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Abstract. The sufficient statistics of the one-point probability density function of the dark
matter density field is worked out using cosmological perturbation theory and tested to the
Millennium simulation density field. The logarithmic transformation is recovered for spectral
index close to −1 as a special case of the family of power transformations. We then discuss how
these transforms should be modified in the case of noisy tracers of the field and focus on the
case of Poisson sampling. This gives us optimal local transformations to apply to galaxy survey
data prior the extraction of the spectrum in order to capture most efficiently the information
encoded in large scale structures.
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1. Motivations
Among the principal motivations behind this study of the cosmological information

within the matter density field are (i) the improved quality and size of modern and future
cosmological data sets, that should allow understanding of more than the traditional and
well-understood yet fairly crude descriptor the power spectrum. Its statistical power is
known to be limited beyond the linear regime due to the tri-spectrum including beat-
coupling (Rimes & Hamilton (2006)), or super-sample covariance (Takada & Hu (2013))
caused by large scales modes (ii) the very specific type of non-Gaussianity induced by
gravity, which is characterised by extreme events, that renders mainstream tools designed
for mildly non-Gaussian fields, higher order N -point functions, inadequate, as showed by
Carron & Neyrinck (2012) (iii) the correct generalization of non-linear transformations
(such as those of Neyrinck et al. (2009) or Seo et al. (2011)) to noisy tracers of the fields.
This is important as noise modifies the statistical properties of the data and the optimal
statistics or transform must take this into account in order to be efficient.

2. Overview
We use the fact that for any PDF p and parameter α of interest, the observable

defined as ∂α ln p always captures the entire Fisher information content F of the PDF.
It is therefore a ’sufficient statistics’. Our starting point is the formal Edgeworth series
expansion for the logarithm of the PDF (here for one variable),

ln p(ν) = −ν2

2
− 1

2
ln σ2 +

∞∑
n=1

σngn+2(ν), ν =
δ

σ
. (2.1)

In that equation gk (ν) is a polynomial of degree k given by combinations of Hermite
polynomials and the cumulants. Terms proportional to some power νk of the field enters
only with power of σk−2 and higher. This simple form of ln p allows us to see through
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the structure of the information within the moments of the field : in the expansion of F
in powers of σ2 , it is always possible to capture the k first terms with a polynomial of
order k + 2. The variance δ2 captures the leading Gaussian information, a degree three
polynomial in the field will capture the next to leading term, etc. This gives us in the
next section the Taylor expansion of the sufficient statistic of the PDF. The same struc-
ture holds of course for the hierarchy of N -point functions associated to the multivariate
PDF, giving us the multivariate Taylor expansion of the optimal observables. This is a
generalization left for future work.

The sufficient observable of the matter field one-point PDF.
Next we go further with the one-point PDF as a function of scale in details. A useful ref-
erence is Carron & Szapudi (2013). The log-variance lnσ2 can be chosen as the relevant
parameter. By reorganizing the series in power of δ rather than ν, the sufficient statistic
has a complicated form involving different functions of δ,

f0(δ) + σ4f4(δ) + σ6f6(δ) + · · · , (2.2)

Nevertheless, it is found that the leading function f0(δ) completely dominates the in-
formation. Besides, f0(δ) depends only on the leading order cumulants. Writing f0 as a
power series f0 = δ2+a3δ

3+· · · , we gather that the coefficients are the leading coefficients
of the polynomials gk in Eq. (2.1). These coefficients are explicitly given by

an =
2
n!

∑
k

(−1)|k| (n − 2 + |k|)!
∏
i�3

Ski
i

(i − 1!)ki ki !
, (2.3)

where the sum runs over all vectors of positive integers k = (k3 , k4 , · · · ) of any dimension
such that

∑
i iki = n− 2, and where |k| stands for

∑
i ki . Given the well known values of

the leading cosmological cumulants calculated by Bernardeau (Bernardeau (1994)), we
can obtain explicitly the first few coefficients for power-law power spectra P (k) ∝ kn .
Two simple functions provide an almost perfect match for any value of n of interest. First
the square of the power transformation ω2

n (Box-Cox transformation)

ωn (n) =
(1 + δ)(n+1)/3 − 1

(n + 1)/3
, τ(n) =

3
2

(1 + δ)(n+3)/6
[
(1 + δ)−2/3 − 1

]
. (2.4)

and second the squared linear density contrast τ 2 from spherical collapse. Note that in
the former case we recover precisely the logarithmic transform ln(1+δ) of Neyrinck et al.
(2009) for n = −1.

