
Comparing the demonstration of freedom from

Trichinella infection of domestic pigs by traditional and

risk-based surveillance

M. E. SCHUPPERS 1*, C. F. FREY 2, B. GOTTSTEIN 2, K. D. C. STÄRK 3,
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SUMMARY

Traditionally, the routine artificial digestion test is applied to assess the presence of Trichinella

larvae in pigs. However, this diagnostic method has a low sensitivity compared to serological

tests. The results from artificial digestion tests in Switzerland were evaluated over a time period of

15 years to determine by when freedom from infection based on these data could be confirmed.

Freedom was defined as a 95% probability that the prevalence of infection was below 0.0001%.

Freedom was demonstrated after 12 years at the latest. A new risk-based surveillance approach

was then developed based on serology. Risk-based surveillance was also assessed over 15 years,

starting in 2010. It was shown that by using this design, the sample size could be reduced by at

least a factor of 4 when compared with the traditional testing regimen, without lowering the level

of confidence in the Trichinella-free status of the pig population.
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INTRODUCTION

Nematodes of the genus Trichinella are the causative

agents of trichinellosis, a zoonotic disease with clinical

symptoms in humans ranging from mild to fatal.

Trichinella spp. also occur in many carnivorous and

omnivorous animal species, but animal infections

do not lead to clinical signs [1, 2]. Transmission of

infection occurs via the intake of meat containing

infective larvae [3, 4]. Appropriate heat or freezing

treatment are effective to inactivate larvae [5],

and therefore human infections are caused by the

consumption of raw or undercooked meat. Wild boar

meat, horse meat and pork are the main sources for

human infection in Europe [6].

Testing of all slaughtered pigs for the presence of

larvae is mandatory in the European Union (EU) and

Switzerland to prevent human disease [7]. Despite

routine testing at pig slaughter in Switzerland since

2001, no larvae have ever been detected [8]. A recent

study also failed to detect anti-Trichinella antibodies

in domestic pigs [9]. Presence of antibodies without

direct detection of the parasite would be an indi-

cator for the presence of low-grade Trichinella infec-

tions that are not detectable by routine artificial

digestion.

EU Regulation 2075/2005 requires that 1 g (finish-

ing pigs) or 2 g (adult pigs) of diaphragm tissue per
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pig are tested using the routine artificial digestion

method during meat inspection. The sensitivity of this

method depends on the larval density of the positive

samples. Above a larval density of 3–5 larvae per

gram (LPG), a sensitivity of 100% was achieved, but

below 1 LPG the sensitivity dropped to 40% [10].

Because y15–20% of naturally infected pigs har-

boured larval densities of <1 LPG [11], infected pigs

may not be detected reliably by this method. Despite

the large financial efforts involved in testing of all

slaughtered pigs during meat inspection, this surveil-

lance is not adequate to prevent human consumption

of pork containing low larval densities. However, if

surveillance continues over several years without de-

tecting any infected pigs, these surveillance data can

be used to demonstrate that the domestic pig popu-

lation of a country is free from Trichinella infection

[12, 13].

Instead of applying the routine artificial digestion

method to all pigs during meat inspection, a risk-

based surveillance programme could be developed

that targets high-risk pigs and uses a diagnostic test

protocol with a high sensitivity. Targeted sampling of

high-risk pigs increases the confidence that infection is

truly absent when all samples test negative, whereas a

diagnostic test system with a high sensitivity increases

the probability of detecting infection if present. Such

a risk-based surveillance programme should provide

at least an equivalent level of consumer protection as

the current meat inspection programme.

The probability of infection of a pig depends on

age and housing conditions. In older pigs this prob-

ability is higher due to the cumulative effect of longer

lives [11]. Housing conditions determine access to

potentially infected wildlife (carrion) and feeding of

slaughter and kitchen waste, both of which are im-

portant routes of infection [3, 14]. Swiss pig pro-

duction meets high hygiene standards, thus reducing

the importance of feeding of waste materials, but

T. britovi is known to occur in Swiss wildlife [15, 16].

Domestic pigs with outdoor access therefore have a

higher probability of being exposed to Trichinella spp.

than pigs entirely raised indoors.

