Canad. Math. Bull. Vol. **56** (3), 2013 pp. 564–569 http://dx.doi.org/10.4153/CMB-2011-190-1 © Canadian Mathematical Society 2011

Ziegler's Indecomposability Criterion

Ivo Herzog

Abstract. Ziegler's Indecomposability Criterion is used to prove that a totally transcendental, *i.e.*, Σ -pure injective, indecomposable left module over a left noetherian ring is a directed union of finitely generated indecomposable modules. The same criterion is also used to give a sufficient condition for a pure injective indecomposable module _RU to have an indecomposable local dual U_R^{\sharp} .

Let *R* be a left noetherian ring and let $_{R}U$ be a totally transcendental, *i.e.*, Σ -pure injective indecomposable left *R*-module. One task of this article is to prove (Theorem 5) that $_{R}U$ is a directed union $_{R}U = \sum_{i} M_{i}$ of finitely generated indecomposable submodules $_{R}M_{i}$. A familiar example of this phenomenon is the case of an injective indecomposable left *R*-module $_{R}E$. Over a left noetherian ring, such a module is totally transcendental, and if we express it as a directed union $_{R}E = \sum_{i} M_{i}$ of finitely generated submodules, then each $_{R}M_{i}$ is uniform, hence indecomposable.

But a more interesting example is that of a generic module over an artin algebra. An *artin algebra* is a ring Λ whose center $C = C(\Lambda)$ is artinian and that is finitely generated as a module over C. A Λ -module G is *generic* if it is (1) indecomposable, (2) not finitely generated, and (3) of finite length as a module over its endomorphism ring. This last condition implies that G has a pp-composition series, and is therefore of finite Morley rank. The importance of generic modules arises from the work of Crawley-Boevey [1], who proved that an artin algebra has a generic module if and only if it satisfies the following conjecture.

The Brauer-Thrall Conjecture If an artin algebra Λ has infinitely many nonisomorphic indecomposable finitely generated left modules, then there is a natural number n and an infinite family of indecomposable left Λ -modules of length n.

Theorem 5, which implies that a generic module G is an amalgam of finitely generated *indecomposable* modules, may therefore be of some use if one is motivated to employ amalgamation techniques (*cf.* [4]) to construct such a *G*.

The other task of this article is to introduce several equivalent conditions (Theorem 4) for a pure injective indecomposable left *R*-module $_RU$ that ensure the local dual U_R^{\sharp} be an indecomposable right *R*-module. Recall that a pure injective indecomposable left *R*-module $_RU$ has a local endomorphism ring $S = \text{End}_R U$, and so obtains an *R*-*S*-bimodule structure. The top of *S* is a division ring Δ , and if we let $E_S = E(\Delta_S)$ be the injective envelope of the right *S*-module Δ_S , then the local dual of $_RU$ is defined to be

$$U_R^{\sharp} := \operatorname{Hom}_S({}_R U_S, E_S).$$

Received by the editors April 18, 2011.

Published electronically December 16, 2011.

This work was partially supported by the NSF.

AMS subject classification: 16G10, 03C60.

Keywords: pure injective indecomposable module, local dual, generic module, amalgamation.

It is a pure-injective right *R*-module, the right action being defined by $(\eta r)(u) := \eta(ru)$. A fundamental question in the study of pure-injective indecomposable modules over a ring *R* is whether the local dual U_R^{\sharp} is itself indecomposable. If so, it yields a point in the right Ziegler spectrum of *R*, which is in some sense dual to _RU.

