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ABSTRACT

This research employs machine learning (Mask Region-Based Convolutional Neural Networks [Mask R-CNN]) and cluster analysis (Density-
based spatial clustering of applications with noise [DBSCAN]) to identify more than 20,000 relict charcoal hearths (RCHs) organized in large
“fields” within and around State Game Lands (SGLs) in Pennsylvania. This research has two important threads that we hope will advance the
archaeological study of landscapes. The first is the significant historical impact of charcoal production, a poorly understood industry of the
late eighteenth to early twentieth century, on the historic and present landscape of the United States. Although this research focuses on
charcoal production in Pennsylvania, it has broad application for both identifying and contextualizing historical charcoal production
throughout the world and for better understanding modern charcoal production. The second thread is the use of open data, open source,
and open access tools to conduct this analysis, as well as the open publication of the resultant data. Not only does this research dem-
onstrate the significance of open access tools and data but the open publication of our code as well as our data allow others to replicate our
work, to tweak our code and protocols for their own work, and reuse our results.

Keywords: relict charcoal hearths, landscapes, Mask R-CNN, deep learning, Pennsylvania, light detection and ranging (lidar), airborne laser
scanning (ALS)

Esta investigación emplea el aprendizaje automatizado (Redes Neuronales Convolucionales basadas en Regiones “Máscara” [Mask R-CNN; en
sus siglas en inglés]) y el análisis de agrupamientos o clústers (Agrupamiento Espacial Basado en Densidad de Aplicaciones con Ruido
[DBSCAN; en sus siglas en inglés]), para identificar más de 20,000 áreas de combustión de hornos de producción de carbón (RCHs; en sus
siglas inglés), dispuestos en “campos” amplios dentro y alrededor de Campos de Caza Estatales (SGLs; en sus siglas inglés), en Pensilvania.
Esta investigación tiene dos importantes desafíos que esperamos que desarrollará el estudio de los paisajes en arqueología. El primero es el
impacto histórico significativo de la producción de carbón, una industria poco entendida de la época temprana del S. XVIII e inicios del S. XIX,
del paisaje histórico y actual de Estados Unidos. No obstante, esta investigación se centra alrededor de la producción de carbón en Pensilvania,
tiene una aplicación amplia para la identificación y contextualización de la producción de carbón histórica en todo el mundo y para lograr un
mejor entendimiento de la producción moderna de carbón. El segundo desafío es el uso de las herramientas de datos libres, fuentes libres y
accesos libres para llevar a cabo este análisis, así como la publicación libre del dato resultante. Esta investigación no solamente demuestra el
significado de las herramientas y los datos libres, sino que además la publicación libre de nuestro código, así como nuestros datos, permitirá a
otros replicar nuestro trabajo, refinar nuestro código y protocolos para su propia investigación, así como reusar nuestros resultados.

Palabras Clave: áreas de combustión de hornos de producción de carbón, paisajes, Mask R-CNN, aprendizaje profundo, Pensilvania,
detección de imágenes y distancias mediante láser (lidar), escaneo láser aerotransportado

To some, charcoal may seem a dead or insignificant technology
largely limited to backyard barbeques, but charcoal, as the pri-
mary fuel for iron production in the eighteenth and nineteenth

centuries, powered the Industrial Revolution and the economic
rise of the United States (e.g., Bonhage et al. 2020; Johnson and
Ouimet 2018, 2021; Kemper 1941; Knowles 2012; Rolando 1992;
Straka 2014; Straka and Ramer 2010; Williams 2020). Yet, the sig-
nificance of charcoal production to history is not geographically
limited to the United States (e.g., Bekele and Girmay 2014; CarrariThis article has earned badges for transparent research practices: Open
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et al. 2017; Raab et al. 2019; Schneider et al. 2015; Werbrouck et al.
2011). Nor is charcoal production solely an industry of the past—it
continues around the world today (e.g., Alfaro and Jones 2018;
Kato et al. 2005; Rembold et al. 2013; Rodrigues and Braghini
Junior 2019). The Food and Agricultural Organization estimates
that approximately 53 million tonnes (58 US tons) of charcoal were
produced worldwide in both 2018 and 2019 (FAOSTAT 2021).
Historical research on the charcoal industry helps to contextualize
modern processes and may provide options that no longer exist
but remain viable. Similarly, this research can aid our under-
standing of how past practices have impacted modern landscapes
(e.g., Deforce et al. 2020; Donovan et al. 2021; Mikan and Abrams
1995, 1996; Schneider et al. 2019; Tolksdorf et al. 2015). The fol-
lowing are the questions at the heart of this research:

(1) How was charcoal produced?
(2) What was the impact of charcoal production on the

landscape?
(3) How do we recognize that impact?
(4) How do we better understand the social aspects of charcoal

(and iron) production?

The answers to Question 1 are relatively well understood, and the
Pennsylvania variant is described below. Although Question 2 is
the proximate impetus behind this research, at this point, we pri-
marily address Question 3. Our research focuses on identification
of relict charcoal hearths (or RCHs) and ignores other components
(such as transportation). RCHs are the relatively small (ca. 10–15 m
in diameter) features that remain from the process of making
charcoal that are distributed (ca. 80–150 m from each other) across
the landscape. Similarly, through this research and that of others,
we are slowly improving our ability to address the social aspects of
charcoal. Because charcoal is produced deep in the woods, well
away from society, it is often associated with strangeness, wild-
ness, and difference. Though not addressed here, this is one of
the central reasons why charcoal production played an important
role in the Underground Railroad in the mid-1800s (LaRoche 2017).

Given these questions, the primary goal of this research is to
recognize the impact of charcoal production. First, we discuss
ways that the impact of charcoal production has been considered.
Second, we discuss the process of charcoal production and how a
single instance of charcoal production leaves behind identifiable
remains on the landscape. Then, we use lidar (light detection and
ranging, also known as airborne laser scanning, or ALS) data
openly provided by the state of Pennsylvania. Lidar is particularly
useful because this remote sensing technique allows us to model
the ground surface, especially in densely forested areas, across
broad swaths of the landscape that are difficult to comprehend
otherwise. Then, we utilize an array of open source tools that
enable us to use a type of artificial intelligence known as “deep
learning” to identify RCHs across the state of Pennsylvania.

Deep learning is a type of machine learning that employs user-
provided identification (in this case, user-recognized RCHs in
digital images) to create a generalized model. It then uses this
abstraction to identify arrangements of pixels similar to the train-
ing data. Deep learning is particularly valuable in this situation
because we are able to use it to identify additional RCHs that are
generally like those in the training set but not precisely the same
as any individual RCH in the training set. This also means that with
the appropriate computer power, we are able to identify RCHs

across large extents of area (in this case, 28% of the state of
Pennsylvania).

In order to carry out this research, we employ open data, open
tools, and open publishing. The original data are supplied by the
state of Pennsylvania. All of the tools used to process the data are
open, including QGIS (with plugins noted below), GeoPandas,
GDAL, Mask R-CNN, Keras, and TensorFlow. All code constructed
to use these tools has been published via Zenodo, as has the
resultant data.1

The project employed a computer with the following specifica-
tions: GPU: TITAN V / 5120 CUDA Cores / 12G; vCPU: 6; RAM:
24GB; Disk Space: 64GB; and O/S: Ubuntu 18.04. Although
consumer-grade laptops and desktops have less power, training a
deep learning model is possible but would take longer. A
cloud-based service that offers GPU processing, such as Google
Colaboratory, is another option. Although the free version has
some limitations, the paid Pro version ($10/month) does not. With
the setup described above, processing time varied by the number
of epochs a model was trained for. The processing time for an
individual epoch, with 663 training images, was approximately 3
minutes. Most models were trained in the range of 16–40 epochs,
which equates to around 1–2 hours. These were often left to run
overnight, hence the “dreaming” computers of the title.