The first goal of this study was to evaluate the

probability that the Swiss slaughter pig population is

truly free from Trichinella larvae based on the data

from the current meat inspection programme, and

to model the future probability of freedom if this

surveillance is continued in its current format. The

second goal was to develop a risk-based surveillance

programme for Trichinella spp. in domestic pigs that

provides an equivalent probability of freedom from

infection in the Swiss pig population.

MATERIALS AND METHODS

Target population

The target population for this study consisted of all

slaughtered pigs in Switzerland, the unit of surveil-

lance being one slaughtered pig. The time period for

analysis was 1 year.

Model

Disease freedom is usually defined as a certain level of

confidence that the true prevalence is below a speci-

fied design prevalence [17]. Freedom from Trichinella

infection of the target population can be demon-

strated when all pigs tested within the surveillance

programme have negative test results. The achieved

probability of freedom depends on the number of

tested pigs and the test characteristics of the diagnos-

tic test. The probability of freedom increases when all

test results are negative for multiple surveillance time

periods. A Bayesian approach [12, 13] was used to

calculate the probability of freedom using data from

multiple surveillance time periods. The model de-

pends on several parameters :

. the design prevalence, P*;

. the sensitivity of the surveillance system, SSe ;

. the probability of introduction, PIntro;

At the beginning of each time period tp, a certain

prior probability exists that the target population is

infected. This probability is reflected by PriorPinftp.

At the end of tp it is possible to calculate the posterior

probability of freedom PostPfreetp using Bayes’

theorem assuming perfect specificity of the surveil-

lance system [12, 13] :

PostPfreetp=
1xPriorPinftp

1xPriorPinftp *SSetp
: (1)

Two alternative designs were calculated and com-

pared. In the first design, the surveillance programme

was based on the use of the routine artificial digestion

test at slaughter. Slaughtered pigs were tested without

consideration of their relative risk (RR) of infection,

so no risk groups were included in the first design.

Data from the routine artificial digestion test were

used that were available for the period 2001–2007.

Data from 2007 were extrapolated until 2015 to
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obtain a 15-year surveillance period, assuming the

surveillance system would not change from 2008 to

2015, and no positive results would be recorded. This

assumption was considered reasonable, because the

data from 2007 reflected a full-scale testing pro-

gramme in Switzerland and the size of the slaughter

pig population has remained stable over the last 7

years.

In the second design, a risk-based, serological sur-

veillance programme was considered. An ELISA was

used as screening test, and a Western Blot assay

(WB) was used as a confirmatory test for any ELISA-

positive samples [9, 18]. The target population was

divided into different risk groups depending on age

and housing conditions, and groups with a higher risk

were sampled more intensively than groups with a

lower risk. The risk-based surveillance programme

was also modelled for a 15-year period starting

in 2010, directly following 9 years of surveillance in

design 1.

The model was built as a scenario tree with multiple

branches (Table 1). First, the total pig population was

stratified according to the risk factors age and housing

condition. Then, the probability of infection for a

randomly selected pig in each of the different strata

was determined. Clustering at herd level was not in-

cluded in the model, because trichinellosis is not a

contagious disease and the mere presence of an in-

fected pig therefore does not increase the probability

of infection for nearby pigs.

For infected pigs, the diagnostic test system could

either correctly confirm this status (outcome=
positive), or fail to detect the infected pig (out-

come=negative). The specificity of the surveillance

system was considered to be 100%. The assumption

of perfect specificity is common for programmes

demonstrating freedom [17, 19], because a positive

finding after confirmatory investigations would

imply the loss of the ‘free status’ and the surveillance

to demonstrate freedom would be replaced by sur-

veillance to regain the ‘free status ’. Moreover, the

specificity of the WB was 100% or very near

[18, 20, 21].