The proofs of these results rely on Ziegler's Indecomposability Criterion. To describe the criterion, we recall from [6, §1.1] that the language $\mathcal{L}(R)$ for left *R*-modules is the expansion of the language $\mathcal{L} = (+, -, 0)$ of abelian groups by a ring *R* of unary function symbols. The standard collection T(R) of axioms for a left *R*-module are readily expressed in the language $\mathcal{L}(R)$. A formula of $\mathcal{L}(R)$ is said to be *positive-primitive* (pp) if it is built up from atomic fomulae using only conjunction and existential quantification. If $_RM$ is a left *R*-module and $\varphi(\bar{x}) = \varphi(x_1, \ldots, x_n)$ is a pp-formula of $\mathcal{L}(R)$, then the subset of $(_RM)^n$ defined by φ in *M* is a subgroup

$$\varphi(M) = \left\{ (u_1, \ldots, u_n) \in ({}_R M)^n \mid M \models \varphi(\overline{u}) \right\}.$$

Such a subgroup of $(_RM)^n$ is called *pp-definable* in $_RM$.

Suppose that $\varphi(\bar{x})$ and $\psi(\bar{x})$ are pp-formulae of $\mathcal{L}(R)$ in the same tuple of free variables. Evidently, the conjunction

$$(\varphi \wedge \psi)(\overline{x}) := \varphi(\overline{x}) \wedge \psi(\overline{x})$$

is itself a pp-formula, but so is the formula

$$(\varphi + \psi)(\overline{x}) := \exists \overline{y} \left[\varphi(\overline{y}) \land \psi(\overline{x} - \overline{y}) \right].$$

These two binary operations induce a modular lattice structure R-Latt(\overline{x}) on the classes of pp-formulae $\varphi(\overline{x})$ modulo equivalence relative to T(R). There is an antiisomorphism $\varphi(\overline{x}) \mapsto \varphi^*(\overline{x})$ between the lattice R-Latt(\overline{x}) and the similarly defined lattice R^{op} -Latt(\overline{x}) in the language $\mathcal{L}(R^{\text{op}})$ of right R-modules. An explicit description of this anti-isomorphism can be found in [6, §1.3.1] or [5]; we will rely on the following two properties of this duality.

Fact 1 ([6, §1.3.2], [2]) Let $_RM$ be a left R-module, N_R a right R-module, n a positive integer and suppose that a pair of n-tuples, $\overline{u} \in (N_R)^n$ and $\overline{v} \in (_RM)^n$, are given. Then

$$\overline{u}\otimes\overline{v}:=\sum_i\,u_i\otimes v_i=0$$

in $N \otimes_R M$ if and only if there is a pp-formula $\varphi(\bar{x})$ in $\mathcal{L}(R)$ such that $_RM \models \varphi(\bar{v})$ and $N_R \models \varphi^*(\bar{u})$.

Fact 2 ([6, §1.3.], [8]) Let _RM_S be an R-S-bimodule, $E = E_S$ an injective cogenerator and M_R^{\sharp} the right R-module Hom_S(_RM_S, E_S). For every positive-primitive formula $\varphi(\bar{x})$ in the language $\mathcal{L}(R), M_R^{\sharp} \models \varphi^*(\bar{\eta})$ if and only if $\bar{\eta}[\varphi(M)] = 0$. The convention here is that if $\bar{\eta} \in (M^{\sharp})^n$ and $\bar{\nu} \in M^n$, then

$$\overline{\eta}(\overline{\nu}) = (\eta_1(\nu_1), \dots, \eta_n(\nu_n)) \in E^n.$$

A pp-type $p = p(\overline{x})$ is a collection of positive-primitive formulae in the variables \overline{x} , deductively closed relative to the axioms T(R). Given a tuple $\overline{u} \in ({}_R M)^n$, its pp-type is given by

$$pp-tp_{M}(\overline{u}) = \left\{ \varphi(\overline{x}) \mid M \models \varphi(\overline{u}) \right\}$$

If $\overline{u} \in M^n$ satisfies every formula in a pp-type $p(\overline{x})$, then it *realizes* $p(\overline{x})$ in M: $p(\overline{x}) \subseteq \text{pp-tp}_M(\overline{u})$.