Test to the Millennium simulation density field. We tested our results and transforms ωn

and τn using the ΛCDM, z = 0 matter density field from the Millennium simulation by
Springel et al. (2005). We extracted from the 500h−1 Mpc box the one-point PDF on
scales i×1.95−1Mpc, with i = 1, · · · , 29, corresponding roughly to σ2 ∼ 10−0.1. Poisson
noise is negligible on all these scales. We then obtained straightforwardly the derivatives
of the PDF with respect to lnσ2 using finite differences. The spectral index was estimated
according to n = −3 − ∂ln R ln σ2 at each scale and lies between −0.8 and −1.2 at all
scales. This gives us then both the total information content of the PDF as well as the
efficiency of the statistics introduced above. Fig. 1 shows F as the crosses, as a function
of σ2 . The three upper lines almost indistinguishable from F show the efficiency of ω2

n ,
τ 2 as well as the logarithmic mapping ln2(1 + δ). They are efficient over the full range.
The two lower solid lines show the efficiency of the variance and that of the variance
and third moment jointly. They show the very same behavior than in lognormal fields,
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Figure 1. The information content of various statistics in the Millennium density field simu-
lation for different smoothing scales shown as a function of the variance. The crosses show the
total information of the one-point PDF. The moments (lower lines) perform poorly as for log-
normal field statistics. The statistics derived in this work (upper lines) are maximally efficient
over the full range.

becoming rather dramatically poor quite quickly. This is not very surprising given the
non-analytic form of the three transforms for n ∼ −1 with Taylor expansions breaking
down quickly for moderate values of δ. At this point we can only speculate that the same
happens for higher order moments as well, as the finite volume of the simulations did
not allow us to obtain the PDF sufficiently accurately for this purpose.

Optimal transforms in the presence of observational noise. We show now how to adapt
our statistics in the presence of noise. For galaxies sampling the density field, we can
write very generically for the probability of observing numbers N of galaxies in cells (in
a one-dimensional notation for clarity)

P (N |α) =
∫ ∞

−∞
dA pA (A|α)P (N |A), with A = ln(1 + δ). (2.5)

After differentiating under the integral sign and using Bayes theorem the sufficient statis-
tics for α becomes

∂α ln P (N |α) =
∫ ∞

−∞
dA p(A|N)∂α ln pA (A,α) = 〈∂α ln pA (A,α)〉AIN . (2.6)

Note that the weight function is now the posterior probability for A given the observations
N . In the case that the data constrains well the signal the sufficient statistics of the
observation becomes simply the sufficient statistics of the signal evaluated at its value
favored by the data A∗(N). Alternatively one can apply a saddle-point approximation
to the above integral effectively treating the posterior as a Gaussian. Due to the above
we can safely use a lognormal signal, to which we add Poisson sampling. This gives the
following non-linear equation to solve for the saddle point,

A∗(N) + N̄σ2
AeA∗(N ) = σ2

A (N − 1/2) . (2.7)
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Figure 2. Three different perspectives on the logarithmic mapping of the matter density field.
By way of the arguments of this paper, they are roughly equivalent. This is only because of
Gaussian initial conditions linking notably the lower two corners and the fact that n ∼ −1 on
the scales of interest.

Further the mean and variance and A∗(N) capture the entire information of P (N), see
Carron & Szapudi (2014).

3. Discussion
Our rigorous derivation of the sufficient statistics of the one-point PDF from cosmo-

logical perturbation theory points towards the well-known logarithmic transform as the
optimal local transformation. In fact, this work unifies three different facets of that par-
ticular transform, illustrated in Fig. 2 : the capture of the entire information (because
n ∼ −1), the undoing of the non-linear dynamics and the Gaussianization of the PDF
(because of the Gaussian initial conditions). One key aspect of the methods introduced
is the systematic way the sufficient statistics and transforms are adapted to the presence
of noise. The use of non-linear transforms was until now mostly useful in cosmology in
simulations of noise-free fields. This opens the door to the analysis of actual data with
efficient non-linear transformations. The analysis of the projected Canada-France-Hawaii
Telescope Large Survey (CFHTLS†) data using the power spectrum of the A∗ non-linear
transform will be exposed by Wolk et al. (2014).

References
Carron, J. & Neyrinck, M. C. 2012, ApJ, 750,28
Carron, J. & Szapudi, I. 2014, MNRAS, 439, L11-L15
Carron, J. & Szapudi, I. 2013, MNRAS, 434, 2961-2970
Neyrinck, M. C. & Szapudi, I, Szalay, A. S. 2009, ApJ, 698, L90-L93
Springel, V., et al. 2015, Nature, 435, 629-636
Bernardeau, F. 1994, A&A, 291, 697-712
Seo,H. J., Sato, M., Dodelson, S. Jain, B., & Takada, M. 2011, ApJ, 729, L11+
Rimes, C. D. & Hamilton, A. J. S. 2006, MNRAS, 371, 1205-1215
Takada, M. & Hu, W. 2013, Phys. Rev. D, 87,12, 123504
Wolk, M., et al. 2014, In preparation

† http://www.cfht.hawaii.edu/Science/CFHLS/

https://doi.org/10.1017/S1743921314010783 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921314010783

