled fluid and the upper ambient fluid, defined
as the PV anomaly (PVa), Π0 :=�Π� = f/Ds − f/D, is positive if the outflow depth is
deeper than the inlet depth Ds < D, or negative if Ds > D. Herein (as in JJ20) we denote
PVa as just PV for brevity.

The evolution of the vortical boundary C is governed by the equation for the
conservation of QG PV and since the PV has constant magnitude the evolution is entirely
determined by the instantaneous position of C. This allows the full, unapproximated
evolution to be computed accurately using contour dynamics (§ 5, Dritschel 1988).
To derive a long-wave equation we restrict attention to flows where the coastal front C does
not overturn and the current width can be written as y = Y (x, t). This is true for gently
propagating coastal fronts but the CD integrations § 5 suggest that overturning can occur,
particularly for flows begun impulsively, and is discussed separately. The QG equations
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Figure 2. A schematic of a river outflow expelling fluid at t > 0 from an inlet with depth Ds into the upper layer
of depth D. The lower layer of ambient ocean water below has infinite depth hence Π� = 0. The subsequent
displacement of the interface between the layers is denoted by h. (a) The plan view of a river source of half-
width L where the expelled fluid evolves to form a region D enclosed by a closed coastal front C (including the
coast boundary y = 0). (b) The side view where (b)(i): the outflow depth is deeper than the river inlet, so there
is positive PVa generation. (b)(ii): outflow depth is shallower than the inlet (due to the presence of a shoal say)
so there is negative PVa generation.

allow the introduction of a streamfunction

ψ(x, y, t)= g′h(x, y, t)

f Q0
, (2.1)

where h(x, y, t) is the interface displacement. Here, Q0 is the area flux expelled by
the outflow (with total volume Q0 D), g′ is the reduced gravity, with the horizontal
velocities of the flow given by (u, v)= (−ψy, ψx ). Spatial and temporal scales are non-
dimensionalised (with choices justified, along with other quantities below, in JSM17)
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according to the vortex length Lv and advection time scale Tv where

Lv = (Q0/|Π0 D|)1/2, Tv = L2
v/Q0. (2.2)

We define W to be the non-dimensionalised half-width (herein just width) of the outflow
such that W = L/Lv . The non-dimensional governing equation becomes

q = ∇2ψ − 1
a2ψ =

{
0 y > Y (x, t)
Π 0< y < Y (x, t),

(2.3)

where ∇2 = ∂/∂x2 + ∂/∂y2 is the Laplacian operator, the constant PV is non-
dimensionalised as Π =Π0/|Π0| so that Π gives the sign of the expelled PV and
a = L R/Lv is the ratio of the Rossby radius of deformation for the interface
L R =√

g′H/ f to the vortical length scale Lv . The parameter a is later referred to as
simply the Rossby radius. It measures the ratio of the strength of advection by the image
vorticity to that by the KW induced flow. The jump in vorticity across y = Y (x, t), i.e.
the material line C, supports a frontal Rossby wave that propagates unidirectionally with
high PV to its right and so in the same direction as the flow induced by the image, in
the coastal wall, of the vortical current. Thus for Π = +1, the frontal Rossby wave and
advection by image vorticity combine with the KW to reinforce the rightward turning
flow. For Π = −1, the frontal Rossby wave and the image vorticity advection oppose
the KW.

We denote the flux function of the source outflow by Q(x)with width W along the coast
y = 0. The fluid is impulsively expelled at t > 0 given by the no-flux boundary condition
(2.4), and far from the coast the fluid is stationary so

ψ(x, 0, t)= Q(x), (2.4)
ψ → 0, y → ∞. (2.5)

Here, Q(x �−W )= 0, Q(x � W )= 1 (so the area flux expelled is 1 normalised from
Q0). JSM17 and JJ20 show that the asymmetry in Q(x) arises necessarily from the KW
generated when the source is switched on. The KW propagates to the right at finite speed
in JJ20 and instantaneously in JSM17 to set the coastal boundary condition.

The remaining condition is the kinematic boundary condition that fluid particles on the
coastal front remain on the coastal front C

Yt = [ψ(x, Y (x, t))]x . (2.6)

2.1. The leading-order hydraulic solution
Rescaling (2.3) using the long-wave variables

X = εx, T = εt, (2.7)

where ε= 1/W , and expanding ψ in terms of ε gives

ψ(X, y, T )=ψ0 + ε2ψ1 +O(ε4). (2.8)

We substitute (2.8) into (2.3) which is matched with the leading-order ε0 and first-order
ε2 terms. This derivation is summarised from JJ20, with the modification that Q(x)
here varies instead of being constant in x . Directly evaluating ψ0 at the coastal front
y = Y (X, T ) gives

ψ0(X, Y, T )= Qe(X, Y, T )= −a2Π

2
+ (Q(X)+ a2Π)e−Y/a − Πa2

2
e−2Y/a . (2.9)
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The parameter Qe(X, Y, T ) gives the net rightward flux of the oceanic fluid at X with
Q(X)− Qe(X, T ) giving the net rightward flux in the coastal current. The kinematic
boundary condition (2.6) at the leading order becomes, in terms of x and t ,

Yt +
[(

Q(x)

a
+ aΠ

)
e−Y/a − aΠe−2Y/a

]
Yx + Q′(x)e−Y/a = 0. (2.10)

Equation (2.10) is a first-order nonlinear partial differential equation (PDE) with
disturbance propagation speed C(Y ) given by

C(Y )=
(

Q(x)

a
+ aΠ

)
e−Y/a − aΠe−2Y/a, (2.11)

governing the leading-order behaviour of the coastal front Y (x, t). At each x the
disturbance speed C(Y ) is the sum of the frontal Rossby-wave speed and the fluid speed at
the front. Information travels to the right when C(Y ) > 0 and to the left when C(Y ) < 0.
This behaviour is directly analogous to the hydraulic behaviour in free-surface channel
flow and has been described as Rossby-wave hydraulics (see, for example, Johnson &
Clarke 2001). Since the frontal Rossby wave is the sole wave present, solutions of (2.10)
will be described simply as hydraulic solutions.

2.2. The dispersive correction
The next order in ε gives the O(ε2) correction to ψ on y = Y (X, T ) as

ψ1(X, Y, T )= −a3Π

4
YX X +

(
a2

2
ΠY YX X + a3

4
ΠYX X − aΠ

2
Y (YX )

2
)

e−2Y/a

+ a

2
Q X X (X)Y e−Y/a . (2.12)

The dispersive kinematic boundary condition (2.6) including these dispersive terms
becomes

Yt +
[

a2Π

2
e−2Y/a −

(
Q(x)+ a2Π

)
e−Y/a

]
x
+ a3Π

4
Yxxx

−Π

[(
a2

2
Y Yxx − a

2
Y (Yx )

2 + a3

4
Yxx

)
e−2Y/a

]
x
−
[a

2
Qxx (x)Y e−Y/a

]
x
= 0.

(2.13)

Expanding (2.13) gives the alternative form of the dispersive kinematic boundary
condition

Yt +
[(

Q(x)

a
+ aΠ

)
e−Y/a − aΠe−2Y/a

]
Yx

+ a3Π

4
Yxxx −Π

(
(Y − a/2)(Yx )

3 + a3

4
Yxxx + a2

2
Y Yxxx − 2aY Yx Yxx

)
e−2Y/a

− Qx (x)e
−Y/a − a

2
Qxxx (x)Y e−Y/a − a

2
Qxx (x) (1 − Y/a) Yx e−Y/a = 0. (2.14)

While the parameter ε no longer appears, the variables x, t vary slowly. Formally, this
means 1/ε≡ W � 1 and a is of order unity. When Q(x) narrows to a point source outflow
W → 0, its derivatives become large Qx (x)∼ 1/W � 1, which violates this requirement.
The system can, however, still be treated with surprisingly good accuracy (§ 3.2).
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2.3. The travelling-wave solutions of the dispersive equation
In the regions |x |>W , where the flux function is constant, Q(x)≡ Q, the system supports
waves of permanent form (see JJ20 for the case Q = 1). We change to moving coordinates
by setting ξ = x − st and look for solutions steady in this moving frame. The governing
PV equation (2.14) can then be written in potential form

(
Yξ
)2 = 2

a2
a3e−2Y/a − 4a(QΠ + a2)e−Y/a + 2sΠY 2 + αY + E

a − (a + 2Y )e−2Y/a
≡ 2

a2
ν(Y, s, α, E)

G(Y ) ,

(2.15)
where α, E are the constants of integration, and s is the speed of the travelling wave.