The models were created in Microsoft Excel with

the add-in @Risk (Palisade Inc., USA). The models

were stochastic models with appropriate probability

Table 1. Scenario tree structure for risk-based serological Trichinella

surveillance in domestic pigs in Switzerland, assuming perfect specificity of

the surveillance system

Age
Housing
condition

Animal
status

ELISA
result

Western
blot result Outcome

Finishing pigs Indoor Infected Positive Positive Positive

Negative Negative
Negative Negative

Uninfected Negative
Outdoor Infected Positive Positive Positive

Negative Negative
Negative Negative

Uninfected Negative

Free-range Infected Positive Positive Positive
Negative Negative

Negative Negative

Uninfected Negative
Adult pigs Indoor Infected Positive Positive Positive

Negative Negative Negative
Negative

Uninfected Negative
Outdoor Infected Positive Positive Positive

Negative Negative

Negative Negative
Uninfected Negative

Free-range Infected Positive Positive Positive

Negative Negative
Negative Negative

Uninfected Negative
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distributions as inputs, and were run with 10 000

iterations. A regression analysis was conducted in

@Risk to identify the input parameters with the

greatest influence on the model outcome (probability

of freedom from infection).

Slaughter pig population

In the period 2001–2007, 2.6–2.8 million pigs were

slaughtered annually in Switzerland (Table 2). Routine

artificial digestion tests had been implemented vol-

untarily since 2001 and were made compulsory in

2007 [22], although an exception is made for small-

scale slaughterhouses that only market their products

locally. The results of the routine artificial digestion

tests are presented in Table 2. For the risk-based sur-

veillance programme a slaughter pig population of

2.7 million pigs per year was assumed. The slaughter

statistics did not allow differentiation between age

categories or housing conditions. Therefore, these

data had to be derived from other sources.

In 2006, the adult pig population was estimated at

155 000 animals [23]. Assuming an annual replace-

ment rate of y40%, around 62 000 adult pigs were

slaughtered in 2006, representing 2.3% of the total

slaughter pig population. This percentage was similar

to the numbers presented for Denmark [19]. The

proportion of slaughtered finishing pigs (PrPfinish)

was thus modelled as Pert(0.97, 0.98, 0.99) to allow

for small variations in the actual proportions and the

proportion of slaughtered adult pigs (PrPadult) as

1 – PrPfinish.

A large proportion of the Swiss pig population is

kept in production systems with access to outdoor

areas. According to the annual report of the Swiss

Federal Office of Agriculture [24], 61% of all finishing

pigs and 58% of all adult pigs have access to outdoor

areas. In the majority of cases, these outdoor areas

consist of small, confined areas with concrete floors

(housing condition: outdoor). Rarely, pigs are kept

on pasture under extensive conditions (free-range),

but no estimates for the number of pigs in this cat-

egory were available. Using expert opinion, it was

estimated that 2% of all finishing pigs and 1% of all

adult pigs fell in the free-range category. The re-

maining pigs (37% of all finishing pigs and 41% of

all adult pigs) were assumed to be produced under

intensive conditions without outdoor access (indoor).

To account for uncertainty around these point esti-

mates, the proportions of indoor finishing pigs

(PrPfinish,in) and indoor adult pigs (PrPadult,in) were

modelled as Pert(0.32, 0.37, 0.42) and Pert(0.36, 0.41,

0.46), respectively. The proportion of outdoor finish-

ing pigs (PrPfinish,out) was modelled as Pert(0.56, 0.61,

0.66) and of outdoor adult pigs (PrPadult,out) as

Pert(0.53, 0.58, 0.63). The proportion of free-range

finishing pigs was then calculated as 1x(PrPfinish,in+
PrPfinish,out) and of free-range adult pigs as

1x(PrPadult,in+PrPadult,out).

