
Dietary dry bean effects on hepatic expression of stress and toxicity-related
genes in rats

Erica L. Daniell1,2, Elizabeth P. Ryan2,3, Mark A. Brick4 and Henry J. Thompson1*
1Cancer Prevention Laboratory, Colorado State University, 1173 Campus Delivery, Fort Collins, CO 80523, USA
2Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
3Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
4Department of Soil and Crop Science, Colorado State University, Fort Collins, CO 80523, USA

(Submitted 27 July 2011 – Final revision received 5 October 2011 – Accepted 6 October 2011)

Abstract

Dry bean (Phaseolus vulgaris L.) consumption is associated with reduced risk for a number of chronic diseases. In westernised societies,

dry bean consumption is particularly low (approximately 2–4 kg/capita per year) and little information is available about the safety

of increasing dietary intake in humans to achieve levels that prevent and control chronic diseases. In anticipation of a human intervention

study to address the safety and efficacy of increasing bean consumption, a dose–response study with dietary beans was conducted to

establish whether increased bean consumption in rats exhibits changes indicative of hepatic stress or toxicity. Transcript levels from a

panel of stress and toxicity-related genes were analysed in female Sprague–Dawley rats fed a dose range of dietary beans that bracketed

amounts relevant to human consumption globally. Cooked red bean was incorporated into a purified diet formulation at 0, 7·5, 15, 30

or 60 % w/w for the assessment of adaptive patterns of gene expression using quantitative PCR array. Of the eighty-four genes evaluated,

the expressions of Cyp3a11, Cyp7a1, Fmo1, Gstm1, Mif and Ugt1a6 were elevated, whereas the expression of Hspa8 was down-regulated.

Liver gene expression was not modulated in a manner indicative of an adverse response. Only the expression of the cholesterol 7a

hydoxylase and UDP-glucuronosyltransferase genes increased in a dose-dependent manner at nutritionally relevant dietary bean concen-

trations. These candidate genes may contribute to the health benefits attributed to increased bean consumption.
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Dry beans (Phaseolus vulgaris L.) are a widely available

and affordable staple food crop. Worldwide consumption

varies considerably, ranging from 2 to 3·5 kg/capita per year

in Europe and the United States to as high as 40 kg/capita

per year in Burundi(1,2). Numerous health benefits have

been associated with the regular consumption of dry bean,

and emerging evidence supports a relationship between

dry bean consumption and chronic disease prevention(3,4).

Given the dramatic and continued rise in chronic disease inci-

dence and prevalence globally, there is potential for increased

bean consumption as a component of an international effort to

reverse the impact of chronic diseases in all sectors of the

population(5).

Dry bean consumption has been linked to reductions in the

occurrence of a number of chronic diseases including type 2

diabetes, CVD and cancer. Elevated total cholesterol and

LDL-cholesterol are associated with CHD risk, and multiple

studies have reported that dietary dry bean interventions

involving consumption of approximately 92 g cooked dry

bean/d for at least 3 weeks resulted in significantly reduced

serum cholesterol levels(6–8). In a Latin American population,

consumption of approximately 79–92 g of cooked dry beans/d

was associated with a 38 % lower risk of myocardial infarc-

tion compared with non-consumption(9). Prospective cohort

studies have also found a significant correlation between dry

bean consumption and reduced risk for the development

of colon and breast cancer(10–12). The Polyp Prevention

Trial examined the effect of a high fruit and vegetable diet

intervention on the recurrence of adenomatous polyps in

the large bowel, and found that individuals who increased

their consumption of legumes (including dry bean and

lentils) experienced a significantly reduced risk for advanced

adenoma recurrence (OR ¼ 0·35)(11). The Nurses Health

Study II revealed an effect of pulse consumption on breast

cancer risk, with a significant inverse association between

consumption of at least two servings of dry beans per week

(approximately 160–180 g/week) and breast cancer (relative

risk ¼ 0·76)(10).
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Abbreviations: Ct, cycle threshold; UGT, UDP-glucuronosyltransferase.