JJ20 show that a solitary wave propagating along a background Y = Y∞, with maximum
displacement Y1, satisfies

ν(Y = Y1)= ν(Y = Y∞)= ν′(Y = Y∞)= 0, (2.16)

where ′ denotes differentiation with respect to Y and a kink soliton joining two different
far-field states Y1 and Y2 satisfies

ν(Y = Y1)= ν(Y = Y2)= ν′(Y = Y1)= ν′(Y = Y2)= 0. (2.17)

For given external parameters a, Q, Π , the kink soliton solution also determines a unique
coastal intrusion where a current of constant width Y1 = YI terminates at the coast so
Y2 = 0. Equation (2.17) determines the constants α, E , giving the unique intrusion speed
sI and width YI ,

(−a2YI + 3a3 + 4aQΠ − 2QΠYI )e
2YI /a − (2a2YI + 4a3 + 4aQΠ + 2QΠYI )e

YI /a

+ (a2YI + a3)= 0, (2.18)

sI = −2a2e−2YI /a + 4(a2 + QΠ)e−YI /a − 2a2 − 4QΠ

−4YIΠ
. (2.19)

Since G, G′ → 0 as Y → 0, and ν, ν′ → 0 by construction, the PV front meets the coast
with finite gradient

(Yξ )
2|Y=0 = 2Π(asI − Q)

a2 . (2.20)

Intrusion solutions are shown below to play a significant role in determining the long
time behaviour of solutions in certain parameter regimes. A closely related wave type, not
present in JJ20, that appears in the outflow problem is a wall-bounded wavetrain. These
waves are discussed in detail in § 4.5 and satisfy conditions given by (4.15).

3. The outflow region
As in the hydraulic solutions of JSM17, the outflow region controls the development of
the solutions both upstream and downstream and so is considered here first. We consider
initially the case Π = −1, addressing the case Π = +1 in § 3.1.2. For steady flow, (2.6)
integrates directly to give

F(Y, Yx , Yxx ) :=ψ0(x, Y )+ψ1(x, Y, Yx , Yxx )=Φ, (3.1)

for some constant Φ, to be determined. As x → ±∞, the PV front settles to constant-
width currents of upstream width Y− and downstream width Y+ (say). The dispersive
term is absent for constant-width currents and so both Y− and Y+ satisfy the hydraulic
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form of (3.1) which becomes, from (2.9),

Φ = Qe(Q = 0, Y−)= Qe(Q = 1, Y+). (3.2)

There are no stationary (s = 0) non-trivial solutions of (2.15) with Q = 0 and so the
constant-width solution Y = Y− extends to the downstream edge of the source region at
x = −W . In x >W , where Q = 1, non-trivial stationary solitary waves solutions of (2.15)
exist and the solution across the source region must match to part of one of these riding on
the background Y = Y+. The problem for the flow in the source region can thus be posed
as the boundary value problem (BVP)

Y = Y−; x �−W, (3.3)

ψ0(x, Y )+ψ1(x, Y, Yx , Yxx )=Φ; |x |� W (3.4)

(Yx )
2 = 2

a2
ν(Y, α+, E+)

G(Y ) ; x � W, (3.5)

with Y and Yx continuous across x = ±W .
The constants α+, E+ are determined using the conditions for the existence of a soliton

with Π = −1, lying on Y = Y+, in (2.16), and solving (3.4) in the outflow region |x |� W
gives the value of Y (W )≡ Y+ andΦ, allowing (3.5) to be solved from x = W . Knowledge
of Φ uniquely determines the widths of the far-field Y+, Y− and, by extension, the entire
steady system.

We solve this system by truncating the domain at some x = ±L for large L and using a
BVP solver (bvp4c/bvp5c) in MATLAB. Equation (3.4) is solved across the entire domain,
setting the flux function to be Q(x) := Q4(x) in (4.1), which is equivalent to solving (3.3),
(3.4), (3.5) separately in each domain and unifying the solutions. Although a shooting
method can be used to find Φ similarly to Jamshidi & Johnson (2021), the bvp4c/bvp5c
solvers handle this automatically on introducing the auxiliary equation

Φ = Qe(x = −W )= −a2Π

2
+ (Q + a2Π)e−Y−/a − Πa2

2
e−2Y−/a, (3.6)

to be satisfied alongside the ordinary differential equation (ODE). Figure 3 shows the
frontal position and streamlines for a typical solution. The entire outflow leaves the
source and turns upstream, travelling to an unsteady upstream frontal region in the full
problem where some of the fluid turns to form a downstream return current along the
PV front. This leaves a central recirculating region just downstream of the outflow,
as observed in the experiments of Thomas & Linden (2007) and the ageostrophic
integrations of Gregorio et al. (2011) and modelled in Johnson (2023). The Rossby frontal
wave travels upstream with high PV to its right. Its speed precisely equals the coastal
current speed at the dispersive control point, marked as a blue dot on the front, where
C(Y )= 0. Upstream of this point C(y) < 0 and the flow is subcritical, with information
propagating upstream. Downstream of this point C(y) > 0 and the flow is supercritical,
with information propagating downstream. This identification of hydraulic regimes is
justified in the following section.

3.1. Hydraulic control
Consider wavelike perturbations of a steady solution Y = Ys(x) of (2.14) of the form

Y (x, t)= Ys(x)+ ε̂y(x, t), ŷ ∼O(1), (3.7)
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Figure 3. The streamlines (blue) and of a steady dispersive solution with a = 1.3, Π = −1, and source lying
within |x |� W = 3. The streamline coinciding with the coastal front Y (x) is marked in black. The dispersive
control point where C(Y ) vanishes is shown by a blue circle. The blue-dashed streamline ψ = 1 bounds a
region of recirculating flow.

where ε̂� 1. Then, to order ε̂, (2.14) becomes

∂ ŷ

∂t
+ Ĉ

∂ ŷ

∂x
= f

(
ŷ, ŷxx , ŷxxx

)
, (3.8)

Ĉ = C(Ys)+ C1, (3.9)

C1 = −Π
(

3
(

Ys − a

2

)
(Y ′

s)
2 − 2aYsY ′′

s

)
e−2Ys/a − a

2
Q′′(x) (1 − Ys/a) e−Ys/a .

(3.10)

Both the forcing function f and the wavespeed perturbation C1 are of order ε2 and so
(3.8) can be regarded, at leading order in the long-wave parameter ε, as a first-order PDE
with disturbance propagation speed Ĉ = C(Y )+O(ε2). As in the hydraulic limit, C(Y ),
given by (2.11), is the local speed of infinitesimal perturbations to the steady dispersive
equation.

3.1.1. The Π = −1 case
The unsteady hydraulic solution (2.10) in JSM17 evolves to be critically controlled at
the downstream edge xc = W of the source and thus sets Y+ and Y−. In this case, (3.1)
becomes

Qe(Y = Y−, Q = 0, Π)= Qe(Y = Y+, Q = 1, Π)=Φ, (3.11)

where Qe ≡ψ0 is the leading-order (hydraulic) streamfunction evaluated at the PV front.
Requiring flow to be critically controlled gives some essential conditions in the hydraulic
equation. From JSM17, Y+ is determined by setting the width at the downstream edge
control point C(Y+)= 0 and Y− can be derived using equation (3.11), giving

Y+ := (Y+)hyd, −1 = a ln
(

a2

a2 − 1

)
, Y− := (Y−)hyd, −1 = a ln

(
a4 + a2

√
2a2 − 1

(a2 − 1)2

)
.

(3.12)
When a � 1, these expressions fail and steady solutions no longer exist.