Design prevalence and effective probability of infection

P* was set at 0.0001%, as defined by EU Regulation

2075/2005. Although P* applied to the whole target

population, the effective probability of infection (EPI)

differed between the different risk groups. However,

the average EPI of all pigs still equalled P*.

The EPI for a pig is derived from the RRs asso-

ciated with the applicable levels of each of the risk

factors specified, i.e. age and housing condition. For

each risk factor, RR is the risk of infection in its risk

category relative to the risk in the lowest risk category

for that risk factor. No cases of Trichinella-positive

pigs have been reported in Switzerland, and also in

other Western European countries there is a lack of

data to reliably determine the RR of individual pigs in

the different risk groups.

The RR of adult pigs in comparison to finishing

pigs is derived from the longer lifespan and thus the

increased probability of infection at some time during

life. Finishing pigs are slaughtered at around age 6

months, and the average breeding sow is slaughtered

at around 3.5 years of age (assuming five litters

per sow). If the probability of infection during life

increased linearly, at slaughter a breeding sow would

have a seven times higher probability of having

Table 2. Number of pigs slaughtered and tested for

Trichinella spp. in Switzerland, 2001–2007

Year

Pigs

slaughtered Pigs tested

Per cent

tested

Positive

results

2001 2 745 186 404 881 14.7 0
2002 2 729 495 404 674 14.8 0
2003 2 646 905 484 623 18.3 0

2004 2 608 978 488 768 18.7 0
2005 2 712 779 916 791 33.8 0
2006 2 801 133 1 249 091 44.6 0

2007 2 782 708 2 420 008 87.0 0

Source : Federal Veterinary Office, Swiss Zoonoses Reports
2005–2008 (http://www.bvet.admin.ch/dokumentation/
00327/index.html?lang=en). Accessed 23 July 2009.
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acquired an infection than a finishing pig. To account

for uncertainty around this assumption, two different

RRs for adult pigs in comparison to finishing pigs

were used:

RRadult=5 and RRadult=10:

The RR of pigs raised under outdoor or free-range

housing conditions in comparison to pigs under in-

door housing conditions is determined by the differ-

ences in biosecurity of these housing conditions

and thus the probability that pigs in these different

housing conditions have contact with infected wildlife

or contaminated kitchen or slaughter waste. No esti-

mates for RRs were available, therefore two different

increments were selected. First, it was assumed that

the RR increased by a factor of 5 between housing

conditions (RRoutdoor=5 and RRfree-range=25).

Second, it was assumed that the RR increased by a

factor of 10 between housing conditions (RRoutdoor=
10 and RRfree-range=100).

Combining these two risk factors (age and housing

condition) into a matrix, four schemes were developed

(Table 3). Relative risks were then adjusted to give

adjusted risks (ARs), such that the average AR over

Table 3. Relative risks of Trichinella infection associated with age and

housing condition in four combinations (schemes), and adjusted prevalence

(effective probability of infection) for each risk group separately. Design

prevalence for whole population, P*=0.0001%

Scheme Risk group

Population

proportion

Relative

risk

Effective
probability

of infection

1 Finishing pigs 98.0% 1
Indoor 37.0% 1 0.000024%

Outdoor 61.2% 5 0.000119%
Free-range 1.8% 25 0.000596%

Adult pigs 2.0% 5
Indoor 41.0% 1 0.000131%

Outdoor 58.1% 5 0.000653%
Free-range 0.9% 25 0.003265%

2 Finishing pigs 98.0% 1
Indoor 37.0% 1 0.000011%

Outdoor 61.2% 10 0.000111%
Free-range 1.8% 100 0.001113%

Adult pigs 2.0% 5

Indoor 41.0% 1 0.000065%
Outdoor 58.1% 10 0.000648%
Free-range 0.9% 100 0.006482%

3 Finishing pigs 98.0% 1

Indoor 37.0% 1 0.000022%
Outdoor 61.2% 5 0.000109%
Free-range 1.8% 25 0.000545%

Adult pigs 2.0% 10
Indoor 41.0% 1 0.000239%
Outdoor 58.1% 5 0.001195%
Free-range 0.9% 25 0.005976%

