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Abstract

We consider a deformation E(m)
L,Λ(it) of the Dedekind eta function depending on two d-dimensional simple

lattices (L,Λ) and two parameters (m, t) ∈ (0,∞), initially proposed by Terry Gannon. We show that the
minimisers of the lattice theta function are the maximisers of E(m)

L,Λ(it) in the space of lattices with fixed
density. The proof is based on the study of a lattice generalisation of the logarithm, called the lattice
logarithm, also defined by Terry Gannon. We also prove that the natural logarithm is characterised by a
variational problem over a class of one-dimensional lattice logarithms.
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1. Introduction and setting

Many mathematical models from physics are written in terms of special functions
whose properties give fundamental information about the system (see, for example,
[16]). For example, properties of the Jacobi theta function and the Dedekind eta
function defined for =(τ) > 0 by

θ3(τ) :=
∑
k∈Z

e−iπk2τ and η(τ) := q1/24
∏
n∈N

(1 − qn), q = e2iπτ, (1.1)

have been widely used to identify ground states of periodic systems (see, for example,
[4, 10, 13, 19]).

Generalisations and deformations of these special functions which arise in more
complex physical systems are also of great interest. By a generalisation we mean that
the summation appearing in the definition of the special function, which is usually on
Z or a subset of Z, is taken in a higher-dimensional lattice. By a deformation we mean
that a parameter m, such as mass, is added to the initial function in such a way that
the initial function is recovered in the limit m→ 0. While the lattice generalisation of
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special functions is the main topic of this paper, a typical example of deformation can
be found in [1, Section 3.1] where some deformations of the Dedekind eta function
(1.1) naturally arise in perturbative string theory when the cylinder diagrams that
determine the static interactions between pairs of Dp-branes in the type IIB plane wave
background are evaluated. One of these deformations, called η(m), was generalised by
Gannon in [11], defining a new object called E(m)

L,Λ(it) (see (1.4)). The aim of this paper
is to optimise (L,Λ) 7→ E(m)

L,Λ(it) among a class of d-dimensional simple lattices, seen
as parameters, for fixed m, t > 0.

1.1. Simple lattices and energies. Before giving the precise definition of the
deformation and generalisation of η, let us specify the spaces of lattices we are
interested in. For any d ≥ 1 and any V > 0, we call Ld the set of all the simple lattices
of the form

L =

d⊕
i=1

Zvi, where (v1, . . . , vd) is a basis of Rd,

and L◦d(V) those with covolume |det(v1, . . . , vd)| = V , which is also the volume of the
unit cell. For any f such that the following series is absolutely convergent, it is natural
to ask about the optimisation of

L 7→ E f [L] :=
∑

p∈L\{0}

f (|p|2) (1.2)

in L◦d(V) for any fixed V > 0. This problem has been studied in [15, 18] for the
generalisation of the Jacobi theta function and the Riemann zeta function defined by

θL(α) :=
∑
p∈L

e−πα|p|
2

(α > 0) and ζL(s) :=
∑

p∈L\{0}

1
|p|s

(s > d), (1.3)

respectively called the lattice theta function and the Epstein zeta function (originally
defined in [9, 12]). Both functions are of interest because of their connection with other
lattice ‘energies’ (see, for example, [2, 3, 5] and references therein). In particular, as
explained in [2, Proposition 3.1], the energy E f of any function f which is the Laplace
transform of a nonnegative Borel measure µ and decays fast enough at infinity can be
written as

E f [L] =

∫ ∞

0
(θL(α/π) − 1) dµ(α),

and it follows that an optimum Ld for L 7→ θL(α) for all α > 0 is also an optimum
for E f . Such functions f are called completely monotone and play an important role
in optimal point configurations (see [7, 8]). Only three global optimality results have
been shown for the lattice theta function.

• Montgomery [15]: if d = 2, the triangular lattice

ΛV :=

√
2V
√

3

[
Z(1, 0) ⊕ Z

(1
2
,

√
3

2

)]
is the unique minimiser of L 7→ θL(α) in L◦2(V) for all V, α > 0.
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• Cohn, Kumar, Miller, Radchenko and Viazovska [8]: if d ∈ {8, 24}, E8 and the
Leech lattice Λ24 are the unique minimisers of L 7→ θL(α) inL◦d(V) for all V, α > 0.
More importantly, they are also the unique minimisers of this theta function
among all periodic configurations of points (that is, where there are several points
per unit cell).