As shown above, the control point for dispersive solutions also occurs when C(Y )= 0,
however, as the dispersive solution differs from the hydraulic solution, the control point,
although occurring at the same value of Y , lies at a different value of xc �= W , which can
only be determined once the dispersive solution is known. Since the control point is fixed
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Figure 4. The steady dispersive solutions (shown in blue) for a = 1.3, Π = −1 plotted for source widths:
(a) W = 3, (b) W = 10 with the outflow centred at x = 0 (marked as a filled star). For comparison, the full QG
solutions (in black) is shown for t = 500. The locations of the hydraulic and dispersive control points are shown
by a black and blue filled circle, respectively. The red line denotes the hydraulic rarefaction at t = 10 000, an
almost constant-width current extending from the hydraulic control point.

at xc = W in the hydraulic solutions the current widths Y−, Y+ do not change with the
outflow width. The current width in the dispersive solutions varies with the width of the
outflow and so to does the position of the control point.

Figure 4 compares the numerical steady dispersive solution with the full QG solution
(using the contour dynamics method of § 5) run until Y− and Y+ converge to their
steady values. The widths Y± are well predicted for source widths W = 3, 10, significantly
improving on the large-time limit of the downstream hydraulic rarefaction solution shown
in red. The Y displacements of the hydraulic (black) and dispersive (blue) control points
are the same, but the values of xc differ. The control point for W = 10 lies closer to the
downstream outflow than that for W = 3 since the solution converges to the hydraulic
solution as W increases.

3.1.2. The Π = +1 case
Critical control in the hydraulic solution for Π = +1 occurs at the upstream edge of the
source outflow at xc = −W giving a steady solution with no current upstream. For x >
−W , C(Y ) > 0, so the flow is supercritical everywhere. As shown in JSM17, this gives
remarkably accurate results compared with the full problem, predicting the upstream and
downstream steady current widths as

(Y−)hyd, +1 ≡ 0, (Y+)hyd, +1 = a ln
(

1/a2 + 1 +
√

1/a4 + 2/a2
)
. (3.13)

The dispersive equation also establishes a control point, but this causes the front to cross
the coast, reaching negative Y values, This invalidates the solutions and so comparison
with the full problem is omitted. The dispersive PV equation improves on hydraulic
solutions only for negative PV.
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Figure 5. (a) The steady dispersive solutions (blue) at a = 1.3, Π = −1 shown for different widths
W = 1, 10, 100, compared directly with the contour dynamics for W = 0 at t = 1000 (shown in black). Also
overlaid is the comparison (dotted lines) with the hydraulic and dispersive predictions of the current widths
(Y±)hyd , (Y±)W=0. (b) As above but for a = 1.75 and a = 2.5 (W = 1, 3, 10).

3.2. The narrow source limit, W → 0
The governing PV equation (2.14) is not formally valid for narrow outflows with
W �O(1). However, over long times, the dispersive equation for Π = −1 captures the
far-field values (Y−, Y+) of the full problem well in this regime (figure 5). It is therefore
useful to analyse the dispersive equation in this limit and extend the analysis of (2.14) to
all W .

In the steady solutions for Π = −1 the far-field currents join through a (truncated)
soliton which connects the downstream constant-width current Y+ to an intermediate point
Y = Ys at x = W that is subsequently linked smoothly across the outflow region |x |<W
to the constant-width current Y (x = −W )= Y−. As shown in figure 5, for decreasing
source widths the solution the cross-outflow matching becomes progressively steeper,
approaching a vertical jump at x = 0 as W → 0. The soliton truncates at its maximum
height to minimise the width of the jump. Figure 6 shows this suggested shape of the
coastal front for a point source outflow. Thus we require that as W → 0, Y (x) satisfies

Y (x → 0−)= Y−, Y (x → 0+)= Ys, Yx (x → 0−)= 0, Yx (x → 0+)= 0, (3.14)

with Ys giving the width from the coast of the soliton.
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‘Half ’ soliton attached to a shock at Ys

Shock of height (Y– – Ys)

CY–

Y+

Ys

Figure 6. The suggested structure of the coastal front C for Π = −1 as the outflow width W → 0 in dispersive
flow. A shock links the constant-width current in x < 0 to a soliton asymptoting to Y+.

Integrating the steady form of (2.13) once gives

a3Π

4
Yxx −Π

[(
a2

2
Y Yxx − a

2
Y (Yx )

2 + a3

4
Yxx

)
e−2Y/a

]
− a

2
Q′′(x)Y e−Y/a

+a2Π

2
e−2Y/a −

(
Q(x)+ a2Π

)
e−Y/a −Φ = 0, (3.15)

with constant of integration Φ = Qe(Y−). On integrating (3.15) across the outflow from
−W to W with respect to x , and taking the limit W → 0, the integral involving the last
line of (3.15) vanishes as the integrand is bounded. Since Yx = 0 at x = ±W from (3.14)
the first term in the first line of (3.15) also vanishes. The remaining terms then give, after
some simplification,

lim
W→0

∫ W

−W

{
Πa

4

[
(2Y + a)e−2Y/a

]
Yxx + Q′′(x)Y e−Y/a

}
dx = 0. (3.16)

Now define the shock width, or jump in Y (x) across x = 0, by 〈Y 〉, so

〈Y 〉 = lim
W→0

[Y (W )− Y (−W )] = Y− − Ys, (3.17)

and 〈Q〉 = 1. Taking the indefinite integral of (3.15) from −W to x , integrating the result
across the outflow from −W to W as W → 0, integrating by parts and simplifying using
(3.16) gives

a2Π

2
〈Y 〉 + Πa2

4
〈(Y + a)e−2Y/a〉

+ lim
W→0

∫ W

−W
x

{
Πa

4

[
(2Y + a)e−2Y/a

]
Yxx + Q′′(x)Y e−Y/a

}
dx = 0. (3.18)

In the limit W → 0

Y ′′(x)→ 〈Y 〉δ′(x), Q′′(x)→ δ′(x), (3.19)

where δ(x) is the Dirac delta function. Simplifying (3.18) then gives the required jump
condition

a2Π

2
〈Y 〉 + Πa2

4
〈(Y + a)e−2Y/a〉 − Πa

4
〈Y 〉

[
(2Y + a)e−2Y/a

]
x=0

−
[
Y e−Y/a

]
x=0

= 0,

(3.20)

where for any g(Y ), we define [g(Y )]x=0 as

[g(Y )]x=0 = [
g(Y−)+ g(Ys)

]
/2. (3.21)
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We have the first equation (3.20) to solve for the three unknowns (Y−, Ys, Y+). Next, we
introduce a steady soliton in the constant Q = 1 region by imposing the conditions (2.16)
derived from the travelling-wave solutions of the dispersive PV equation. We require that
the soliton joins to Ys �= Y+, which gives the second equation

a3e−2Ys/a − 4a(a2 − 1)e−Ys/a + α+Ys + E+ = 0, (3.22)

with the constants α+, E+ determined from (2.16).
Since Y+, Y− are linked by the hydraulic flux function Qe(Y )=Φ, the final equation

is given by

a2

2
+ (1 − a2)e−Y+/a + a2

2
e−2Y+/a = a2

2
− a2e−Y−/a + a2

2
e−2Y−/a =Φ. (3.23)

Solving (3.20), (3.22), (3.23) simultaneously (and requiring Y+ � Ys < Y−) gives the
values of (Y−, Y+, Ys) for Π = −1. The shock solution is an unphysical artefact of the
dispersive equation in the limit W → 0 that, however, predicts the values of Y− and Y+
found in the numerical solutions of the full problem.

The steady hydraulic and dispersive W → 0 width predictions give the upper or lower
bounds of Y± for Π = −1 such that

(Y−)W=0, −1 := (Y−)max, −1, (Y−)hyd, −1 := (Y−)min, −1

(Y+)W=0, −1 := (Y+)min, −1, (Y+)hyd, −1 := (Y+)max, −1, (3.24)

where hyd refers to the hydraulic predictions, giving an upper (max) and lower bound
(min) to the steady current widths for some Rossby radius a. Figure 5 compares the
numerical steady dispersive solutions for different W, a values for Π = −1 with the
theoretical current widths Y±. For small widths the upstream Y− value is close to
the theoretical (Y−)max value. As the outflow width increases from W = 1 to W = 100
in the a = 1.3 case, the current widths converge towards the hydraulic prediction (Y−)min .
The full QG solutions for a point source W = 0 closely align with the narrow outflow case:
in the W = 1 dispersive simulations, a shock appears at Ys where the soliton that matches
the current widths for the full problem terminates.