4 Finishing pigs 98.0% 1

Indoor 37.0% 1 0.000010%
Outdoor 61.2% 10 0.000102%
Free-range 1.8% 100 0.001019%

Adult pigs 2.0% 10
Indoor 41.0% 1 0.000119%
Outdoor 58.1% 10 0.001187%

Free-range 0.9% 100 0.011865%
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the target population was 1 [12, 13]. For age:

XL

l=1

(ARl *PrPl)=1 (2)

in which the target population was divided into L

different age categories, and PrPl was the proportion

of animals in the target population belonging to age

group l. This process was repeated for the risk factor

housing condition using the appropriate conditional

proportions. Then [12, 13] :

EPIl,m=ARl *ARl,m *P*: (3)

where m denotes categories of housing condition.

Diagnostic tests and the sensitivity of the

surveillance system

For the routine artificial digestion test, samples of up

to 100 pigs can be pooled. It was demonstrated that

the sensitivity of a pooled assay with 100 samples did

not exceed 40% in case of larval densities <1 LPG

[10], a situation that occurs in 15–20% of the pigs

infected under field conditions [11]. As a conservative

approach for design 1, it was therefore assumed that

the sensitivity of the routine artificial digestion test

(SeAD) was 40% and it was modelled as Pert(0.35,

0.40, 0.45) [19].

For design 2, an ELISA and WB were used as

screening and confirmatory tests, respectively. Various

studies evaluated the sensitivity of the ELISA

(SeELISA) and reported values from 72.7% to 99.2%

[20, 25–28]. SeELISA was therefore modelled as

Pert(0.60, 0.95, 1). The WB was recently validated

with reported sensitivities of 95.8–98.1% [18, 20, 21].

The sensitivity of the WB (SeWB) was therefore mod-

elled as Pert(0.90, 0.98, 1).

The SSe is an estimate of the probability that

the surveillance system detects infection in the target

population if the prevalence exceeds P*. SSe is cal-

culated as [12, 13] :

SSe=1x(1xSeu)
N (4)

in which Seu is the probability that a randomly sam-

pled animal (unit) is both infected and detected and N

is the total number of animals in the surveillance sys-

tem. Equation (4) assumes independence of animals

with regard to the probabilities of being infected and

detected. In design 1, no risk groups were included

and Seu was therefore calculated as:

Seu=P**SeAD: (5)

In design 2, an animal in any of the risk groups can

give a positive outcome, so Seu was calculated as:

Seu=
XL

l=1

XM

m=1

PrSSCl,m*EPIl,m*SeELISA *SeWB (6)

in which PrSSCl,m was the proportion of pigs pro-

cessed that belonged to the lth age stratum and the

mth housing condition stratum.

Probability of introduction

T. britovi is present in Swiss wildlife [16], and con-

stitutes a risk for introduction of infection into the

domestic pig population. However, no records of in-

fected domestic pigs exist in Switzerland, and PIntro

therefore cannot be derived directly. Alban et al. [19]

conservatively determined PIntro for the Danish

domestic pig population as 1 divided by the time since

the last outbreak, resulting in 1/76. Since this was a

conservative estimate, we considered it valid to use a

similar PIntro for the Swiss pig population. We

modelled PIntro as a Beta distribution with 0 in-

troductions in 75 years [Beta(1, 76)], resulting in a

median annual PIntro of 0.91% (95% probability

interval 0.03–4.7). Taking into account the higher

proportion of pigs having access to outdoor areas in

Switzerland and the presence of T. britovi in wildlife,

we also modelled PIntro as a Beta distribution with 0

introductions in 50 years [Beta(1, 51)], resulting in a

median annual PIntro of 1.3% (0.05–7.0).