The results we present in this paper are restricted to the simple lattice case. In order
to have the most general results in this case, we call D the set of dimensions d such
that L 7→ θL(α) has the same unique minimiser Ld in L◦d(V) for all V, α > 0. From the
results just cited, we already know that {2, 8, 24} ⊂ D , ∅. Furthermore, as explained
in [20, page 117], 3 < D , N. From the above discussion, for all d ∈ D, the minimiser
of the lattice theta function is the same for all the energies E f where f is completely
monotone.

1.2. Gannon’s deformation of the Dedekind eta function. The goal of this paper
is to use these results to find the maximal possible value of the deformed general eta
function defined by Gannon in [11, Equation (3.5a)] as follows. Let V > 0, d ≥ 1, let
L,Λ ∈ L◦d(V) be two simple lattices and let PΛ be the set of all vectors v ∈ Λ such that
the only scalar multiples λv ∈ Λ are integer multiples. We note that v ∈ PΛ if and only
if −v ∈ PΛ and we write PΛ/± for a subset of PΛ with only one representative of each
pair of vectors ±v ∈ Λ. For any m, t > 0, we define

E(m)
L,Λ(it) := q−t(d−1)/2∆m(L)

∏
w∈PΛ/±

∏
v∈L

(1 − q|w|(m
2+|v|2))t(d−1)/2/2|w|, q = e−πt, (1.4)

where

∆m(L) := −
1

8π|L|1/2

∫ ∞

0
s(d−1)/2e−πm2/s(θL∗(s) − 1) ds,

and θL∗ is the lattice theta function defined by (1.3) for the dual lattice L∗ of L defined
by

L∗ := {y ∈ Rd : y · p ∈ Z for all p ∈ L}.

For another formula which may look more familiar, see (3.1). This function E(m)
L,Λ can

be viewed as a deformation of the Dedekind eta function η defined by (1.1) in the
following sense. We first remark that, for any t > 0,

E(m)
Z,Z(it) =: η(m)(it),

where (2πmt)−1/2η(m)(it)→ η(it) as m→ 0. As explained before, the function η(m)(it)
appears in perturbative string theory [1]. We also notice that ∆m is the lattice
generalisation of the Casimir effect of a boson in a cylindrical worldsheet, the mass-
like parameter m measuring how the background space-time (where the D-branes are
located) is curved.
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1.3. Goal of our work. In order to explore the properties of this deformation of η,
we ask the following question about extremal values for possible associated physical
systems.

Question 1.1. What are the global maximisers of (L,Λ) 7→ E(m)
L,Λ(it) inL◦d(V1) ×L◦d(V2)

where V1,V2 > 0 and m, t > 0 are fixed?

Studying (L,Λ) 7→ E(m)
L,Λ(it) in L◦d(V1) × L◦d(V2) is an interesting mathematical

question in itself which encourages us to investigate the maximality properties of other
lattice energies, expanding the use of known variational techniques to new objects, like
the lattice logarithm defined in the next subsection. Furthermore, even though E(m)

L,Λ(it)
does not appear yet in any model of (perturbative) string theory, we hope that our
results will help mathematical physicists to optimise quantities like an analogue of
the cylinder diagram in light-cone coordinates or the open-string one-loop diagram
(see [1, Section 3]). We also believe that lattice sums of this type could be useful in
number theory where such q-products appear frequently and are sometimes related to
geometrical quantities, as η is related to the height of the flat torus in dimension d = 2
(see [17]). This problem is solved in Theorem 3.2, showing that for any d ∈ D, the
minimisers of the lattice theta functions are the maximisers of (L,Λ) 7→ E(m)

L,Λ(it).

1.4. The lattice logarithm. As proposed by Gannon in the same paper (see [11,
page 64]), we define the lattice generalisation of the logarithm as follows. This is
connected to E(m)

L,Λ(it) by (3.1).

Definition 1.2 (Lattice logarithm). For any d ≥ 1, any V > 0 and any simple lattice
L ∈ L◦d(V), we define the L-logarithm of any real number x ∈ (0, 1) by

logL(x) := −
1
2

∑
p∈L\{0}

(1 − x)|p|

|p|
.