3.3. The validity of the W → 0 predictions and overturning
For all width outflows as t → ∞, the time-dependent PV equation determines Φ (from
which all of Y+, Y−, α±, E± are determined) such that

(i) There is a hydraulic constant-width current at one of the edges of the source width
which stipulates Yx (x = −WΠ)= Yxx (x = −WΠ)= 0 as ψ ≡ψ0 here.

(ii) The flow is critically controlled, where flow moves from subcritical flow far upstream
(Y−) to supercritical flow far downstream (Y+) for Π = −1, and is supercritical
everywhere for Π = +1. In the hydraulic solution, the current width is critically
controlled at the edge of the source, but this condition is relaxed in the dispersive
equation, being true only as W → ∞. Dispersion means that Φ depends on the width
of the outflow.

For positive PV outflows, moving from subcritical to supercritical flow in the dispersive
equation requires C(Y )|Q=0, Π=+1 � 0. This implies Y � 0 upstream for the steady system
for all W , and equality is only reached provided W = ∞ (i.e. the hydraulic case). The wave
always overturns for outflows W <∞ in the full problem as seen in § 5, but long-wave
theory returns single-valued solutions that cannot capture this case. While the hydraulic
solution indicates overturning by producing shocks, the dispersive solution instead allows
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Figure 7. The predicted steady dispersive-current widths Y−, Y+ at different values of a for Π = −1.
The shaded regions for both Y+ (lined edge, yellow) and Y− (dotted edge, blue) show the range of width
values based on the outflow width W . The Ys value (red, dashed) gives the location of the shock for a point
source outflow. Also plotted are numerical simulations of the steady dispersive equation at a = 1.3, 1.75, 2.5
at different widths W = 1, 3, 10.

the coastal front to reach values Y < 0. Overturning decreases with increasing outflow
width, and this is reflected in the dispersive equation by decreasing how far below the
coast the front reaches. Hydraulic solutions alone are sufficient to determine the current
widths of the full problem provided Π = +1 with the full QG solutions indicating that Φ
is independent of W , as expected in the absence of dispersion.

In the negative PV case, the W → 0 treatment matches remarkably with the steady
dispersive integrations seen in figure 7. As the outflow width decreases, the current
widths tend towards the (Y±)W→0 analytically determined values as seen in the W = 1
and W = 3 numerical simulations. At W = 10 these values align more closely with the
hydraulic widths and all lie comfortably in the shaded region that represents the range of
solutions for any W . In the W → 0 case, the location of the shock is well predicted by
the W = 1 numerical steady solution and this is where the Q = 1 soliton terminates. The
dependence of the outflow width on the range of values Y± is also captured in the full
problem when Π = −1, as discussed further in § 5. For sufficiently large Rossby radius
a, the downstream current reaches the coast, Y+ = 0. This is seen in the QG solutions but
is not found in the hydraulic solution, where the downstream current always reaches the
coast via a rarefaction.

4. The leading frontal regions

4.1. The time-dependent dispersive long-wave equation
With the widths Y+, and Y− of the currents leaving the source region determined, it
remains to consider the propagation of the dispersive fronts leading the currents. Table 1
summarises the notation used below. In order to numerically solve the unsteady dispersive
equation (2.14) noting the three spatial derivatives in Q(x), we require that the flux is
sufficiently smooth so that at least the third derivative is bounded. For the integrations
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Name Description

Y+ Constant-width current upstream from source outflow
Y− Constant-width current downstream from source outflow
YI Width of intrusion (or half-intrusion) that connects the current width to the coast
sI Speed of the intrusion (or half-intrusion)
Ys Width of the soliton edge resulting from DSW formation
s̃I Speed of the soliton edge
sr Speed of the rarefaction at coast Y = 0

Table 1. The notation for the different wave structures in the PV front.

below, we use the flux function

Q4(x)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 x �−W
8
9

sin4
(
π(x + W )

3W

)
−W < x � 0

1 − 8
9

sin4
(
π(x − W )

3W

)
0< x <W

1 x � W .

(4.1)

Using Q(x)= Q4(x) in (4.1) ensures that there are no discontinuities in the boundary
condition (2.4). Simulations were also attempted with simpler functions, but there was
very little difference in the results in either the full problem or the dispersive integrations.

A simple fourth-order Runge–Kutta scheme is used to advance the equation in time
using a pseudo-spectral method, where the equation is Fourier transformed in x and solved
as an ODE in Fourier space, and is then transformed back into real space. The domain is
periodic and so we require the flux function to also be periodic. In practice, we truncate
the domain to x = L , L � 1, and to maintain periodicity, the flux function must return to
0 (its upstream value) downstream. We make this descent sufficiently gradual so as not to
interfere with the evolution of the outflow. Here, Q4(x) is reduced to 0 using a wide tanh
function. We also apply de-aliasing following Orszag (1971) to remove otherwise growing
high-wavenumber contributions.

4.2. Compound-wave structures and dispersive-shock-wave fitting
The structure of the PV front can be seen as a composition of different wave structures
discussed in JJ20. Two far-field states can be connected by a shock, rarefaction or
compound shock–rarefaction depending on the specific conditions in the hydraulic PV
equation (2.10). Compound-wave structures occur if Qe(Y ) is not convex in the region of
interest, which means that the interval [Y−, Y+] contains a turning point Yturn of Qe(Y )
where C(Yturn)= Q′

e(Yturn)= 0; that is, Yturn ∈ [Y−, Y+].
Importantly, the governing dispersive equation also forms compound-wave structures

when Qe(Y ) is not convex. Although rarefactions still occur, far-field states are instead
linked by kink solitons or intrusions analogous to a shock, or by a DSW provided Y+ �= 0.
Here, a DSW is a wave structure slowly modulated in amplitude and frequency connecting
two far-field states with different propagation speeds at each edge: one being a linear
wavepacket and the other a solitary wavepacket. The dispersive-shock fitting method (El
2005) that analyses DSW properties is valid if the governing PV equation satisfies a certain
set of conditions outlined in Appendix A.1.
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For solutions of the form Y = Y∞ + ηei(kx−ωt), η�O(1) of waves propagating on a
background Y∞, the governing PV equation for constant Q(x)= Q has a linear dispersion
relation, where O(η2) terms or higher are ignored, given by

ω(k)= C(Y∞)k − a2Π

4
G(Y∞)k3, (4.2)

where C(Y )= (Q/a + aΠ)e−Y/a − aΠe−2Y/a, G(Y )= a − (a + 2Y )e−2Y/a .
We denote the linear-wave-edge wavenumber as k with dispersion relation ω(k), and

the conjugate wavenumber of the solitary-wave edge as k̃, typically defined as the inverse
half-width of the solitary wave, with conjugate dispersion relation ω̃(k̃)= −iω(ik).
In this problem the far-field states are given by YI �= 0 (the intrusion width) and either
Y−, Y+ �= 0 according to the sign of the PVΠ . We can find the wavenumber or conjugate
wavenumber by solving the ODEs derived by El (2005) to obtain JJ20 for general constant
Q(x)= Q

Π = −1 :
k2− = −8

3a2G(Y−)2/3

∫ Y−

YI

C ′(Y )
G(Y )1/3 dY, k̃2

I = 8
3a2G(YI )2/3

∫ YI

Y−

C ′(Y )
G(Y )1/3 dY, (4.3)

Π = +1 :
k2+ = 8

3a2G(Y+)2/3

∫ Y+

YI

C ′(Y )
G(Y )1/3 dY, k̃2

I = −8
3a2G(YI )2/3

∫ YI

Y+

C ′(Y )
G(Y )1/3 dY, (4.4)

where k− is the wavenumber of the linear-wave edge (k̃ I = 0 here), and k̃ I is the conjugate
wavenumber of the solitary-wave edge (k− = 0 here).

Thus, the DSW forms a compound-wave structure with the upstream steady current
(Y−, Π = −1), where the DSW travels leftward from the linear-wave edge at Y− to
the solitary-wave edge at YI where it connects to an intrusion on the left; or with the
downstream steady current (Y+, Π = +1), where the DSW travels rightward from the
linear-wave edge at Y+ to the solitary wave-edge at YI where it connects to an intrusion on
the right. The propagation speeds of the solitary- and linear-wave edges are

s± = ∂ω

∂k
(Y±, k±), s̃I = ω̃(YI , k̃ I )/k̃ I , (4.5)

computing the speeds and the amplitude of the solitary wave at YI , denoted by Ys , as well
as the wavelength of the linear wave at Y±. Sections 4.3 and 4.4 give examples of DSWs.