British Journal of Nutrition (2012), 108, S37–S45 doi:10.1017/S0007114512000815
q The Authors 2012

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n

https://doi.org/10.1017/S0007114512000815  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114512000815


Edible dry beans are an excellent source of dietary

protein, resistant starch and fibre, are low in fat and are a

good source of B vitamins and numerous mineral nutri-

ents(3,4). In addition to being a rich source of nutrients,

beans contain a broad array of non-nutrient bioactive

substances many of which have been reported to exert

either beneficial or potentially harmful effects on human

health(13–16). Of particular interest to the work reported

herein, some of the phytochemicals found in bean seeds are

synthesised as natural defence mechanisms against insects or

bacterial and mould infestations, and have the potential to

elicit toxic effects when consumed ‘uncooked’ by mam-

mals(13,15). Multiple anti-nutritive molecules occur in dry

beans, including amylase inhibitors, trypsin inhibitors and

the lectin protein phytohaemagglutinin(17,18). Phytohaemag-

glutinin is a major concern for uncooked bean intake, as it

has demonstrated toxic effects such as gastroenteritis, nausea

and diarrhoea in mammals and humans(19). There is also

some question as to whether phytohaemagglutinin plays a

role in the aetiology of immune-based chronic diseases such

as type 2 diabetes and rheumatoid arthritis(18). However,

these anti-nutritive factors are rendered harmless by proper

cooking(20).

Rodent models are commonly used in the evaluation of

the safety and efficacy of dietary factors. In the present

study, rats were fed a range of dietary concentrations of

cooked bean that bracketed amounts relevant to human

consumption globally (Table 1 ). The hypothesis evaluated

was that increasing bean intake does not elicit adaptive

changes in gene expression that are indicative of hepatic

stress and toxicity. Based on a recent report that the magni-

tude of altered gene expression and the number of genes

affected in the liver were greater using a short- rather than

long-term feeding design, the study hypothesis was tested

using a 7 d dietary exposure model(21).

Experimental methods

Animals

Weanling female Sprague–Dawley rats (n 42) were obtained

from Taconic Farms and housed in the institutional vivarium.

Room temperature was maintained at 25 8C with 30 % relative

humidity and a 12 h light–12 h dark cycle. Animals were fed

AIN-93-G powdered diet(22) until 27 d of age, followed by

feeding of the experimental diets from 27 to 34 d of age.

Rats were randomly assigned to five groups that contained:

0 % (n 18), 7·5 % (n 6), 15 % (n 6), 30 % (n 6) or 60 % (n 6)

w/w red bean incorporated into a modification of AIN93G

diet as previously described(23). Animals were housed three

per cage and had ad libitum access to food and water at all

times during the study. The animals were weighed at the

time of randomisation and at study termination. The Colorado

State University Animal Care and Use Committee-approved

protocols were used for animal research.

Experimental diets

The experimental diets were a modification of AIN-93-G diet,

and were identical in composition to those previously

described for inhibition of mammary carcinogenesis(23). Dry

red bean was provided by Archer Daniels Midland Company

and sent to Bush Brothers & Company for canning. Raw

beans were packed in standard brine without additives and

then cooked and canned according to commercial standard.

The fully processed, canned beans were sent to Van Drunen

Farms where they were drained, freeze-dried and milled into

a homogeneous powder. The bean powder was stored at

2208C until incorporated into rodent diets. Diets were formu-

lated using specific guidelines(22) and adjusted to have the

same percentage of crude protein, fat and carbohydrate

using the proximate analysis of the red bean powder

(Warren Analytical). Ground cooked red bean powder was

added to AIN93G for a final 7·5, 15, 30 or 60 % w/w con-

centration. Differences in macronutrient composition were

balanced with purified diet components. Casein and maize-

starch were adjusted to maintain similar macronutrient content

across red bean dosage groups. The control diet contained

7·5 % crude fibre to be consistent with experimental dry

bean diets. The percentage of dry beans incorporated into

the diets is expressed as mass of bean powder in g/100 g

of total diet(23).

Study design

Young, rapidly growing rats were used because of sensitivity

to detecting adverse effects of dietary agents. Adaptive

changes in gene expression were assessed after short-term

feeding for 7 d. Commercially cooked and canned bean was

used to eliminate potential confounding of results by dry

bean components that may be toxic in raw beans or when

dry beans are not properly cooked. The absence of phytohae-

magglutinin activity was confirmed in the red bean powder

that was evaluated (data not shown). The small red bean

market class was assessed since this market class has been

reported to have a very high concentration of bioactive

phenolic compounds with antioxidant activity(24). The dose

range of beans studied brackets the range of reported dry

bean intake in various populations worldwide(1).