Given a pp-type $p(\overline{x})$, the *pure-injective hull* H(p) [6, §4.3.5] is a pure-injective left *R*-module with a specified tuple $\overline{u} \in ({}_{R}H(p))^{n}$ such that $\operatorname{pp-tp}_{H(p)}(\overline{u}) = p(\overline{x})$. Furthermore,

- (i) if *M* is a pure-injective module and $\overline{v} \in M^n$ realizes $p(\overline{x})$, then there is a morphism $f: H(p) \to M$ of left *R*-modules with $f(\overline{u}) = \overline{v}$; and
- (ii) every *R*-endomorphism $g: H(p) \to H(p)$ satisfying $g(\overline{u}) = \overline{u}$ is an automorphism.

Fisher ([6, §4.3.5]) proved the existence of the pure-injective hull of a pp-type. Properties (i) and (ii) ensure that it is unique up to isomorphism over the specified realization \overline{u} of $p(\overline{x})$. A pp-type $p(\overline{x})$ is called *indecomposable* if its pure-injective hull H(p) is an indecomposable left *R*-module.

Ziegler's Indecomposability Criterion ([6, §4.3.6], [7]) A pp-type $p(\overline{x})$ is indecomposable if for every pair $\psi_1(\overline{x})$ and $\psi_2(\overline{x})$ of pp-formulae that do not belong to $p(\overline{x})$, there is a pp-formula $\varphi(\overline{x}) \in p(\overline{x})$ such that

$$\left[\left(\varphi \wedge \psi_1\right) + \left(\varphi + \psi_2\right)\right](\overline{x}) \notin p(\overline{x}).$$

Let $_RM_S$ be an R-S-bimodule, where S is a local ring with top Δ . Let $E_S = E(\Delta)$ be the injective envelope of Δ considered as a right S-module. If $\overline{\eta}$ is an n-tuple of elements from the right R-module $M_R^{\sharp} = \text{Hom}_S(_RM_S, E_S)$, then, trivially,

$$\operatorname{Ker} \overline{\eta} \supseteq \sum \left\{ \varphi(M) \mid \overline{\eta}[\varphi(M)] = 0 \right\}.$$

If the equality holds, we consider that as a kind of *continuity condition* on $\overline{\eta}$.

Proposition 3 Suppose that Ker $\overline{\eta} = \sum \{\varphi(M) \mid \overline{\eta}[\varphi(M)] = 0\}$ under the condition given above. Then the pp-type of $\overline{\eta}$ in M_{R}^{\sharp} is indecomposable.

Proof Suppose that $\psi_1^*(\bar{x})$, $\psi_2^*(\bar{x})$ do not belong to pp-tp_{*M*[±]}($\bar{\eta}$). Because E_S is the minimal injective cogenerator in the category Mod-*S* of right *S*-modules, we may use Fact 2, which implies that both $\bar{\eta}(\psi_1(M))$ and $\bar{\eta}(\psi_2(M))$ are nonzero *S*-submodules of $E_S = E(\Delta)$. Thus, there are $\bar{u} \in \psi_1(M)$ and $\bar{v} \in \psi_2(M)$ such that $\bar{\eta}(\bar{u}) = \bar{\eta}(\bar{v}) = 1$, where $1 \in \Delta_S$ denotes the unit element of the top of *S*.

Because $\overline{\eta}(\overline{u} - \overline{v}) = 0$, the hypothesis implies that there is a pp-formula $\varphi(\overline{x})$ such that

$$\overline{u} - \overline{v} \in \varphi(M) \subseteq \text{Ker } \overline{\eta}.$$

Another application of Fact 2 implies that $\varphi^*(\bar{x}) \in \text{pp-tp}_{M^{\sharp}}(\bar{\eta})$, and it remains to verify that

$$(\varphi^* \wedge \psi_1^*) + (\varphi^* \wedge \psi_2^*) = \left[(\varphi + \psi_1) \wedge (\varphi + \psi_2) \right]^* \notin \operatorname{pp-tp}_{M^{\sharp}}(\overline{\eta}).$$

566

But $\overline{u} \in \psi_1(M) \subseteq (\varphi + \psi_1)(M)$ and $\overline{u} = (\overline{u} - \overline{v}) + \overline{v} \in (\varphi + \psi_2)(M)$. Thus $\overline{u} \in [(\varphi + \psi_1) \land (\varphi + \psi_2)](M)$, and because $\overline{\eta}(\overline{u})$ is nonzero, the claim is established.