ESTIMATING THE IMPACT OF
CHARCOAL PRODUCTION
It is easy to realize that an industry that converted large numbers
of trees into charcoal had a significant impact on the landscape.
Yet, the full impact of charcoal production on the landscape is
difficult to determine. It is clear that the amount of charcoal con-
sumed varied by iron furnaces and forges, and their impact on
forests and landscapes varied (Straka 2014). Because little histor-
ical data was recorded specifically on charcoal production, iron
production is often used as a proxy. This is reasonable because
the primary—though not sole—purpose of charcoal was as fuel
for smelting and forging iron. Care must be exercised because in
the 1830s, some iron furnaces began using coal, so we must be
able to differentiate between coal- (and coke-)fired furnaces and
charcoal furnaces (e.g., Knowles 2012:Figure 10; Williams 1989:
Figure 10.5). However, even with the initial use of mineral coal in
iron furnaces, charcoal continued to be used to fuel iron pro-
duction—especially for certain components such as railcar wheels
—into the early twentieth century. Although the overall produc-
tion of charcoal furnaces varied, their contribution to the total iron
production of the nation declined (Schallenberg 1975, 1981;
Williams 1989:Figure 10.5). The last charcoal furnace “went out of
blast” (i.e., was shut down) in 1945 (Schallenberg 1975:341).

We have a fairly good accounting for iron production (e.g.,
American Iron and Steel Association 1876, 1878, 1880, 1882, 1884,
1886, 1890, 1892, 1894, 1896; Lesley 1866), but how much charcoal
was needed per unit (i.e., ton) of iron? Straka (2014) finds that
estimates for the amount of charcoal needed per ton of iron range
greatly, from approximately 25 bushels to 200 bushels (see also
Whitney 1994:Table 9.4). This broad range is due to wide variation
in a range of variables including wood type (e.g., pine vs. oak), ore
composition, technology used (e.g., cold blast vs. hot blast),
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expertise of the iron master and the collier (the “charcoal burner”),
the size of a “bushel” (Birkinbine 1879:150; Straka 2017:60), and
even the location of the furnace. Additionally, the size and effi-
ciency of charcoal furnaces changed through time. Schallenberg
and Ault (1977:445; Williams 1989:339) report that charcoal con-
sumption at “advanced” iron furnaces from the Midwest in the
late 1800s ranged from around 73 to 114 bushels of charcoal per
ton of iron (Hillstrom and Hillstrom 2006:165–166; Whitney 1994:
Table 9.4). These increasingly efficient furnaces were significantly
larger and often located in the Midwest (especially Michigan) and
the South, replacing the older, smaller, and less efficient furnaces
of the East (especially Ohio and Pennsylvania; Schallenberg and
Ault 1977; Williams 1989:339). Given this variation, using the
amount of iron produced to determine the amount of charcoal
required for its production would provide an estimate with a very
wide range. Trying to understand the impact of that charcoal
production on the landscape is even more difficult.

Assuming that we can estimate the amount of charcoal needed to
produce a ton of iron, converting the number of bushels of char-
coal used to acres of land is made difficult by a wide range of
factors, such as the size/age of the trees, the expertise of the
collier, the water content of the wood, and the species of the tree
(Straka 2014; Svedelius 1875). Gordon (1996:40) draws out an
example of a calculation: a furnace that consumes approximately
356,000 bushels of charcoal annually requires approximately 600
acres of forest per year. Therefore, assuming reuse after 20 years,
the furnace requires roughly 12,000 acres of land to be sustainable
(see also Whitney 1994:222, Table 9.4). To understand the scale of
forest depletion across the United States, Birkinbine (1879:150)
calculated that the production and forging of iron in 1877 resulted
in the cutting of approximately 147,000 acres of woodland and, in
1879 (Birkinbine 1881:66), approximately 50,000–65,000 acres. Yet,
it is unlikely that the production decreased threefold in two years.
Williams (1990:163) estimates that between 1855 and 1910, 3,000–
4,800 square miles (ca. 2–3 million acres) of forests were converted
into charcoal to feed iron furnaces, but he also reminds us that this
is only about 0.8%–1.3% of the forest cleared at that time—most
clearance was due to agricultural expansion (Whitney 1994:222).
But because of the variables described above, these are all rough
and divergent estimates that are difficult to apply.