Necropsy

Rats were stratified across control and experimental groups

for necropsy. Necropsy occurred when the rats were 34 d of

Table 1. Rat bean diet comparison to human consumption

Mass of bean
powder (g/100 g
total rat diet)

Approximate
human

equivalent (g/d)*

Human
equivalent

(kJ/d)*

Human
equivalent:

% of a
8368 kJ diet*

0 0 0 0
7·5 138 690·36 8·25
15 276 1380·72 16·5
30 552 2761·44 33
60 1,104 5522·88 66

* Based on assumption of 920·48 kJ per average serving of beans.
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age and had received the experimental diets for 7 d. Non-

fasted animals were euthanised via inhalation of gaseous

CO2 followed by cervical dislocation. The livers were removed

immediately after plasma collection, freeze-clamped, snap-

frozen in liquid N2 and stored at 2808C.

RNA isolation

Total RNA was isolated from the liver using the RNeasy Mini

RNA isolation kit (Qiagen) according to the manufacturer’s

protocol. RNA yield was determined using a Nanodrop spec-

trophotometer (Thermo Fisher Scientific) and integrity was

assessed using the Experion automated microfluidic capillary

electrophoresis system (Bio-Rad).

Gene expression analysis

Gene expression analysis was performed using the RT2

Profiler PCR Array: Rat Stress and Toxicity Pathway Finder

(SuperArray) (a complete list of included primer sets can

be found at: http://www.sabiosciences.com/rt_pcr_product/

HTML/PARN-003A.html). For the analysis, 500 ng of purified

RNA sample was used according to the manufacturer’s

protocol. The following quantitative PCR conditions were

applied on the iCycler thermal cycler (Bio-Rad): initial dena-

turation step at 958C for 10 min followed by forty cycles of

958C for 15 s, and then of 608C for 1 min. Cycle threshold

(Ct) values were obtained using the iCycler software (Bio-

Rad). The Ct values were averaged from five housekeeping

genes (acidic ribosomal protein P1 (Rplp1), hypoxanthine-

guanine phosphoribosyltransferase (Hprt), ribosomal protein

L13a (Rpl13A), lactate dehydrogenase A (Ldha) and beta-

actin (Actb)) for normalisation purposes. Fold change values

for gene expression were determined using the SuperArray

online RT2 Profiler PCR data analysis software comparing all

treatments to control (0 % red bean) using the 22DDCt

method(25).

Statistical analysis

Data were analysed using SAS 9.1 (SAS Institute, Inc.); and

two-way ANOVA was performed on adjusted Ct values

and weight gain to determine the statistical significance of

increasing red bean dose. Because eighty-four genes were

simultaneously investigated, the Benjamini-Hochberg multiple

testing adjustment for false discovery rate was performed(26).

Gene expression changes with a P-value,0·05 were deter-

mined to be significantly affected by beans consumption.

Subsequently,Dunnett’s test for post hoc analysiswasperformed

for all genes that were found to be significantly affected by

bean dose in order to determine which bean doses (7·5, 15,

30, 60 %) were significantly different from the control (0 %).