4.3. The structure of the PV front: the Π = +1 positive PV case

4.3.1. Upstream of the source, x <−W : Q = 0, Π = +1
The upstream flow of Π = +1 is well captured by the hydraulic theory of JSM17.
The flow is led by a shock and terminates at the edge of the source outflow and control
point x = −W , so Y− ≡ 0, x �−W for all a. The unsteady dispersive equation is ignored
as it gives a poor representation of the upstream flow, predicting negative values to indicate
wave overturning as discussed in § 3.1.2.

4.3.2. Downstream of the source, x >W : Q = 1, Π = +1
Downstream the source outflow, x >W , the flux function Qe(Y ) is always non-convex in
the solution if

Yturn = a ln
(

2a2

a2 + 1

)
� 0. (4.6)
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Figure 8. (a) Dispersive solution for Π = +1, a = 1.3 and widths W = 3, 10, 20 (overlaid as blue; dashed,
dash-dotted, dotted respectively), compared directly with the point source contour-dynamics simulation (black)
at time t = 1000, focusing on the Y+ region and upstream. (b) Similar to top but for width W = 10 and
a = 0.8, 1.0, 1.3, 1.75 (yellow-dashed, yellow, black-dashed, black, respectively) run until t = 4000. The
dotted lines in both figures correspond to the theoretical predictions of the structure’s locations.

For a < 1 a rarefaction joins these states and thus we denote ar, +1 = 1 as the value of
a when a rarefaction just forms. Equation (4.6) is satisfied provided a � 1, where an
intrusion connects the downstream current Y+ to the coast with a finite slope and current
width YI determined by (2.18) and (2.20). A rarefaction, if it occurs, propagates according
to the equation

x

t
= C(Y )= 1

a

(
1 + a2

)
e−Y/a − ae−2Y/a, C(Y+) <C(Y ) <C(Y = Y join)≡ 1

a
,

(4.7)

where Y join refers to Y = 0 if a rarefaction fully joins to the coast, or YI if a rarefaction
joins to an intrusion instead.

We also require for any soliton or intrusion that the stationary points of Yξ in (2.15) must
be local minima (representing a stable equilibrium of the far-field states), i.e.

ν′′(YI ) > 0 =⇒ |sI |> |C(YI )|, (4.8)

consequently, an intrusion always overtakes a rarefaction and joins the far-field state to the
coast. This forms a constant-width current region that is referred to herein as a ‘shelf’.
We can calculate the values for which the shelf is wider or narrower than the immediate
downstream current Y+ by determining when

YI = (Y+)hyd . (4.9)

We denote the value of a for which (4.9) is satisfied by aI, +1. Then for all a > aI, +1,
the intrusion shelf always remains wider than the constant-width downstream current Y+,
leading to DSW formation. A shelf cannot form if the speed of the leading soliton edge of
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List of downstream behaviours according to the value of a (Π = +1)

Name Description Value (2 d.p.)

ar, +1 Lower limit of a when an intrusion forms 1.00
aI, +1 Lower limit of a when a DSW forms 1.62
acrit, +1 Lower limit of a when a constant-width shelf no longer forms 1.99

Table 2. The values of a where different behaviours of the upstream PV front form for Π = +1.

the DSW s̃I matches the speed of the intrusion sI , which occurs when

s̃I = sI . (4.10)

We denote the value of a for which (4.10) holds by acrit, +1. For a > acrit, +1, a wall-
bounded wavetrain joins the far-field current to the coast as illustrated in § 4.5. The values
of ar, +1, aI, +1 and acrit, +1 are given in table 2.

The type of structures that form also vary with the outflow width W in the dispersive
equation. However, as noted in § 3.3, this is an artefact of the dispersive equation which
does not reflect the behaviour of the full problem. Although changing the source width W
does not affect Y+ in the full QG equations, it introduces more waves to the system due to
dispersion. Herein, irrespective of W , we only use hydraulic solutions (Y+)hyd to estimate
the actual downstream current width.

Figure 8(a) shows the numerical differences in the downstream behaviour by comparing
the point source W = 0 contour dynamics with the dispersive dynamics at widths
W = 3, 10, 20 for a = 1.3. In the W = 3 case, the dispersive dynamics captures the waves
propagating upstream of the source, but the W = 10, 20 outflows capture Y+ better and
so the simulations below are restricted, unless noted, to the width W = 10 for Π = +1.
This width closely matches to the point source prediction of Y+, yet is not so large that
dispersive waves interfere with the solution (as with W = 20). The contour dynamics also
matches reasonably well to the predicted intrusion location at t = 500 from travelling-wave
theory. This is shown further in figure 8(b) where the predicted intrusions, rarefactions
C(Y = 0) and long-wave propagation C(Y = Y+) locations align well at t = 4000 for a
range of values of a.

We verify El’s technique for a = 1.75> aI, +1 where DSWs can form. Figure 9
shows a DSW propagating to the right downstream at t = 10000 (where the DSW is
fully developed), where there is a rightwards solitary-wave leading edge and a linear-
wave trailing edge, terminating by an intrusion (a kink-DSW structure). As the DSW
develops, the outflow sets the downstream frontal width to (Y+)hyd almost immediately
(compared with DSW formation) and propagates rightwards as an almost pure wavetrain
(see figure 19(b) at time t = 200). This leading wave amplitude continues to grow until
it is limited by the width of the now fully formed intrusion (see figure 19(b) at time
t = 500), determining the height and speed of the soliton edge. The soliton edge falls
behind the intrusion, which travels faster to form a constant-width shelf, and thus forms the
DSW. The intrusion has corresponding width and speed YI , sI that is well matched with
the theoretical travelling-wave theory; similarly, the theoretical dispersive-shock fitting
matches well with the trailing, leading positions and the soliton width at the leading
edge s−t , s̃I t , Ys for t = 10 000. We deduce the linear-wave wavelength of the DSW by
calculating the distance 2π/k−, given by the two dotted lines along the trailing edge shown
in the figure, again showing good agreement.
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Figure 9. The numerical solution to the governing dispersive equation with Π = +1 and a = 1.75, run until
t = 10000, showing a DSW propagating upstream. The source outflow centred at x = 0 is Q(x)≡ Q4(x) with
width W = 10. The dotted lines represent the predictions of the dispersive analysis using El’s technique and
travelling-wave solutions.

In summary,

(i) If 0 � a � ar, +1: Y+ joins the coast through a rarefaction (see figure 8b, labelled
yellow).

(ii) If ar, +1 < a � aI, +1: the PV front from Y+ joins the coast through an intrusion
of width YI , and a compound-wave intrusion–rarefaction joins to the downstream
current Y+. Here, 0< YI < Y+ (see figure 8b, labelled black-dashed).

(iii) If aI, +1 < a � acrit, +1: an intrusion joins the coast with current width YI , and a
compound-wave intrusion-DSW joins to Y+ for all widths W . Here, 0< Y+ < YI
(see figure 9).

(iv) If a > acrit, +1: a shelf no longer forms, and the upstream current becomes a wall-
bounded wavetrain (see figure 15b).

The parameter regimes for these cases are indicated in figure 10 showing the current
widths and speeds Y, s of any structures that form according to a in the W = 10 dispersive
integrations. In all regions a < acrit, +1 there is good agreement between the theoretical
predictions and the numerical simulations for the speeds of the intrusions, solitons and
rarefactions (panel b). As a → 0 the downstream speed of the rarefaction tends to infinity
and numerical simulations become more challenging. If the intrusion speed sI matches
the soliton edge speed s̃I , the soliton edge Ys reaches the coast leading to a change in
behaviour. For a � acrit, +1, the flow forms a wall-bounded wavetrain connecting the far
field to the coast. The width of the new wall-bounded wavetrain (shown in dashed lines in
figure 10) differs significantly from that of the intrusion and is discussed in § 4.5.