The impact of charcoal production was also not equal across
landscapes but focused on specific types. Until 1870, the majority
of charcoal used in a charcoal iron furnace was from woodlands
within 3–8 km (2–5 miles) of the furnace (Whitney 1994:224). This
suggests that the preferred location of iron furnaces would be on
landscapes with approximately 3–8 km (2–5 miles) of forest that
were less than desirable for agriculture—what Bernhard Fernow
(1883:153–155; Rodgers 1991:24–25) called “waste places.” The use
of these “waste places” would be especially true for landscapes
where the majority of arable land was already occupied. Through-
out much of Pennsylvania, charcoal production centered on dry,
nonarable lands such as rocky mountains (see Johnson and Ouimet
2021). Fernow observed that the Lehigh Furnace lands on the Blue
Mountain, which he managed from 1879 to 1887, remained
unsuitable for agriculture. This is not necessarily true for some of
the earliest furnaces—such as Henry Furnace in Nazareth,
Pennsylvania (Jones 1976)—where, when it was in operation, the
landscape included limited agriculture along with charcoal lands.
Today, most of the charcoal lands around the Henry Furnace have
likely been converted into farmland and residential developments.

All in all, researchers have had limited success using iron pro-
duction to quantify and clarify the impact of charcoal production
on landscapes. The research reported in this article takes a dif-
ferent approach. We turn to the archaeological remains of char-
coal production. In particular, we focus on “relict charcoal
hearths” (RCHs), which represent past charcoal production. But to
understand the impact of charcoal production on the landscape,
the reader must understand how charcoal is produced.

CHARCOAL PRODUCTION
Charcoal production is a relatively simple technology that requires
dirty, physical labor as well as a detailed knowledge of a wide range
of variables that can be only partially controlled (Diderot and
d’Alembert 2010 [1765]; Kemper 1941; Overman 1854; Straka 2014;
Straka and Ramer 2010; Svedelius 1875). Until the late nineteenth
century, the majority of charcoal was made by placing hearths close
to the wood. Wood was cut during the winter when it contained
less sap, allowing it to dry faster and more completely and when
woodcutters, who were normally off-season farmers and colliers,
were available. The wood was stacked in 1.2 m (4 ft.) lengths near
where it was cut—often on the downhill side of the lot.

Then, a collier built a hearth near the wood. Hearths were flat,
level circular areas cleared of stones and roots approximately 10–
15 m in diameter (Kemper 1941:8; Straka 2014:106; Walker
1966:242). Hearths were flat, smooth, compacted surfaces to
minimize moisture, ensure even burning throughout the mound,
and avoid collecting soil and other contaminants when raking out
the charcoal (Straka 2014:106). On slopes, this often meant dig-
ging into the hillside and pitching the dirt downhill, which not only
created the round, flat hearth but also resulted in steep banks on
the uphill and downhill sides of the hearth (Figure 1a) (e.g.,
Donovan et al. 2021).

On the hearths, the collier created a mound of wood stacked in a
very specific manner known as a “meiler.” First, the collier built a
triangular chimney composed of overlapping lengths of wood
with a central opening of approximately 20 cm (8 in.) in the center
of the hearth. Three layers of densely packed wood was stacked
vertically, leaning inward against and around the chimney and
extending out to the edges of the hearth (Kemper 1941:10). The
result was a large, dome-shaped pile of tightly packed wood,
which was covered with a layer of leaves, hay, or pine needles. This
was subsequently covered with a layer of earth (Figure 1b) and,
ideally, charcoal dust from a previous use (Kemper 1941; Straka
2014; Straka and Ramer 2010; Svedelius 1875; Walker 1966).