Results

Body weight was measured at the time of randomisation and

at the end of the study. As shown in Fig. 1, no differences in

growth rate were observed among diet groups. Controlling

the false discovery rate at 5 % for multiple testing across

genes, the expression of eight genes of the eighty-four exam-

ined was significantly different after consumption of red bean

diet compared to control (0 % w/w beans). The eighty-four

genes in the array that were investigated for bean consump-

tion effects are listed in Table 2 with their associated

P-value. The expressions of the following genes: cyclin G1

(Ccng1), cytochrome p450 3a11 (Cyp3a11), cytochrome

p450 7a1 (Cyp7a1), flavin containing mono-oxygenase

(Fmo1), glutathione-S-transferase (Gstm1), heat shock protein

8 (Hspa8), macrophage migration inhibitory factor (Mif) and

UDP glucuronosyltransferease 1 family, polypeptide A6

(Ugt1a6) were significantly changed by bean in the diet

(Table 2). Increased expression of Cyp3a11, Fmo1, Gstm1

and Mif was detected at the highest dietary concentration of

dry bean, whereas Ccng1 and Hspa8 expressions were

down-regulated compared to the control group (Fig. 2). The

results presented herein are consistent with the absence of

acute liver stress or toxicity responses even in rats fed as

much as 60 % w/w beans in the diet. Expression of Cyp7a1

and Ugt1a6 increased progressively with increasing dietary

concentration of bean (Fig. 3). These genes are recognised

for induction following exposure to xenobiotics; additionally,

activity of these genes has been associated with health

benefits as will be discussed next.

Discussion

A classical first-step approach to assessing the safety of foods

in humans and animals has centred on calculating an apparent

digestibility following dietary intake, with limited attention

on dose-dependent differences(27–30). The digestibility and

nutritional properties of whole cooked beans (Phaseolus

vulgaris L.)(31–35) have been reported and illustrates the com-

plex interactions that can occur among protein digestibility,

bean phytochemicals and potential anti-nutrients. The effect
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Fig. 1. Body weight gain over time among dietary treatment groups. Animals

were weighed on 20 and 34 d of age. No significant differences in body

weight were observed among dietary treatment groups. , 0 %; ,

7·5 %; , 15 %; , 30 %; , 60 %.
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Table 2. Genes analysed for changes by bean diets using the RT2 Profiler PCR Array: Rat Stress and Toxicity Pathway Finder