RESULTS

Design 1: traditional Trichinella surveillance

The SSe increased gradually from 14.95% in 2001 to

62.02% in 2007, because the sample size increased

annually during this period. From 2008–2015 the

SSe remained equal to the SSe in 2007, because

the number of pigs tested was kept constant. The

PriorPinf2001 was set at 50%, because no other in-

formation was available. Depending on the selected

PIntro, Switzerland could demonstrate freedom from

Trichinella infection in domestic pigs with 95% con-

fidence by the end of 2010 or 2012 (Fig. 1).

The input parameters SeAD and PIntro had the

largest influence on the model, although their relative

importance changed over time. For example, when

PIntro=Beta(1, 76), the regression coefficients of SeAD

and PIntro changed from 0.64 and x0.77, respect-

ively after year 2 to 0.12 and x0.99, respectively after
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year 15. Regression coefficients were very similar

when PIntro=Beta(1, 51).

Design 2: risk-based Trichinella surveillance

In risk-based surveillance, freedom from infection

must also be demonstrated with at least 95% prob-

ability. The PriorPinf2010 (the year in which the risk-

based surveillance programme started) was calculated

using the PostPinf2009 of design 1. This was considered

appropriate, because the risk-based surveillance pro-

gramme started immediately after the completion of

the traditional surveillance in 2009. The sampling was

targeted towards the higher risk groups, and included

almost all adult pigs, almost all free-ranging finishing

pigs, a large number of outdoor finishing pigs and

a small number of indoor finishing pigs. The mini-

mum sample size was determined by increasing the

sample size by steps of 10 000 samples until freedom

from infection was demonstrated (Table 4). For

PIntro=Beta(1, 76), the required sample sizes ranged

from 120000 (scheme 4) to 360 000 (scheme 1). For

PIntro=Beta(1, 51), the required sample sizes ranged

from260000 (scheme4) to 620 000 (scheme 1). Figure 2

shows the probability of freedom from infection

achieved by the risk-based surveillance programme

from 2010 to 2024 under scheme 1.

The SSe differed for each of the four schemes due to

different sample sizes, and was also influenced in-

directly by PIntro, because a higher PIntro resulted in

higher sample sizes. After the required sample sizes

had been established, the SSe was determined. For

PIntro=Beta(1, 76), the median SSe of schemes 1–4

varied between 51.3–52.4%. For PIntro=Beta(1, 51),

the median SSe of schemes 1–4 varied between 61.1

and 61.3%.

After 1 year of surveillance, the model was mainly

influenced by four input parameters. For PIntro=
(1, 76), in scheme 1 the regression coefficients were

PIntrodesign2=x0.72, PIntrodesign1=x0.60, SeAD=
0.29 and SeELISA=0.10. After 15 years, two main

input parameters remained: PIntrodesign2=x0.98 and

SeELISA=0.11. Regression coefficients were very

similar for the other schemes.

DISCUSSION

This study demonstrated that surveillance by routine

artificial digestion test is not capable of demonstrating

freedom from Trichinella infection in the domestic pig

population at the desired level of confidence based

on data from a single year in Switzerland. To achieve

this, a much larger slaughter pig population would be

required than is available in Switzerland. Freedom

from Trichinella infection by traditional surveillance

can only be demonstrated when historical data are

incorporated. The method developed by Martin et al.

[12, 13] allowed this, by assuming that the posterior

probability of freedom achieved in year t – 1 could be

used to derive the prior probability of freedom in year

t. However, even when historical data were incorpor-

ated, freedom from infection could no longer be

demonstrated when the sample size was reduced to 1

million pigs per year (data not shown). Therefore,

Switzerland would need to continue testing almost

all slaughtered pigs at slaughter if routine meat in-

spection alone was used to demonstrate freedom from

infection.
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Fig. 1. Probability of freedom from Trichinella spp. infection of the Swiss slaughter pig population at a design prevalence of
0.0001% achieved at the end of each surveillance year using routine artificial digestion without considering risk groups in the
pig population. Vertical line indicates year at which end the probability of freedom exceeds 95%, as expressed conservatively