4.4. The structure of the PV front: the Π = −1 negative PV case
The structures in the negative PV case are similar to those of the positive PV case but now
the current widths Y± also depend on the source width W .

4.4.1. Upstream of the source, x <−W : Q = 0, Π = −1
Upstream, where Q = 0, x <−W , since |C(Y = 0)|< |C(Y = Y−)| ∀ Y− > 0, a shock
forms immediately in the hydraulic equation (JSM17). In the dispersive equation, this
shock is replaced by an intrusion. Unless the intrusion is of the same width as Y−,
compound-wave structures appear, independently of whether Qe(Y ) is convex or not. This
is true even for a � 1 when there are no steady solutions. Again the intrusion meets the
coast with finite slope and current width YI predicted by (2.18) and (2.20). As in (4.8) the
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Figure 10. Downstream behaviour of the dispersive equation forΠ = +1. The numbers i)–iv) describe regions
of a where different behaviours of the front occur. (a) The theoretical and numerical (W = 10) widths of YI
(black, plotted diamond), Y+ (orange, plotted square) and Ys (blue, plotted circle) if a DSW forms. (b) The
respective speeds for sr (black dash-dotted, plotted stars), sI (red lined, plotted diamond), s̃I (blue, plotted
circle). All simulations are run for at least t � 1000 so Y+ becomes steady.

intrusion satisfies ν′′(YI ) > 0, travelling faster than any rarefaction, so the constant-width
shelf formed by the intrusion lengthens over time (in the x-direction) before joining Y1
through either a rarefaction, with equation

x

t
= C(Y )= ae−2Y/a − ae−Y/a, (4.11)

if YI < Y1, or through a DSW if YI > Y1. As in § 4.3.2, we can determine the values of a for
which the shelf is as wide as the constant-width current Y− for long times by determining
when

YI = Y−, (4.12)

and again (4.10) determines when a shelf no longer forms. Since changing the source
width leads to two different bounds of Y−, this also gives two different values of a for
when these behaviours occur. These values and their corresponding notation are given
in table 3. Figure 11 shows a kink-rarefaction structure for a = 1.3 and an example of
shelf formation in figure 11(a). The position, width and gradient of the intrusion are well
predicted as is the position of the rarefaction by long-wave speed C(Y ). Figure 12 gives
another example of an (upstream) DSW where its solitary edge propagates leftward. The
discussion of the theoretical predictions (dotted in figure) is identical to that following
figure 9 in the positive PV case, with both the predicted locations and widths agreeing
well with the dispersive integrations.
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List of upstream behaviours according to the value of a (Π = −1)
Name Description Value (2 d.p.)

alower, −1 Lower limit of a when a DSW forms (W → ∞) 1.46
ahigher, −1 Lower limit of a when a DSW forms (W → 0) 1.53
acrit, −1, min Lower limit of a when a constant-width shelf no longer forms (W → ∞) 1.94
acrit, −1, max Lower limit of a when a constant-width shelf no longer forms (W → 0) 2.02

Table 3. The values of a for the different upstream behaviours of the PV front for Π = −1.
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Figure 11. (a) The upstream analytical predictions (in dash-dotted) of the rarefaction and intrusion locations
and the numerical integrations of the Π = −1, a = 1.3 dispersive equation at t = 10000, W = 3. (b) The
analytical prediction of the gradient of the intrusion, zoomed in from the top figure. Note the gradient line
(dashed) is adjusted very slightly from sI t , the predicted intrusion location (marked as a cross ×), for clarity
of comparison.

In summary,

(i) If 0 � a � alower, −1: the PV front joins the coast through an intrusion with current
width YI , followed by a rarefaction that joins to the downstream current Y−. Here,
0< YI < Y− (see figure 11(a)).

(ii) If alower, −1 < a < ahigher, −1: as in case (i) above for sufficiently large W , but
through a rarefaction–intrusion for sufficiently small W .

(iii) If ahigher, −1 � a � acrit, −1, min: for all W , an intrusion of width YI , joins the coast
followed by a DSW that joins the downstream current of width Y−. Here, 0< Y− < YI
(see figure 12).

(iv) If acrit, −1, min < a � acrit, −1, max : this gives the lower (when W = ∞) and upper
bound (when W = 0) of when a shelf can form.

(v) If a > acrit, −1, max : for all W , a shelf no longer forms. Instead, the downstream
current terminates towards the coast via a series of modulated, periodic travelling
waves, described here as a wall-bounded wavetrain (see figure 15(b)).

As in the case Π = +1, changing the width of the outflow produces additional waves
forming a range of different phenomena that are not straightforward to quantify. For
example, figure 12(b) is identical to 12(a) but a large width outflow W = 100 is used
instead. Using a very large outflow generates waves arising from dispersion that interact
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Figure 12. (a) As in figure 9 but withΠ = −1, a = 1.75 and W = 3, run until t = 10000. (b) As in (a) but with
a source outflow W = 100 run until t = 10000. We observe oscillating ‘breathers’ forming upstream inside the
DSW.

with the DSW forming breathers, unsteady nonlinear solutions with internal oscillations,
as in Chabchoub et al. (2019). Hoefer et al. (2023) analyse an exact solution that generates
breathers in the Korteweg–de Vries (KdV) equation. Further KdV analytical work has
determined whether solitons can tunnel through or stay trapped in some form of mean-
flow (e.g. a DSW) wave (van der Sande et al. 2021). In this example, the waves generated
by the outflow interact with the DSW producing breathers where outflow solitons tunnel
through the DSW towards the shelf. These become solitons that remain along the shelf,
distinct from the solitons formed by the DSW.

Figure 13 shows the corresponding predictions (i) to (v) describing the structural
behaviours as functions of a against the dispersive integrations. The shaded regions give
the ranges of Ys, Y−, s̃I depending on the value of W . There is generally good agreement
with the theory for i) to iv) for small and large widths (set to W = 3 and W = 100) until
a = acrit,−1, min or a = acrit,−1, max depending on the width of the source. The intrusion
appears to reach a maximum width here before decreasing, out of line with the predictions
(shown as an increasing dashed line in panel a). In figure 13(b), this corresponds to the
DSW soliton edge speed s̃I matching the intrusion speed sI and a wall-bounded wavetrain
forming as described in § 4.5.

4.4.2. Downstream of the source, x >W : Q = 1, Π = −1
The turning point width of C(Y ) is always greater than the maximum value of Y+, given
by (Y+)max , i.e.

Yturn = a ln
(

2a2

a2 − 1

)
> (Y+)max = a ln

(
a2

a2 − 1

)
, (4.13)
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Figure 13. Upstream behaviour of the dispersive equation for Π = −1. The numbers i) to v) describe the
regions of a where different behaviours of the front occur. (a) The theoretical and numerical widths of YI
(plotted diamond), Y− (shaded yellow depending on W ), and Ys if a DSW forms (shaded blue depending
on W ). (b) The theoretical and numerical speeds of sI (plotted diamond) and s̃I (shaded blue depending
on W ). All simulations are run for at least t � 1000 so Y− becomes steady.

for all a and so any Y+ > 0 can be joined to the coast by a smooth rarefaction given by

x

t
= C(Y )= ae−2Y/a +

(
1
a

− a

)
e−Y/a, C(Y+) <C(Y ) <C(Y = 0)≡ 1

a
. (4.14)

The curvature of Y is negligible in the rarefactions and therefore so too are dispersive
effects and these downstream solutions are captured well by the hydraulic equation once
the dispersively determined current width is known. In the hydraulic solution (Y+)hyd
is fixed for all widths, and the rarefaction always begins at the control point x = W .
Figure 14 gives an example (blue circle-marked line) of a rarefaction beginning from x = 0
corresponding to the fluid being released from the point source W = 0. In the dispersive
solution Y+ is no longer fixed at the control point: for W = 0 it is determined by solving
(3.20), (3.22), (3.23) giving a constant-width current whose leading edge propagates at its
long-wave hydraulic speed C(Y+), before joining the coast through a rarefaction. This is
shown in figure 14 for a = 1.3 at t = 10 000 with the downstream values of Y+ dependent
on the width of the outflow. The locations of the rarefactions, shown by dotted lines in the
figure, are well predicted analytically using the predicted steady widths Y+ (with Y+|hyd
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Figure 14. Dispersive integrations of downstream rarefactions for Π = −1, a = 1.3 at t = 10000, for widths
W = 1, 3, 100 (in black, labelled bottom, middle and top, respectively). The blue, circle-marked line gives the
W = 0 hydraulic rarefaction (4.14). For each W the predicted value of Y+ is shown dotted and the numerically
determined solutions is dot-dashed. The predicted locations (vertical, dotted) on the leading edge of the
hydraulic rarefactions are the long-wave speeds for each current width Y+.

given by (3.12). When W = 100 the solution has yet to fully settle, and the constant-width
current is just emerging. The dispersive rarefaction can thus be viewed as a hydraulic
rarefaction truncated at width Y = Y+ � (Y+)hyd .