Gene symbol Gene name Entrez ID P FDR

Anxa5 Annexin A5 25673 0·176 0·584
Atm Ataxia telangiectasia mutated homologue 300711 0·535 0·871
Bax Bcl2-associated X protein 24887 0·071 0·420
Bcl2l1 Bcl2-like 1 24888 0·066 0·420
Casp1 Caspase 1 25166 0·072 0·420
Casp8 Caspase 8 64044 0·170 0·579
Ccl21b Chemokine (C–C motif) ligand 21b 298006 0·377 0·778
Ccl3 Chemokine (C–C motif) ligand 3 25542 0·107 0·492
Ccl4 Chemokine (C–C motif) ligand 4 116637 0·042 0·341
Ccnc Cyclin C 114839 0·015 0·205
Ccnd1 Cyclin D1 58919 0·071 0·420
Ccng1* Cyclin G1 25405 0·002 0·042
Cdkn1a Cyclin-dependent kinase inhibitor 1A 114851 0·017 0·205
Chek2 CHK2 checkpoint homologue 114212 0·052 0·386
Cryab Crystallin, aB 25420 0·454 0·837
Csf2 Colony-stimulating factor 2 116630 0·190 0·606
Cxcl10 Chemokine (C–X–C motif) ligand 10 245920 0·044 0·348
Cyp1a1 Cytochrome p450 1a1 24296 0·295 0·714
Cyp1b1 Cytochrome p450 1b1 25426 0·235 0·641
Cyp2a3a Cytochrome p450 2a3a 24299 0·397 0·800
Cyp2b15 Cytochrome p450 2b15 29295 0·738 0·933
Cyp2b3 Cytochrome p450 2b3 286953 0·734 0·933
Cyp2c13 Cytochrome p450 2c13 171521 0·310 0·727
Cyp3a11* Cytochrome p450 3a11 266682 0·001 0·028
Cyp4a14 Cytochrome p450 4a14 298423 0·332 0·727
Cyp4a22 Cytochrome p450 4a22 170544 0·690 0·927
Cyp7a1* Cytochrome p450 7a1 25428 0·000 ,0·001
Ddit3 DNA-damage inducible transcript 3 29467 0·403 0·802
Dnaja1 DnaJ (Hsp40) homologue A1 65028 0·018 0·205
E2f1 E2F transcription factor 1 399489 0·035 0·312
Egr1 Early growth response 1 24330 0·607 0·891
Ephx2 Epoxide hydrolase 2, cytoplasmic 65030 0·543 0·871
Ercc1 Excision repair cross-complementing rodent repair deficiency, complementation group 1 292673 0·592 0·891
Ercc2 Excision repair cross-complementing rodent repair deficiency, complementation group 2 308415 0·500 0·871
Ercc4 Excision repair cross-complementing rodent repair deficiency, complementation group 4 304719 0·696 0·871
Faslg Fas ligand (TNF superfamily, member 6) 25385 0·001 0·928
Fmo1* Flavin containing mono-oxygenase 1 25256 0·243 0·023
Fmo4 Flavin containing mono-oxygenase 4 246247 0·067 0·652
Fmo5 Flavin containing mono-oxygenase 5 246248 0·980 0·420
Gadd45a Growth arrest and DNA-damage-inducible, 45a 25112 0·151 0·998
Gpx1 Glutathione peroxidase 1 24404 0·016 0·545
Gpx2 Glutathione peroxidase 2 29326 0·020 0·205
Gsr Glutathione reductase 116686 , ·0001 0·205
Gstm1* Glutathione S-transferase, mu 1 24423 0·074 0·004
Gstm3 Glutathione S-transferase, mu 3 57298 0·942 0·420
Hmox1 Haeme oxygenase (decycling) 1 24451 0·607 0·997
Hmox2 Haeme oxygenase (decycling) 2 79239 0·466 0·891
Hsf1 Heat shock transcription factor 1 79245 0·170 0·839
Hsph1 Heat shock 105 kDa/110 kDa protein 1 288444 0·601 0·620
Hspa1a Heat shock 70 kDa protein 1A 24472 0·572 0·579
Hspa1l Heat shock protein 1-like 24963 0·019 0·891
Hspa4 Heat shock protein 4 266759 0·002 0·879
Hspa5 Heat shock 70 kDa protein 5 25617 0·328 0·205
Hspa8* Heat shock protein 8 24468 0·557 0·044
Hspb1 Heat shock 27 kDa protein 1 24471 0·465 0·727
Hspd1 Heat shock protein 1 (chaperonin) 63868 0·209 0·871
Hspe1 Heat shock 10 kDa protein 1 (chaperonin 10) 25462 0·189 0·839
Igfbp6 Insulin-like growth factor binding protein 6 25641 0·744 0·606
Il1a IL1a 24493 0·425 0·835
Il1b IL1b 24494 0·020 0·205
Il6 IL6 24498 0·544 0·871
Il18 IL18 29197 0·730 0·933
Lta Lymphotoxin A 25008 0·094 0·933
Mdm2 p53 binding protein homologue 314856 0·001 0·456
Mif* Macrophage migration inhibitory factor 81683 0·555 0·028
Nfkb1 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 81736 0·817 0·871
Nfkbia Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, a 25493 0·346 0·969
Nos2 Nitric oxide synthase 2, inducible 24599 0·757 0·733
Pcna Proliferating cell nuclear antigen 25737 0·042 0·938
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of bean consumption on increased nitrogen excretion in rats,

however, did not seem to affect the biological value of the

protein when compared to casein or uncooked beans(36). A

more recent study employed a short- and long-term exper-

imental feeding study design in rats with dietary wheat flour

and assessed the potential for adverse health effects via

changes in liver gene expression using a DNA microarray(21).

This study reported that short-term feeding significantly

modulated more genes and the magnitude of liver gene

expression when compared to longer-term feeding. Another

notable difference of the short-term feeding response was

the alteration of genes relating to components of the insulin-

like growth factor signalling pathway that is implicated in a

number of chronic diseases(21). This report provides strong

rationale for assessing the response to 7 d of bean consump-

tion and for evaluating rat hepatic stress and toxicity genes

with increasing bean dose intake in rats. To our knowledge,

no studies have examined dose-dependent acute effects of

increased cooked bean consumption, such that findings may

inform the safety profile of acute hepatic responses to

increased bean consumption in humans.

Dry bean intake was designed to encompass levels of

consumption occurring in human populations worldwide(1).

As recently reported(2), intake in the United States tends to

be very low and current information indicates that only 17 %

of individuals in the United States consume dry bean on

any given day; whereas in parts of Africa, consumption is

estimated to be as high as 40 kg/capita per year. The inclusion

of 60 % w/w dry bean in the experimental design, which

represents an amount equivalent to approximately 1104 g

cooked bean/d in the human diet, greatly exceeds the

amount of bean consumed by any known population and

created a robust opportunity to inspect the animals’ response

for evidence of stress induction or toxicity.