Furthermore, if d = 1 and {tn}n∈Z is an N-periodic sequence of real numbers for some
N ≥ 1, that is, such that tn+N − tn = N for all n ∈ Z, then the {tn}-logarithm of x ∈ (0, 1)
is defined by

log{tn}(x) := −
1

4N

N∑
i=1

∑
j∈Z\{i}

(1 − x)|tj−ti |

|tj − ti|
.

This L-logarithm is indeed a generalisation of the logarithm in the sense that
logZ(x) = log(x) for any x ∈ (0, 1). Gannon asked questions about the properties of
this object.

1.5. Plan of the paper. In Section 2, we study the maximisation of L 7→ logL(x) for
given x ∈ (0, 1) as well as the problem of maximising a lattice energy (see (2.2)) of
type E f defined as in (1.2), where f depends on a lattice logarithm. The fact that the
L-logarithm is summed over another lattice Λ is the first example of this kind, when
L , Z. Finally, in Section 3, we prove our main result about the maximality of lattices
(V1/d

1 Ld,V
1/d
2 Ld) for E(m)

L,Λ(it) when d ∈ D in L◦d(V1) × L◦d(V2).
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2. Properties of the lattice logarithm

We start by showing, in dimension d = 1, that the natural logarithm is characterised
by a maximality problem. This result allows us to construct functions, in a canonical
way, that are smaller and close to log(x).

Theorem 2.1 (Characterisation of the logarithm). For any x ∈ (0, 1) and any N,

log(x) = max
{tn}n∈Z

{
log{tn}(x) : tn+N − tn = N for all n ∈ Z

}
and this maximum is achieved if and only if {tn} = Z + a for some a ∈ R.

Proof. For x ∈ (0, 1) and any r > 0, let φx(r) := −2`x(r), where `x(r) := −(1 − x)r/2r.
We prove first that φx is strictly convex, that is, φ′′x (r) > 0 for any r > 0. Indeed,

(1 − x)r

r
=

er log(1−x)

r
=

∫ ∞

−log(1−x)
e−tr dt

and it follows that φ′′x (r) =
∫ ∞
−log(1−x) t2e−tr dt > 0 on (0,∞).

By Ventevogel’s optimality result [22, Theorem 1], for any N ∈ N and any
N-periodic sequence {tn},

1
2N

N∑
i=1

∑
j∈Z\{i}

φx(|tj − ti|) ≥
∞∑

k=1

φx(k).

Thus,

log{tn}(x) ≤
∞∑

k=1

`x(k) = −
1
2

∞∑
k=1

(1 − x)k

k
= logZ(x) = log(x),

and our result is proved because {tn} = Z + a are the only sequences satisfying the
equality case in Jensen’s inequality. �

Remark 2.2. One might be tempted to think that this result is true for any kind of
lattice generalisation of a classical function, but one would be wrong. Indeed, we can
define a {tn}-exponential for x > 0 by

exp{tn}(x) :=
1

2N

N∑
i=1

∑
j∈Z\{i}

x|tj−ti |

Γ(|tj − ti| + 1)
, (2.1)

and ask the same question about the global optimality of {tn} = Z + a. It turns out that
the function ψx(r) = xr/Γ(r + 1) is not convex for some values of the parameter, for
example x = e, so our method cannot be used. Furthermore, for x = e, the function is
not even decreasing on (0,∞), which makes it a bad candidate for the optimality of the
equidistant configuration.

In higher dimensions, d ≥ 2, we restrict our study to the simple lattice case and we
have the following result connecting the minimisers of the lattice theta function and
that of L 7→ logL(x) for any given real number x ∈ (0, 1).
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Theorem 2.3 (Maximiser of the L-logarithm). Let d ∈ D, x ∈ (0, 1) and V > 0. Then
the unique minimiser V1/dLd of the lattice theta function is the unique maximiser of
L 7→ logL(x) in L◦d(V).