4.5. The appearance of wall-bounded wavetrains
At a larger a (a > acrit, +1 for Π = +1 or a > acrit, −1, max for Π = −1), the solitary
wave leading the DSW becomes wall bounded (or coast-bounded), and propagates faster.
The intrusion is replaced by a wavetrain of these faster, wall-bounded solitary waves, and
the DSW truncates to the width of the wavetrain, forming a partial DSW. Hoefer et al.
(2008) deduce the widths of wall-bounded wavetrains for the nonlinear Schrödinge piston
problem using Riemann invariants. Congy et al. (2021) categorise this as part of a ‘DSW
implosion’ with multiple behaviours, including the formation of a partial DSW, in the
Benjamin–Bona–Mahony equation. They note that a quantitative description of partial
DSWs requires significant knowledge of the underlying modulated wave. This knowledge
is lacking for the governing dispersive PV equation (2.13) and so it does not appear
possible to determine analytically the width of the wall-bounded wavetrain in the outflow
problem.

From (2.15), a wall-bounded solitary wave of amplitude Y �I satisfies

ν(Y = 0)= ν′(Y = 0)= 0, ν(Y = Y �I )= 0, (4.15)

and propagates with speed

s�I = 4a(a2 + QΠ)e−Y �I /a − a3e−2Y �I /a + (2a2 + 4QΠ)Y �I − (3a3 + 4aQΠ)

2ΠY �I
2 . (4.16)

Without the complete solution for the partial DSW, one of Y �I and s�I must be determined
numerically. Figure 15 shows examples of partial DSWs propagating upstream and
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Figure 15. Wall-bounded wavetrains for W = 3 source outflows where (a) a = 3.0 and Π = −1 and
(b) a = 6.0 and Π = +1 at time t = 1000. Section 4.5 discusses predicting the wavetrain widths, Y ∗

I , and
speeds s�I .

downstream, where the shelf formed by the intrusion at smaller a has been replaced by
a wall-bounded wavetrain. The width of the wavetrain for a = 3.0, Π = −1 is smaller
than the intrusion for a = 1.75 in figure 12, departing from the property of solutions of
(2.18), (2.19) that the intrusion width increases with a. Using the observed, numerically
determined value of Y �I accurately predicts the wavetrain speed s�I . The emergence of the
wavetrain suggests that in this parameter regime solutions of the full QG equations could
break into a train of eddies as appears to be happening in figure 20 below.

For larger values of a, the interface becomes more rigid, the interface deformation
term ψ/a2 in (2.3) becomes negligible and the governing equation reduces to Poisson’s
equation. The dispersive PV equation governing the coastal front then includes a non-
local Hilbert operator, significantly altering the flow dynamics (Clarke & Johnson 1997).
Johnson & McDonald (2006) find exact steady solutions in the limit a → ∞ that align
with the full QG solutions, suggesting that the present asymptotic expansion requires
modification at sufficiently large a.

5. The full problem
With the structure of solutions to the dispersive equation considered we can now compare
the long-wave evolution solutions with CD evolutions. The full QG system (2.3), (2.4),
(2.5), (2.6) is numerically solved to a high level of accuracy using contour dynamics,
incorporating contour surgery following Dritschel (1988). Solving (2.3) involves the
Green’s function using the modified Bessel function K0(r/a), r =√

x2 + y2 following
JJ20, which is further modified by introducing a source outflow along the wall. The
velocity profiles associated with the Q(x)= Q4(x) source outflow are computed in
Appendix A.2 while the velocity profile of the point source is given in Southwick et al.
(2017).

Figure 16 shows for a = 1.3, Π = −1 the improvement of the present dispersive
solution over the hydraulic solution in JSM17. In JSM17, hydraulic rarefactions
downstream from the outflow matched closely with the contour dynamics, and this is
also captured by the dispersive integrations. There is significantly greater agreement
with the current widths, Y±, adjacent to the outflow than with the hydraulic solutions
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Figure 16. Numerical simulations of the contour dynamics (black) and the dispersive long-wave integrations
(blue, dash-dotted) for negative PV outflows Π = −1, Rossby radius a = 1.3 at t = 60, 200, 500, with the
flux function Q(x) := Q4(x) for different widths: (a) W = 1, (b) W = 3 and (c) W = 10. In (a), (b) the
theoretical dispersive long-wave W = 0 values of the current widths Y−|W=0, Y+|W=0 (dotted) are overlaid for
comparison, along with the theoretical intrusion widths and locations for all figures.

(Y±)hyd . Over long times t = 500, the solution converges to the steady solution where a
constant-width current Y− forms just outside the source outflow upstream x = −W , with a
narrower constant-width current downstream Y+ that meets the coast through a rarefaction.
This is consistent with the contour dynamics. When W = 1 (figure 16a) the long-wave
asymptotics produces a steep shock-like structure in the source outflow region, as predicted
by § 3.2. The smaller-width sources W = 1, 3 agree remarkably well with the predicted
currents Y−, Y+ of the point source contour dynamics W = 0 (omitted from the figure
because it is graphically indistinguishable from the W = 1, 3 simulations), agreeing with
the W = 1 integrations to two decimal places. Only when the width is larger (W = 10) do
the theoretical hydraulic predictions match more closely with the contour dynamics as in
the steady solutions of § 3.1. The dispersive equation also accurately predicts the formation
of the shelf and the location of the intrusion.

Figure 17 shows an example where the shelf is wider than Y−, with reasonable
agreement with the full problem. For larger widths (W = 10), DSWs increasingly become
out of phase with the full QG solutions, although the locations of their intrusions remain
largely unchanged. This is because the initial contour that forms the front in the CD
integrations is set up with an initial outflow width equal to (or slightly larger than) W ,
improving the numerical stability, but the dispersive solutions always propagate from
x = 0. Again, the W = 0 point source solutions are graphically indistinguishable from the
W = 1, 3 solutions.

There is also good agreement with the full problem in the Π = +1 case, although less
strongly than for the negative PV case. The full solutions always overturn near the outflow,
causing the dispersive PV front to lie below the coast at negative Y values. This effect
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Figure 17. As in figure 16 but with Rossby radius a = 1.75 at t = 60, 200, 500 for: (a) W = 1, (b) W = 3 and
(c) W = 10. Here, the width YI of the intrusion is wider than the width Y− of the flow immediately upstream
outside the outflow.
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Figure 18. As in figure 16 but with Π = +1, a = 1.3 dispersive solutions (blue, dash-dotted) overlaid with
contour dynamics (black, lined) at t = 60, 200, 500 for: (a) W = 3, (b) W = 10 and (c) W = 20.
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Figure 19. Dispersive integrations of the Π = +1 regime (blue, dash-dotted) at different Rossby radii
a = 1.0, 1.75, 2.0 corresponding to (a), (b), (c) respectively at t = 200, 500, with source outflow width
W = 10 are compared with the corresponding contour dynamics (black, lined). Any theoretical predictions
are given as dotted lines. The point source contour dynamics is also given as a comparison with the other
solutions (black, dashed).

is most clearly seen for smaller widths in figure 18(a). The initial width of the contour
is set larger than the actual source width W to prevent the overturning from breaking the
contour segments in the contour dynamics, but this (initially) widens the width of the
upstream current before it can settle to its true value. Simulations still generally give good
quantitative downstream behaviour, especially at longer times t = 500. For all widths W ,
the contour dynamics chooses the current width as Y+ ≡ (Y+)hyd .