Genes significantly affected by bean dose

Ccng1, also referred to as Cyclin G1, is a protein involved in

the G2/M checkpoint as a downstream mediator of the p53

pathway(37). The gene expression of Ccng1 did not increase

in a linear fashion in response to increased red bean in the

diet, but instead, the expression peaked at 7·5 % bean and

was significantly decreased compared to control at 60 %

bean, consistent with a nonlinear dose–response (Fig. 2(a)).

However, if the p53 pathway was meaningfully affected by

the dry bean diet, it would be expected that other proteins

in the p53 pathway proteins would have been affected as

well(38). Here, four other genes in the p53 pathway, Bcl2-

associated X protein (Bax), caspase 8 (Casp8), growth arrest

and DNA-damage-inducible, 45a (Gadd45a) and p53 binding

protein homologue (Mdm2), were included in this analysis;

however, they did not display significant expression changes

in response to dry bean dose.

Cyp3a11 is a member of the CYP3 family of cytochrome

p450 proteins. This phase I enzyme metabolises many

exogenous compounds including prescription drugs, as

well as endogenous substrates such as steroids and bile

acids(39). A marked, significant increase in Cyp3a11

expression was only detected in the 60 % red bean diet

when compared to lower doses and control (Fig. 2(b)).

Further examination of red bean consumption effects would

be of interest in order to determine which bean components

were responsible for an effect on this phase I drug metabolis-

ing enzyme.

Fmo1 is a member of the flavin mono-oxygenase family that

catalyses the oxygenation of a broad range of substrates

including nucleophilic nitrogen, sulphur, phosphorus and

other heteroatom-containing xenobiotics, chemicals and

drugs(40,41). Fmo1 is primarily expressed by the liver; however,

species-specific differences have been noted, such that less

Fmo1 is expressed by adult human liver compared to rat(40).

Fmo1 expression was significantly increased in response to

the 60 % red bean diet (Fig. 2(c)). It is possible that bean com-

ponents in the red bean diet are responsible for directly or

indirectly inducing expression of this gene family as part of

a normal metabolic process.

Gstm1 is an isoform of glutathione S-transferase. These

transferases are involved in the detoxification of a wide variety

of chemicals. Gstm1 is a hepatic glutathione S-transferase, and

has been found to have an antioxidant response element

Table 2. Continued

Gene symbol Gene name Entrez ID P FDR

Por P450 (cytochrome) oxidoreductase 29441 0·113 0·341
Rad23a RAD23 homologue A 361381 0·435 0·497
Rad50 RAD50 homologue 64012 0·519 0·837
Serpine1 Serine (or cysteine) peptidase inhibitor, clade E, member 1 24617 0·544 0·837
Sod1 Superoxide dismutase 1 24786 0·455 0·545
Sod2 Superoxide dismutase 2, mitochondrial 24787 0·139 0·933
Tnfrsf1a TNF receptor superfamily, member 1a 25625 0·738 0·933
Tnfsf10 TNF (ligand) superfamily, member 10 246775 0·727 0·927
Tp53 Tumour protein p53 24842 0·680 0·492
Tradd TNFRSF1A-associated via death domain 246756 0·107 0·444
Ugt1a6* UDP glucuronosyltransferase 1 family, polypeptide A6 113992 0·086 ,0·001
Ung Uracil-DNA glycosylase 304577 0·000 0·969
Xrcc1 X-ray repair complementing defective repair in Chinese hamster cells 1 84495 0·866 0·993
Xrcc2 X-ray repair complementing defective repair in Chinese hamster cells 2 499966 0·916 0·871
Xrcc4 X-ray repair complementing defective repair in Chinese hamster cells 4 309995 0·267 0·672

FDR, false discovery rate; Entrez ID, Entrez gene identifier.
* Genes considered to be significantly affected by bean dose.
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within the promoter region(42). Slight induction was detected

in animals fed the lower bean doses with significantly

increased Gstm1 expression observed at 60 % w/w red bean

consumption (Fig. 2(d)). The antioxidant content of small

red bean used in this study was recently reported(16); and

taken together, these findings suggest that the role of this

chemical class of compounds from beans be further examined

as possible triggers for rat liver Gstm1 induction.