Proof. It is sufficient to show that φx(r) := (1 − x)
√

r/
√

r is a completely monotone
function and to use [2, Proposition 3.1] already mentioned in the introduction to
complete the proof. Writing φx(r) = ea

√
r/
√

r and remarking that a := log(1 − x) < 0
shows that φx is completely monotone as a product of completely monotone functions
(see [14]). �

Since logL is a function by itself on (0, 1), we can use it to define a new lattice sum
where the L-logarithm is an interacting potential. The problem of finding optimal point
configurations for logarithmic interaction is indeed of great interest in dimension d = 2
[21] (where −log is the Coulomb potential) and on the (d − 1)-dimensional sphere [6].
We therefore obtain an energy depending on two simple lattices that we can maximise
as follows.

Theorem 2.4 (The L-logarithm viewed as interacting potential). Let d ∈ D and V1,
V2 > 0. For any simple lattices L ∈ L◦d(V1) and Λ ∈ L◦d(V2) and for any function f
such that f ′ is completely monotone, we define

E f [L,Λ] :=
∑
q∈Λ

logL(1 − e− f (|q|2)). (2.2)

Then, for any fixed L and f , V1/d
2 Ld is the unique maximiser of Λ 7→ E f [L,Λ] in

L◦d(V2). Furthermore, (V1/d
1 Ld, V

1/d
2 Ld) is the unique pair of maximisers of E f in

L◦d(V1) × L◦d(V2).

Proof. By absolute convergence,

E f [L,Λ] = −
1
2

∑
q∈Λ

∑
p∈L\{0}

e−|p| f (|q|2)

|p|
= −

1
2

∑
p∈L\{0}

1
|p|

(∑
q∈Λ

e−|p| f (|q|2)
)

(2.3)

and it is clear that the energy is well defined. Since f ′ is a completely monotone
function and r 7→ e−|p|r is also completely monotone for any p ∈ L\{0}, it follows
from [14, Theorem 2] that r 7→ e−|p| f (r) is completely monotone. Therefore, by
[2, Proposition 3.1], V1/d

2 Ld is the unique minimiser of Λ 7→
∑

q∈Λ e−|p| f (|q|2) in L◦d(V2)
and the first part of the theorem is proved. The second part follows from the first part
by using (2.3) and Theorem 2.3. �

Remark 2.5. As already mentioned in the introduction, it is, as far as we know, the
first time that an energy with an interaction potential depending on a lattice has been
studied. It might be interesting to consider a lattice generalisation of the lattice theta
function, using the L-exponential defined by (2.1), and see if one can again derive
optimality results of this kind. The fact that the associated potential ψx defined in
Remark 2.2 is not convex might be a problem but also an interesting direction to
explore.
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3. Maximisation of E(m)
L,Λ

(it) among simple lattices

It is straightforward to obtain the following formula that connects E(m)
L,Λ(it) to the

lattice logarithm.

Lemma 3.1 [11]. For any t,m > 0 and any simple lattices L,Λ ∈ Ld,

log E(m)
L,Λ(it) = −

t(d+1)/2

8|L|1/2

∫ ∞

0
s(d−1)/2e−πm2/s(θL∗(s) − 1) ds

+ t(d−1)/2
∑
p∈L

logΛ(1 − qm2+|p|2 ). (3.1)

Therefore, we can easily derive the maximum of (L,Λ) 7→ E(m)
L,Λ(it) among simple

lattices.

Theorem 3.2 (Maximiser of E(m)
L,Λ(it)). Let d ∈ D, t,m > 0 and V1, V2 > 0. Then

(V1/d
1 Ld,V

1/d
2 Ld) is the unique maximiser of (L,Λ) 7→ E(m)

L,Λ(it) in L◦d(V1) × L◦d(V2).

Proof. We use formula (3.1). Since d ∈ D, it follows that s(d−1)/2e−πm2/s > 0 for any
s > 0 and Ld = L∗d. As a simple consequence of the Poisson summation formula,

L 7→
∫ ∞

0
sd−1/2e−πm2/s(θL∗(s) − 1) ds

is minimised by V1/d
1 Ld in L◦d(V1). Therefore the first term is maximised by V1/d

1 Ld.
For the second term, we use Theorem 2.4 with f (r) = πt(m2 + r) and we remark that
f ′(r) = πt is a completely monotone function. This implies that the second term is
maximised by (V1/d

1 Ld,V
1/d
2 Ld), which concludes the proof. �
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