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A b s t r a c t . In this paper, we consider the problem of the rotation of the Earth, 
using a stationary triaxial gyrostat as a model. The problem is formulated by 
means of dimensionless canonical variables of Serret-Andoyer, referred to the mean 
ecliptic of date, in a similar way to Kinoshita (1977). We choose the constant 
components of the gyrostatic momentum in such a way that the period of the 
polar motion corresponds to Chandler's period. Finally, the problem is integrated 
by means of Deprit's perturbation method. 

1. Introduct ion 

The model of a rigid body to represent celestial bodies when studying their 
motion implies the absence of internal or relative motions. This is not always 
suitable as was shown by Volterra (1899) in the study of the variation of 
latitude on the Ear th ' s surface, explaining then the anomalies of the free 
rotation by means of internal or relative motions which do not modify the 
distribution of masses (subterranean currents, atmospheric currents, etc.). 

The theory of rotation of the Earth about its center of mass constructed 
by Woolard (1953) and adopted by the IAU as the international standard, 
considered that , dynamically, the Earth is a symmetrical rigid body. 

By using the Serret-Andoyer canonical variables (Andoyer, 1923), and 
a moving plane of reference (the mean ecliptic of date) , Kinoshita (1977) 
developed a theory of the Ear th 's rotation. He adopted a triaxial rigid Earth 
model and Hori's perturbation method. This theory has two fundamental 
advantages: 1) it t reats separately the motions of the rotation axis and of 
the angular momentum axis, and 2) it utilizes the mean ecliptic of date as 
plane of reference. In this way, mixed secular terms do not appear in the 
perturbation function. 
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R. Cid and A. Vigueras (1990), studied the problem of the Earth 's rota­
tion, when it is at tracted by the Sun and the Moon, using as a model a 
stationary symmetric gyrostat, and they utilized the canonical variables 
7r,C, i>, Fj r jP^Fy, introduced by Cid and Correas (1973) also referred to 
the mean ecliptic of date, and Deprit 's perturbation method (1969). 

In the present paper, we use as a model of the Earth a stationary triaxial 
gyrostat which has the two first components of the gyrostatic momentum 
identical to zero and the third one constant, in such a way that in the 
absence of external forces the free solution describes the Chandler period. 
We propose an intermediate model between the one of Kinoshita and that 
of Getino and Ferrandiz (1991). The problem has been formulated in terms 
of a set of dimensionless variables 7r,C, V, P„., P ( ,P„ , referred to the mean 
ecliptic of date, which is determined by the planetary presence. In addition, 
to simplify, we suppose tha t the Sun moves in a Keplerian orbit with null 
inclination and the Moon moves in a Keplerian orbit whose nodal and 
inclination arguments are constant with respect to the mean ecliptic of 
date. 

2. S t a t e m e n t of t h e P r o b l e m 

Let us suppose the Earth to be a gyrostat with constant gyrostatic momen­
tum and which turns around an axis passing through its center of mass O, 
with instantaneous angular velocity Co. Therefore, we can consider a system 
of the principal axes of inertia Oxyz, which are rigidly attached to the ri­
gid part of the Earth, whose principal moments of inertia are denoted by 
A,B,C. 

Let us consider a system OXYZ, whose axes are parallel to those of 
other inertial ones, and whose OXY plane corresponds to the mean ecliptic 
of the initial epoch t0 = 0. The mean ecliptic for the epoch t (ecliptic of 
date), given by the OX*Y* plane of a new system OX*Y*Z*, is referred 
to the OXYZ system through the functions fi(t), and I(t) (nodal and 
inclination angles), which are given by the following expressions (Newcomb, 
1906) 

oo oo 

sin I sin n = ^TFit\ sin / cos Q = ^ G,-i' (1) 
»=i t'=i 

where the coefficients F,-,Gt, are constants. 
In addition, we suppose that the Earth is attracted according to New­

ton's law by two material points (the Moon and the Sun) of masses M, 
M', respectively, and tha t such masses describe elliptical orbits around O, 
in such a way tha t the Sun moves into the OX*Y* plane and the Moon 
in a plane, whose nodal and inclination angles with respect to the OX*Y* 
plane are h and j , respectively. 
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If we use the OXY plane as a reference, the variables 7r, £, v, Pw, P^, Pu, are 
suitable to study the Earth rotation (Cid and Vigueras, 1990). Let us carry 
out the transformation 

{K, P'O K) = ^ ( p - p^ p») - *' = tw° 

to other dimensionless variables, being WQ =£ 0, the initial angular velocity of 
the Earth. Then, we obtain for the Hamiltonian (where we have suppressed 
the prime symbols for the new variables) the expression 

H = UT + R + U + U' (2) 

where 

UT = \ 
A + J3 

2B 

R = -P« — cos / + JP} - P 2 — sin I cos 7r sin n \ (3) 
w0 V <> yWQ w0 J 

being (J3,f), (P',y') the second and third direction cosines of the position 
vectors Earth-Moon and Earth-Sun, respectively, with respect to the sy­
stem of the principal axes of inertia Oxyz. In this statement the terms of 
the lunisolar potential of power superior to r - 3 and r ' - 3 are omitted, by 
assuming tha t these terms are sufficiently small. 