by the lower limit of the 95% confidence interval. Black line represents mean. Dark grey area, ¡1 standard deviation; light
grey area, 95% confidence interval. (a) Probability of introduction (PIntro)=Beta(1, 76) ; (b) PIntro=Beta(1, 51).
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The sample size could be reduced significantly when

serological tests were used and the different risk

groups within the pig population were taken into ac-

count. Depending on the scheme selected, the annual

sample size was reduced by at least a factor of 4

without a loss in the probability of freedom from in-

fection. Further, freedom from infection was already

demonstrated after 1 year of risk-based serological

surveillance.

Alban et al. [19] developed a risk-based surveillance

model for Trichinella spp. in domestic pigs in

Denmark. In this model all adult pigs and all finishing

pigs with outdoor access were sampled, whereas

finishing pigs from indoor housing systems were not

sampled. However, this model used the routine arti-

ficial digestion test instead of serology. Serology has

two advantages over the routine artificial digestion

test. First, especially with low larval densities the di-

agnostic sensitivity of ELISA and WB is higher than

of routine artificial digestion [10, 20, 25–28]. Second,

the number of larvae triggering a detectable antibody

response is much lower than the number of larvae that

can be detected reliably by routine artificial digestion

test [29], leading to a higher analytical sensitivity of

serology. Thus, the probability of detecting low-grade

infections in pigs increases when serology is used,

which additionally supports claims of freedom from

infection when all samples are negative.

In the present calculations, a positive outcome was

defined as detection of antibodies by both ELISA and

WB. Detection of larvae was not included, which

is usually considered a reference for determining the

Table 4. Minimum required sample size to demonstrate freedom from Trichinella infection of the Swiss

domestic pig population with at least 95% confidence after 15 years of negative risk-based serological surveillance

Risk group
(scheme*)

PIntro=Beta(1, 76) PIntro=Beta(1, 51)

1 2 3 4 1 2 3 4

Finishing pigs 306 000 119 000 157 500 66 000 573 500 358 750 441 000 208 000
Indoor 15 300 5950 7875 3300 28 674 17 937 22 050 10 400

Outdoor 244 800 65 450 102 375 29 700 501 813 295 969 374 850 150 800
Free-range 45 900 47 600 47 250 33 000 43 013 44 844 44 100 46 800

Adult pigs 54 000 51 000 52 500 54 000 46 500 51 250 49 000 52 000

Indoor 22 140 20 910 21 525 22 140 19 065 21 012 20 090 21 320
Outdoor 31 320 29 580 30 450 31 320 26 970 29 725 28 420 30 160
Free-range 540 510 525 540 465 513 490 520

Total 360 000 170 000 210 000 120 000 620 000 410 000 490 000 260 000

PIntro, Probability of introduction.

* Schemes 1–4 each have a different combination of relative risks for the risk factor age (finishing pigs vs. adult pigs) and
housing conditions (indoor vs. outdoor vs. free range).
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Fig. 2. Probability of freedom from Trichinella spp. infection of the Swiss slaughter pig population at a design prevalence of

0.0001% achieved at the end of each surveillance year using ELISA and Western Blot assay and considering risk groups in
the pig population. Black line represents mean. Dark grey area, ¡1 standard deviation; light grey area, 95% confidence
interval. (a) Probability of introduction (PIntro)=Beta(1, 76) ; (b) PIntro=Beta(1, 51).
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infection status of a pig [5, 30]. However, presence of

antibodies indicates that the tested pig has previously

been in contact with Trichinella spp. False-positive

results of the ELISA were excluded by the use of a

WB. The combination of both tests was previously

shown to have a specificity of at least 99.8–99.9%

[18, 20]. In case antibodies were demonstrated byWB,

investigations should be initiated on the farm of

origin to assess the opportunities for exposure of pigs

to Trichinella spp.