Hspa8 encodes for HSC70, a member of the 70 kDa heat

shock protein family. Heat shock proteins, also known as

chaperones, assist with protein synthesis, repair and degra-

dation. They are induced in response to improperly folded

proteins, and thus their up-regulation is sometimes measured

as an indicator of cellular stress(43). HSC70 is constitutively

expressed and involved in many housekeeping chaperone

functions(44). Overall, eleven genes were analysed that are
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Fig. 2. Dietary bean dose-dependent changes in hepatic gene expression. Fold change refers to gene expression after 7 d of feeding a bean diet containing 7·5,

15, 30 or 60 % w/w compared with expression from consumption of 0 % bean as measured by quantitative real-time PCR (w/w is equal to the mass of bean

powder in g/100 g of total diet). Fold changes for each of the six transcripts significantly affected by bean diet are provided for each bean dose group. (a) Cyclin

G1 (Ccng1); (b) cytochrome p450 3a1 (Cyp3a11); (c) flavin containing mono-oxygenase 1 (Fmo1); (d) glutathione S-transferase mu1 (Gstm1); (e) heat shock

protein 8 (Hspa8); (f) macrophage migration inhibitory factor (Mif). Dunnett’s post hoc analysis was performed to individually compare each dosage group to the

control (0 %), and those that were found to be significantly different are marked with: *P,0·05, **P,0·01, ***P,0·001.
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involved in heat shock response pathways, and Hspa8 was

the only affected gene. Expression of Hspa8 was decreased

at the 60 % w/w bean dose (Fig. 2(e)). Given that Hspa8

expression was reduced in response to increased bean con-

sumption, contrary to what would be expected for cellular

stress, these findings suggest that dry bean consumption did

not alter heat shock protein expression in a manner indicative

of a stress response in the liver.

Mif is a macrophage migration inhibitory factor, and is a

pro-inflammatory cytokine mainly produced by macrophages

and monocytes(45). Mif expression can be altered by exposure

to pathogens(46) but may also be affected by inflammation,

neuroendocrine mechanisms and glucocorticoids(47). While

changes in Mif expression have not been thoroughly investi-

gated in response to diet or bioactive food components, Mif

expression was significantly up-regulated in liver at the 60 %

w/w bean dose compared to control (Fig. 2(f)). A total of

thirteen genes involved in inflammatory pathways were

included in this array, and Mif was the only one in this

group that demonstrated a significant change following

bean consumption. Dry bean modulation of Mif expression

alone did not reveal a role for beans in the initiation of a

pro-inflammatory response.

Candidate genes for disease prevention by beans

Ugt1a6 is a UDP-glucuronosyltransferease (UGT) protein-

encoding gene. These conjugative enzymes mediate phase II

detoxification reactions as they are responsible for conjugation

of the glucuronic acid group of uridine diphosphoglucuronic

acid to the functional group of a wide range of substrates(48).

Fig. 3(a) shows that Ugt1a6 expression was up-regulated

in a dose-dependent manner by dry bean consumption, with

noteworthy induction at 7·5 % (1·5-fold), 15 % (2-fold), 30 %

(2-fold) and 60 % (3-fold) w/w dry bean when compared to

control. Increased Ugt1a6 expression by beans may exert

cancer preventive effects in the liver of humans by facilitating

the metabolism of environmental carcinogens.

Conjugation with a glucuronic acid moiety increases the

solubility of its substrate, and facilitates excretion into bile or

urine. Substrates for UGT enzymes include endogenous com-

pounds such as biliary acids, steroid hormones, bilirubin, reti-

noic acids and fatty acids, as well as exogenous compounds

including carcinogens, drugs, environmental toxicants and

dietary constituents(49). Expression of the UGT1 class of

enzymes is regulated via a positive feedback mechanism,

such that concentrations of a particular substrate can elicit

expression of the specific UGT1 isoenzyme responsible for

that substrate’s modification/detoxification. Thus, an increase

in the concentration of a single substrate for Ugt1a6 from diet-

ary bean intake may be the reason for further up-regulation of

Ugt1a6 observed at higher doses of bean consumption. As a

result of up-regulating the Ugt1a6 enzyme, glucuronidation

reactions increase, facilitating removal of carcinogens or

environmental toxins from the body. Induction of phase II

enzymes such as UGT are considered a major mechanism by

which phytochemicals become active for cancer preven-

tion(48,50), and is identified from this study as a target pathway

that merits further investigation following increased consump-

tion of beans in humans.