Suppose that $_RM$ is a left R-module and S is the endomorphism ring $S = \operatorname{End}_R M$. If $_RM$ is totally transcendental, then every cyclic S-submodule $\overline{u}S$ of M^n is pp-definable in $_RM$. Therefore, every S-submodule is a sum of subgroups that are pp-definable in $_RM$, and the equality in the proposition is attained. Finitely presented left R-modules also enjoy this property; in fact, every locally pure projective module does. So if $_RM$ has a local endomorphism ring $S = \operatorname{End}_R M$, then, because the local dual M_R^{\sharp} is a pure-injective right R-module realizing only indecomposable types, it must be indecomposable. More generally, we have the following.

Theorem 4 Let $_RM_S$ be an R-S-bimodule and E_S an injective cogenerator with endomorphism ring $T = \text{End}_S E$. The following are equivalent for the T-R-bimodule $M^{\sharp} = \text{Hom}_S(_RM_S, _TE_S)$:

(i) for every $n < \omega$, and every n-tuple $\overline{\eta} = (\eta_1, \dots, \eta_n) \in (M_R^{\sharp})^n$,

Ker
$$\overline{\eta} = \sum \{ \varphi(M) \mid \overline{\eta}[\varphi(M)] = 0 \};$$

- (ii) the evaluation map Ev: $_TM^{\sharp} \otimes_R M_S \to E$, induced by $\eta \otimes u \mapsto \eta(u)$, is a monomorphism of T-S-bimodules;
- (iii) the morphism of rings from T to $\operatorname{End}_R M_R^{\sharp}$ is onto.

Suppose that the endomorphism ring of $_RM$ is local, and let $S = \text{End}_R M$ and $E_S = E(\Delta_S)$, where Δ is the top of S. Because E_S is an injective indecomposable module, $T = \text{End}_S E_S$ is a local ring. Condition (iii) then implies that the endomorphism ring $\text{End}_R M_R^{\sharp}$ is a quotient of a local ring and is thus also local. Therefore, Theorem 4 subsumes the situation described just before its statement.

Proof (i) \Rightarrow (ii) Suppose that $\overline{\eta} \in (M^{\sharp})^n$ and $\overline{u} \in M^n$ are such that

$$\operatorname{Ev}(\overline{\eta}\otimes\overline{u})=\operatorname{Ev}\left(\sum_{i}\eta_{i}\otimes u_{i}\right)=\sum_{i}\eta_{i}(u_{i})=0.$$

By hypothesis, there is a positive-primitive formula $\varphi(\bar{x})$ such that

$$\overline{u} \in \varphi(M) \subseteq \text{Ker } \overline{\eta}.$$

By Fact 2, $M_R^{\sharp} \models \varphi^*(\overline{\eta})$, and so Fact 1 implies that $\overline{\eta} \otimes \overline{u} = 0$ in $M^{\sharp} \otimes_R M$. (ii) \Rightarrow (iii) Applying the exact functor $\operatorname{Hom}_S(-, E_S)$ to the monomorphism Ev: ${}_TM^{\sharp} \otimes_R M_S \to E_S$, we get an epimorphism

$$T = \operatorname{End}_{S} E_{S} \to \operatorname{Hom}_{S}(M^{\sharp} \otimes M_{S}, E_{S}) = \operatorname{Hom}_{R}(M^{\sharp}, \operatorname{Hom}_{S}(M_{S}, E_{S}))$$
$$= \operatorname{Hom}_{R}(M^{\sharp}, M^{\sharp}) = S.$$