The functions (/32,72) and (j3'2,y'2) can be expressed in the canonical 
variables by means of the equalities 

P2 = Yl &.•*.« c o s (*£ + s{*-h)+pv + qu) 
i,s,p,q 

7 2 = ^2yi,s,qcos(iC + s(n-h) + qu}) (4) 
i,s,q 

P* = ^Pi^cosiK + pv + qiu'-n)) 
«,P,9 

7 ' 2 = ^ 7 ^ c o s ( i C + g ( w ' - 7 r ) ) 

« i9 
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wherei G { 0 , l , 2 } , s G {-2, - 1 , 0 , 1 , 2 } , p , q G { -2 ,0 ,2} and the coefficients 
Pi,s,P,q, li,s,q, /?,>,,, 7,',,) a r e functions of the moments PV,P(,PU, given in 
Molina (1996). The variables u> = w0 + / , w' = u'Q + f, define the positions 
of the Moon and the Sun by means of the true anomalies / , / ' , and the 
perigee's arguments O;O,WQ. 

3 . T h e S t u d y of t h e Different Terms of t h e Hamil tonian 

In order to separate 7i in different perturbation orders, we have considered 
the equalities 

3GMB-A 1 / a \ 3 SGMC-A 1 / a \ 3 _ 1 / a \ 3 3 G M C - A _ 1 / a y 

~2r^~^Awf ~ 26°\r) ' 2 r 3 Aral ~ 2*1 W 

SGM' B- A 1 , fa'\3 SGM'C-
2 r /3 

VB-A _ 1 , / V \ 3 ZGM^C^A _ 1 , / V Y 

A t ^ ~ 2C° V r ' J ' 2r ' 3 Aw* " 2*1 V r ' / 

with 

0 / n \ 2 M B-A ( n \ 2 M C-A ,e. 
60 = 3 U J M + MT A ' C l = U J » ' ' » ' " A ( 5 ) A f + AfT A 

, f rc'Y' M ' 5 - A , / n ' V M ' C-A 
6°~ \w0) M' + MT A ' 6l~\w0) M' + MT A 

where n, n' are the mean motions of the Moon and the Sun, respectively, 
MT is the mass of the Earth and we take WQ = 27r rad/sid.day. 

By the relations (Kinoshita, 1990; Fukushima, 1995) 

MT = 81.3M, M' = 332.958MT (6) 

n = 2fk~6 r a d / s i d - d a y ' n' = 3 ^ 2 5 r a d / s i d - d a y 
2C~ni~

B = 3.2739935 • 10" 3 , (C - A)(C - B) = ^ ^ 1 Q _ 5 
2C AZJ 

we obtain 

e0 = 1.10102-10-9, ex = 1.5983 • 10~
7 

e'0 = 5.07009 • 10-10, e[ = 7.36025 • 10-8 

ff + 0 . - 4 ( , e ) V + ( ^ V ) + 4 ( * e ) V + ( $ ) V ) 

where we have defined 5 = e0/e'0 = 2.171598, <5i = ex/efx = 2.171529. 

https://doi.org/10.1017/S0252921100046728 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100046728


AN ANALYTICAL THEORY FOR A GYROSTATIC EARTH 311 

The terms of the complementary function R can be written (Vigueras, 1983) 
in the form 

R = Pn (0.23602 • 1 0 - 7 + 0.58027 • 10 _ 9 i ) - [0.53943 • 1 0 _ u t cos n+ 

+ (0.99319 • 10~9 - 0.22646 • 10 _ l o i ) sin jr] PCS„ (7) 

where t is expressed in tropic centuries measured from 1850. 
If we suppose tha t the two first components of the gyrostatic momentum 

are null, a\ = a2 = 0, the third constant component can be chosen in such a 
way that the free polar motion has a period of 430 days (Chandler's period). 
So, the solution of the equations of free motion of a triaxial gyrostat, if we 
suppose that W3 ~ wo = 27r rad/sid. day, can be approximated in the form 

wi - a0 cos (y/ffrt + b0), w2 = * - a 0 sin (y/prt + b0) 

being p = —^^-WQ + ^-, r = ^J^WQ + ^-, and ao, 60 are constant. This 
solution corresponds to an elliptic motion of the pole with a period T = 
2w/y/pr, and making T = 430, we obtain 63 = a3/Cw0 = -0.95169 • 10~3. 

Then, taking the above hypotheses into account, and introducing the 
constants CQ = 4 ^ p , c\ = ^ — Co, c2 = ^ n r ^ the Hamiltonian (3) can be 
written in the form 

•H = i ( c 0 P c
2 + c 1 p 2 ) + C 2 ( p 2 _ p 2 ) c o s 2 l / _ 6 3 p i / + fi+ ( 8 ) 

Now, for the integration by means of a perturbation method, the Hamilto­
nian (8) can be written as follows 

H = UQ + Hi (9) 

being 

n0 = \ (C0PC
2 + C l p2 ) - & 3 P „ , ux = u - n Q (10) 

4. Hamil tonian of t h e Secular M o t i o n 

The expressions (9), (10) and (4) put that % depends on variables (7r,£, v) 
and the time t, establishing this dependence by means of Hansen's deve­
lopments (Tisserand, 1889) for the elliptic motion. 
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The unperturbed motion of Hamiltonian Wo is easily integrable because it 
has not angular variables, and its solution is given by 

7r = 7r0, C = c 0 i f i + Co, v = (Clf* - 63) t + u0 (11) 

P« = P%, P< = i f , Pu = P°v 

where 7r0, CO> "0, P%, P?, PS a r e constants of integration. 
In this way, the problem can be integrated by means of a perturbation 

method. We shall use the homogeneous formalism and Deprit 's method to 
eliminate, in the absence of resonances, the periodic terms and obtain the 
Hamiltonian of the secular motion in the form 

H'" ( i f , i f , Pi") = K ( i f , i f ) + H? ( i f , If, i f ) (12) 

Then, by integrating the equations of motion corresponding to the above 
Hamiltonian, we obtain the secular perturbations. All necessary equations 
and consequences will be given in Molina (1996). 
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