Cyp7a1 encodes for cytochrome p450 7A1, which has also

been reported as cholesterol 7a hydoxylase or cholesterol

7a-mono-oxygenase. Increased expression of Cyp7a1 may

promote cholesterol saturation of bile and increased excretion

of cholesterol from the body(51,52) and thus can result in low-

ered serum levels of cholesterol. Fig. 3(b) shows that Cyp7a1

expression increased with dietary dry bean consumption in a

dose-dependent manner, with the greatest induction detected

at 60 % w/w. Multiple diet intervention studies have demon-

strated plasma cholesterol-lowering effects of a bean-contain-

ing diet(6–8,53–56). The mechanisms responsible for decreased

serum cholesterol levels are not fully elucidated, even though

this is the most consistently observed health benefit correlated

with dry bean consumption. To our knowledge, these data

are the first to demonstrate that induction of liver Cyp7a1

expression by dietary bean intake may be a mechanism by
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Fig. 3. Dietary bean intake induced gene expression of hepatic cytochrome p450 7a1 (Cyp7a1) and UDP glycosyltransferase 1 (Ugt1a6) family polypeptide A6.

(a) Cyp7a1; (b) Ugt1a6. Fold change refers to gene expression after 7 d of feeding a bean diet containing 7·5, 15, 30 or 60 % w/w compared with expression

from consumption of 0 % bean as measured by quantitative real-time PCR (w/w is equal to the mass of bean powder in g/100 g of total diet). Dunnett’s post hoc

analysis was performed to individually compare each dosage group to the control (0 %), and those that were found to be significantly different are marked with:

*P,0·05, **P,0·01, ***P,0·001.
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which increased bean consumption is protective against heart

disease. These findings merit further investigation of inducible

Cyp7a1 expression as a mechanism for cholesterol-reducing

effects in humans.

Concluding remarks

The absence of major changes in growth rate or hepatic

expression of stress and toxicity-related genes following

increased dietary intake of cooked dry beans indicated that

adverse effects are unlikely to occur when consumed at

elevated daily doses that promote chronic disease prevention.

This conclusion is based on patterns of expression for

eighty-four genes involved in stress and toxicity pathways.

Overall, six genes were identified from the present study

that were up- or down-regulated relative to the control

group, and only when the concentration of bean greatly

exceeded typical consumption (e.g. 30 % or 60 % w/w).

In this study, two of the eighty-four genes, Cyp7a1 and

Ugt1a6, were up-regulated with a linear response to increas-

ing bean dose. The Cyp7a1 and Ugt1a6 gene pathways are

novel target pathways that merit further investigation follow-

ing bean consumption in humans due to their association

with disease prevention. These data imply that high doses of

dry bean consumption can be safely tested in human interven-

tion trials to evaluate therapeutic and chronic disease preven-

tive properties. While epidemiological studies have shown

positive associations between dry bean consumption and

reduced risk for cancer and heart attack; prospective, random-

ised and placebo-controlled clinical intervention trials are

required to critically evaluate these relationships, and such

studies need to consider the full range of dietary intakes that

typify the world’s populations, albeit within safe and achiev-

able limits. In order to fully realise the potential for beans’

health benefits, an experimental design that will examine

amounts up to 600 g of cooked dry bean intake/d may be

necessary for humans. Studies of increased bean consumption

in human subjects should still include standard toxicity profil-

ing of blood components and serum analytes, particularly for

participants with chronic disease. There may be a number of

barriers to increased bean consumption, e.g. perceived gastro-

intestinal discomfort, lack of knowledge about preparation

methods, and perceptions that dry bean is ‘poor man’s

food’, that may limit the amount of dry bean that people

will consume on a daily basis. However, this study demon-

strates that the potential for stress, inflammatory or toxic

responses at doses that may exhibit disease prevention activity

is unlikely to be a major concern.
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