(iii) \Rightarrow (i) Let $\overline{\eta} \in (M^{\sharp})^n$ and consider the inclusion

$$\Sigma = \sum \left\{ \varphi(M) \mid \overline{\eta}[\varphi(M)] = 0 \right\} \subseteq \text{Ker } \overline{\eta}.$$

To see that equality holds, suppose that $\overline{u} \notin \Sigma$. As E_S is an injective cogenerator for the category of right S-modules, there is an S-morphism $\overline{\gamma} \colon (M^n)_S \to E_S$ such that $\Sigma \subseteq \text{Ker } \overline{\gamma}$, but $\overline{\gamma}(\overline{u}) \neq 0 \in E$. The *n* component morphisms $\gamma_i \colon M_S \to E_S$, $1 \leq i \leq n$, yield a tuple $\overline{\gamma} \in (M^{\sharp})^n$ satisfying

$$\operatorname{pp-tp}_{M^{\sharp}}(\overline{\eta}) \subseteq \operatorname{pp-tp}_{M^{\sharp}}(\overline{\gamma}),$$

because if $\varphi^* \in \operatorname{pp-tp}_{M^{\sharp}}(\overline{\eta})$, then $M^{\sharp} \models \overline{\eta}(\varphi^*)$, which is equivalent to $\overline{\eta}(\varphi(M)) = 0$. The assumption $\overline{\gamma}(\varphi(M)) = 0$ then implies that $\varphi^* \in \operatorname{pp-tp}_{M^{\sharp}}(\overline{\gamma})$.

The right *R*-module M_R^{\sharp} is pure injective, so that [7, Thm. 3.6] implies there is an *R*-morphism $f: M_R^{\sharp} \to M_R^{\sharp}$ such that $f(\overline{\eta}) = \overline{\gamma}$, that is, $f(\eta_i) = \gamma_i$, for each *i*. By hypothesis, *f* may be represented by the action of some $t \in \text{End}_S(E_S)$. Because

$$t[\overline{\eta}(\overline{u})] = [t\overline{\eta}](\overline{u}) = [f(\overline{\eta})](\overline{u}) = \overline{\gamma}(\overline{u})$$

is nonzero, $\overline{\eta}(\overline{u}) \neq 0$, and so $\overline{u} \notin \text{Ker } \overline{\eta}$.

If there exists an infinite family of finitely generated indecomposable modules over an artin algebra Λ of bounded endolength *n*, then ([6, §4.5.5], [3]) any point that belongs to the closure of this infinite family in the Ziegler Spectrum of Λ is a generic Λ -module. The next result uses Ziegler's Indecomposability Criterion to show that a generic module over Λ , if one exists, is necessarily an amalgam of finitely generated *indecomposable* Λ -modules, which cannot possibly be of bounded length.

Theorem 5 Let R be a left noetherian ring and M a totally transcendental indecomposable left R-module. Then M is a directed union $M = \sum_i M_i$ of finitely generated indecomposable submodules M_i .

Proof Let $u_1, \ldots, u_n \in M$. To prove the theorem, we must produce a finitely generated indecomposable submodule $M' \subseteq M$ containing all the u_i . That will imply that the collection of finitely generated indecomposable submodules of M is directed and cofinal in the collection, partially ordered by inclusion, of finitely generated submodules of M.