The sensitivity analysis showed that PIntro was the

most important input variable for the model. Very

limited data were available to estimate PIntro. The

first approach was to use a similar value as used by

Alban et al. [19], who already discussed that this value

was a conservative estimate. However, the situation in

Denmark is different from Switzerland. T. britovi is

known to occur regularly in Swiss wildlife [15, 16],

whereas Trichinella spp. is rare in Danish wildlife [31].

Moreover, outdoor housing of pigs is much more

common in Switzerland than in Denmark [19, 24].

Therefore, in a second approach an even more con-

servative PIntro was used to take these two differences

into account. Further, the sampling in the risk-based

surveillance model was heavily targeted towards pigs

in the higher risk groups. Despite the increasedPIntro,

freedom from infection could still be demonstrated in

the Swiss domestic pig population.

There are very few data about the RRs of pigs ac-

quiring a Trichinella infection. It is generally accepted

that pigs with outdoor access as well as adult pigs

have a higher probability of infection, but this prob-

ability was never quantified. Ribicich et al. [32] de-

termined that Trichinella infections occurred in pigs

raised outdoor but not in pigs raised in confinement

or partial confinement, however a RR could not be

determined. In other studies infections were also de-

tectedmore frequently in pigswith outdoor access than

in pigs in indoor housing systems [33, 34] ; however,

RRs were not calculated. Alban et al. [19] arbitrarily

defined four scenarios with different RRs for the high-

risk group, ranging from 5.5 to 69. In this study four

different schemes for the RR were also used to com-

pensate for the uncertainty around the estimates.

Scheme 1 was considered to be the most conservative

scheme, because the RRs were minimal. This scheme

therefore also leads to the highest required sample

sizes.

The ability to identify and trace pigs of the different

risk groups clearly is a crucial element for the suc-

cessful implementation of a risk-based surveillance

system. Currently, such identification and traceability

is only possible in Switzerland with an unjustifiably

high input of resources. Production labels (e.g. or-

ganic production) are poor indicators for the actual

pig housing conditions, because farmers may vol-

untarily exceed the minimum label requirements.

Improvement of the pig identification system should

be considered before a change to a risk-based sur-

veillance for Trichinella spp. is feasible in Switzerland.

In conclusion, this study demonstrated that risk-

based serological Trichinella surveillance is able to

achieve a probability of freedom from infection

equivalent to routine artificial digestion, while the

required sample size can be reduced by at least a

factor of 4.
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28. Nöckler K, et al. Influence of methods for Trichinella
detection in pigs from endemic and non-endemic
European region. Journal of Veterinary Medicine, Series

B: Infectious Diseases and Veterinary Public Health
2004; 51 : 297–301.

29. Gamble HR, et al. Diagnosis of swine trichinosis by

enzyme-linked immunosorbent assay (ELISA) using an
excretory-secretory antigen. Veterinary Parasitology
1983; 13 : 349–361.

30. Gamble HR, et al. International Commission on

Trichinellosis : recommendations on methods for the
control of Trichinella in domestic and wild animals
intended for human consumption. Veterinary Para-

sitology 2000; 93 : 393–408.
31. Enemark HL, et al. Screening for infection of

Trichinella in red fox (Vulpes vulpes) in Denmark.

Veterinary Parasitology 2000; 88 : 229–237.
32. Ribicich M, et al. Evaluation of the risk of transmission

of Trichinella in pork production systems in Argentina.
Veterinary Parasitology 2009; 159 : 350–353.

33. van der Giessen J, et al. Seroprevalence of Trichinella
spiralis and Toxoplasma gondii in pigs from different
housing systems in The Netherlands. Veterinary

Parasitology 2007; 148 : 371–374.
34. Gebreyes WA, et al. Seroprevalence of Trichinella.

Toxoplasma, and Salmonella in antimicrobial-free and

conventional swine production systems. Foodborne
Pathogens and Disease 2008; 5 : 199–203.

Risk-based Trichinella surveillance 1251

https://doi.org/10.1017/S0950268809991518 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268809991518