The locations of the intrusions are better predicted for the smaller-width outflows.
While the intrusion speeds remain identical for all outflow widths, increasing W alters
the magnitude of overturning and increases how far the impulsively started outflow can
initially propagate. The appearance of dispersive waves near the coast becomes more
pronounced for the wider outflows, although there is very little dispersion (where waves
are virtually constant width) immediately upstream of the source. Figure 19 compares
the contour dynamics for the W = 10 outflows with the dispersive integrations showing
almost no difference in the case a = 1.0. In all cases, the full solution terminates through
a rarefaction or intrusion corresponding to the predictions of the dispersive equation.

Beyond a = acrit, +1 ≈ 1.99, a shelf no longer appears in the full solution; instead,
a series of travelling waves that reach the coast begin to emerge. Again for larger a
values the DSWs become out of phase, but the final positions of the intrusions for both
a = 1.75, 2.0 match well with the predicted dispersive locations sI t at t = 500 and even at
the earlier time t = 200. The point source W = 0 contour-dynamics simulations also agree
with the W = 10 dispersive integrations, the predicted leading coastal intersection and the
width Y+.
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Figure 20. Dispersive integrations for the a = 2.5 regime (blue, dash-dotted) with source outflow (a) W = 3,
Π = −1; and (b) W = 10, Π = +1 compared with the corresponding contour dynamics (black, lined) at
t = 250. Dotted lines give the predicted current widths. The point source contour dynamics at a = 2.5
corresponding to the PV is also given as a comparison with the other solutions (black, dashed).

Figure 20, for a = 2.5, shows wall-bounded wavetrains beginning to form for Π = ±1
in both the point source and finite-width source regimes. The simulations have been run
for shorter times, t = 250, to mitigate eddy formation in the contour dynamics. For larger
a values, the solutions align more closely with Johnson & McDonald (2006), where the
positive and negative PV solutions are simply reflections about x = 0 of each other. The
top figure is simulated using a lower resolution, leading to a breaking of the contour
near the wall, as using a higher resolution would introduce more eddies in the PV front.
The dispersive-current widths Y± capture the current widths in the full problem but the
widths of the wavetrains in the dispersive integrations are an underestimate in both PV
regimes. The full QG solutions form wall-bounded wavetrains but the leading structure
is significantly larger than the preceding waves due to eddy formation caused by the
competition of the velocities between the impulsively started outflow and its subsequent
propagation. The difference in the overturning explains why the dispersive integrations and
contour dynamics end downstream at different points in the a = 2.5, W = 3 simulations.
While the current Y+ reaches the coast via a rarefaction in the dispersive solution, in the
full problem the current overturns and strikes the coast immediately.

6. Discussion
JSM17 discussed the leading-order hydraulic behaviour (in the limit of large outflow width
compared with current width) of coastal outflows and compared hydraulic solutions with
accurate contour-dynamics simulations of the governing QG equation. Although hydraulic
solutions captured much of the flow behaviour, there were significant differences in some
parameter regimes. Here, we have continued the expansion to higher order, obtaining a
nonlinear, dispersive, long-wave equation for the evolution of the front. At large times,
the flow behaviour divides naturally into three regimes: a steady outflow region (§ 3),
steady constant-width currents joined to the outflow region directly or through a truncated
soliton (§ 3.1, § 3.2) and terminating unsteady propagating fronts, strongly influenced by
dispersive effects (§ 4).

The widths of the steady currents are a strong function of the dispersion when the
outflow PV anomaly is negative. A Rossby-wave control at the outflow, where the frontal
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Rossby wave is brought to rest by the flow along the front, determines what fraction of the
outflow flux moves downstream. Since the position of the control depends on the geometry
of the outflow, here the outflow width W , and this means that the width of the downstream
coastal current cannot be determined uniquely from global quantities like the total outflow
volume flux, the PV and the density contrast. A local theory predicts the structure of the
current only once the downstream flux is known. The upstream steady current width, Y−, is
largest and the downstream steady current width, Y+, is smallest for a point source outflow.
By adding dispersive terms, we identify wave overturning in the negative PV case (§ 3.3)
that is absent in the hydraulic solutions.

The numerical integrations of the dispersive equation capture the full QG dynamics
more accurately than the hydraulic equation, obtaining new behaviour for positive PV
(§ 4.3) and accurate predictions for the downstream current widths in the case of negative
PV flows (§ 3.2). A rich set of behaviours, including DSW formation and compound-wave
structures (rarefaction–intrusions, DSW–intrusions) observed in the QG simulations, are
discussed and quantified using standard analysis techniques for nonlinear equations (§ 4.2,
El (2005), JJ20) along with a novel shock-soliton solution (§ 3.2). For sufficiently large a
the dispersive equation admits travelling waves terminating in a wall-bounded wavetrain
(§ 4.5) indicating a dynamical regime where coastal outflows might break into eddy trains.

For large internal Rossby radius a, the deformation term in (2.3) becomes negligible
and the governing equation derived here no longer applies. Johnson & McDonald (2006)
discuss this limit but do not present an analytical evolution theory so consideration of
hydraulic and dispersive effects in near-rigid-interface flows remains an area for further
study.

Declaration of interests. The authors report no conflict of interest.

Appendix A.

A.1. Conditions for dispersive-shock fitting
In § 4.2 we describe the method to ascertain the properties of a DSW that connects two
current widths in the regions of constant flux Q(x)= Q. Here, we briefly describe, adapted
from JJ20, the conditions that the governing PV equation must satisfy for this method to
successfully apply:

(i) The equation has a hydraulic (zeroth order) limit when we introduce X = εx and
T = εt (this is done in (2.10)).

(ii) The linear dispersion relation is real valued, given by (4.2).
(iii) The system possesses at least two conservation laws. The first is (2.14) for Q(x)= Q

constant Q. The second conservation law for constant Q(x)≡ Q, is from JJ20 (for
Q = 1). Multiplying (2.14) by Y and simplifying gives

0 =
(

Y 2

2

)
t
+
[

a2Π

4
(2Y + a)e−2Y/a − (Y + a)(Q + a2Π)e−Y/a

]
x

+
[−a3Π

8
(Y 2

x − 2Y Yx )

+ aΠ

8

[
4(Y 2Y 2

x + a

2
Y Y 2

x )+ a2(Y 2
x − 2Y Yxx )− 4aY 2Yxx

]
e−2Y/a

]
x
. (A.1)

(iv) The equation supports periodic travelling-wave solutions parameterised by three
independent variables. This is shown when writing the PV equation in potential form
(2.15).
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(v) Considering slowly modulating (changing) waves means that we are able to obtain
the Whitham system, which is a set of equations involving our two conservation
laws (averaged over the period of a typical travelling wave) plus the wavenumber
conservation equation ωx + kt = 0. This system must be hyperbolic. Since the flux
function Qe(x, t) is non-convex, for certain intervals of Y the system may not be
strictly hyperbolic and compound-wave structures form instead.

A.2. The outflow velocities of the full QG equations
The streamfunction for the zero PV part of (2.3), satisfying ∇2ψ − 1/a2ψ = 0, is found
by considering the velocity of the source outflow only. Southwick et al. (2017) represent
the associated horizontal velocity profiles (u, v) by solving the full solution in Appendix
B for a general source profile as(

u
v

)
=
(−∂ψ/∂y
∂ψ/∂x

)
= 1√

2π

∫ ∞

−∞

(
κ

ik

)
Q̂(k)e−κyeikx dk, (A.2)

where Q̂(k) is the Fourier transform of the source Q(x), and κ = (k2 + 1/a2)1/2. For the
flux function Q4(x) in (4.1), the velocity components, used in the contour dynamics to
solve the full QG equation (§ 5), are given by

u = 1
2a

e−y/a + 1
π

∫ ∞

0

64 sin(kx)κe−κy (2 cos(kW )+ 1) π4

3(81k5W 4 − 180π2k3W 2 + 64π4k)
dk, (A.3)

v = 1
π

∫ ∞

0

64 cos(kx)e−κy (2 cos(kW )+ 1) π4

3(81k4W 4 − 180π2k2W 2 + 64π4)
dk. (A.4)

The integrands in (A.3), (A.4) are bounded when k → 0 and vanish exponentially as
k → ∞ for y > 0, giving rapidly converging integrals. On y = 0, the convergence of the
integrals is only algebraic.
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