Let $p(\overline{x}) = \text{pp-tp}_M(\overline{u})$ be the pp-type of \overline{u} in M. Because $(_RM)^n$ satisfies the descending chain condition on subgroups pp-definable in M, $p(\overline{x})$ is implied, relative to the complete theory of M, by a single pp-formula $\varphi(\overline{x})$,

$$M \models \operatorname{pp-tp}_M(\overline{u}) \leftrightarrow \varphi(\overline{x}).$$

Because *M* is a pure injective indecomposable module, the type $p(\bar{x})$ satisfies Ziegler's Indecomposability Criterion, which implies that the collection of pp-formulae

$$\Psi(\overline{x}) = \{\psi(\overline{x}) : \psi(M) < \varphi(M)\}$$

forms an ideal in the lattice of pp-fomulae in \overline{x} , *i.e.*, it is downward closed and if $\psi_1(\overline{x}), \psi_2(\overline{x}) \in \Psi(\overline{x})$, then $(\psi_1 + \psi_2)(\overline{x}) \in \Psi(\overline{x})$.

The positive-primitive formula $\varphi(\overline{x})$ is equivalent, relative to T(R), to an existentially quantified conjunction of atomic formulae, so if $K \subseteq M$ is a submodule

568

generated by the u_i together with some witnesses to $M \models \varphi(\overline{u})$, then $K \models \varphi(\overline{u})$. Furthermore, $K \models \neg \psi(\overline{u})$, for every $\psi(\overline{x}) \in \Psi(\overline{x})$. As R is left noetherian, K is a finite direct sum $K = \bigoplus_j K_j$ of finitely generated indecomposable modules K_j . Decompose $\overline{u} = \sum_j \overline{u}_j$ in terms of its components, relative to this direct sum decomposition. Positive-primitive formulae respect direct sums, so that for every $j, K_j \models \varphi(\overline{u}_j)$, and hence $M \models \varphi(\overline{u}_j)$. As $\Psi(\overline{x})$ is an ideal of pp-formulae, there is a j, say j = 1, such that $M \models \neg \psi(\overline{u}_1)$, for every $\psi(\overline{x}) \in \Psi(\overline{x})$. Consequently, pp-tp_{$M}(\overline{u}) = pp-tp_{<math>M}(\overline{u}_1)$. By [6, §4.3.5], there is an endomorphism f of M, necessarily an automorphism, such that $f: \overline{u}_1 \mapsto \overline{u}$. Then $M' = f(K_1)$ is a finitely generated indecomposable submodule of M that contains all the u_i .</sub></sub>

References

- W. Crawley-Boevey, Modules of finite length over their endomorphism rings. In: Representations of algebras and related topics (Kyoto, 1990), London Math. Soc. Lecture Note Ser., 168, Cambridge University Press, Cambridge, 1992, pp. 127–184.
- I. Herzog, Elementary duality of modules. Trans. Amer. Math. Soc. 340(1993), no. 1, 37–69. http://dx.doi.org/10.2307/2154545
- [3] _____, The Ziegler spectrum of a locally coherent Grothendieck category. Proc. London Math. Soc.
 (3) 74(1997), no. 3, 503–558. http://dx.doi.org/10.1112/S002461159700018X
- [4] E. Hrushovski, A New strongly minimal set. Stability in model theory, III (Trento, 1991). Ann. Pure Appl. Logic 62(1993), no. 2, 147–166. http://dx.doi.org/10.1016/0168-0072(93)90171-9
- [5] M. Prest, *Duality and pure-semisimple rings*. J. London Math. Soc. (2) 38(1988), no. 3, 403–409.
 [6] ______, *Purity, spectra and localization*. Encyclopedia of Mathematics and its Applications, 121,
- Cambridge University Press, Cambridge, 2009.
 [7] M. Ziegler, *Model theory of modules*. Ann. Pure Appl. Logic 26(1984), no. 2, 149–213. http://dx.doi.org/10.1016/0168-0072(84)90014-9
- [8] B. Zimmermann-Huisgen and W. Zimmermann, On the sparsity of representations of rings of pure global dimension zero. Trans. Amer. Math. Soc. 320(1990), no. 2, 695–711. http://dx.doi.org/10.2307/2001697

The Ohio State University at Lima, Lima, OH 45804, USA e-mail: herzog.23@osu.edu