Once the meiler was constructed, it was fired. The goal, however,
was not to burn the wood but to distill it by separating the solid
carbon (as charcoal) from the water, sap, and volatile compounds
(Overman 1854:102–117). The resultant charcoal is relatively free of
contaminants, is solid, and burns hot, making it ideal for iron
furnaces. To distill the charcoal, the collier first ignites the pile
through the chimney, but once the fire catches, it is also closed
off. To keep the pile hot enough (between 270˚C [518˚F] and 400˚C
[752˚F]; Straka 2017:59), the collier opens and closes air holes near
the base of the meiler. Although the meiler must be monitored
and managed constantly for the first 24–48 hours, after that, the
collier checks on it periodically over the next 10–14 days. Colliers
frequently made charcoal eight months out of the year (with the
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exception of the winter), with up to eight meilers in process at any
given time (Kemper 1941; Straka 2014; Straka and Ramer 2010;
Svedelius 1875; Walker 1966).

When the wood in the meiler was converted into charcoal, the
charcoal was separated from the earth and debris using rakes with
large wooden tines (Figure 1a). This is done carefully because the
charcoal can easily catch fire, potentially destroying all of the char-
coal. The earthen covering often ends up as a ring of earth around
the edge of the hearth. Charcoal was then loaded onto specialized

carts and transported to the furnace or forge (Kemper 1941; Straka
2014; Straka and Ramer 2010; Svedelius 1875; Walker 1966).

Visible remains from the process described above are present on
the modern landscape. Primary among these are RCHs, but others
include the remains of roads and colliers’ huts. Importantly, RCHs
have been recognized using derivatives of high-resolution lidar
scanning (e.g., Bonhage et al. 2020, 2021; Carter 2019a; Donovan
et al. 2021; Hirsch et al. 2017; Johnson and Ouimet 2018, 2021;
Kazimi et al. 2019; Raab et al. 2015; Risbøl et al. 2013; Schmidt

FIGURE 1. (a) Two colliers removing charcoal from the meiler. The underlying flat, circular hearth can be seen excavated into the
slope; Wayne National Forest, Ohio, May 1942 (National Archives, Record Group 95: Records of the Forest Service, 1870–2008,
National Archives Identifier: 2129419; Local Identifier: 419985). (b) A simplified cross section of a meiler ready to be ignited
(image by Jeff Blackadar).

Benjamin P. Carter, Jeff H. Blackadar, and Weston L. A. Conner

260 Advances in Archaeological Practice | A Journal of the Society for American Archaeology | November 2021

https://doi.org/10.1017/aap.2021.17 Published online by Cambridge University Press

https://doi.org/10.1017/aap.2021.17


et al. 2016; Schneider et al. 2015). To simplify, lidar is a technology
that uses plane-mounted lasers to measure the altitude of the
earth’s surface and create a point cloud of the surface (for a
detailed description, see Fernandez-Diaz et al. 2014; Opitz 2013;
see also Opitz and Hermann [2018] for a review of remote sensing
in archaeology). In Pennsylvania, the resolution of this scan is
approximately one laser shot per 1.5 m2. The data can then be
converted to a digital elevation model (DEM), which is similar to a
digital photograph in that each pixel, instead of being associated
with numbers that represent colors, is the altitude of that pixel.
Two of the most common ways a DEM can be visualized is as a
hill-shade (or shaded relief) and as a slope analysis. From these,
RCHs can be manually recognized (e.g., Carter 2019a, 2019b; Raab
et al. 2015).

A DEEP-LEARNING APPROACH TO
RCH IDENTIFICATION
Our approach here employs these lidar derivatives on a large
scale. The rich detail across a large region (ca. 37,000 km2) makes it
difficult, if not impossible, to identify these RCHs manually.
Visually scanning images for examples of RCHs is labor intensive
(but see Bonhage et al. 2021). Due to advances in deep learning,
an automated scan of images is more feasible for large land-
scapes. Although our purpose is to assess charcoal production
across Pennsylvania, rather than including the entire state of
Pennsylvania in our sample, we focused our attention on State
Game Lands (SGLs). The SGLs are a proxy for “waste lands” dis-
cussed above. It was clear that, like SGL 217 (Carter 2019a, 2019b;
Conner 2018), many of these lands were previously used for
charcoal (and lumber), but when they became unproductive, they
were acquired by the state. Additionally, because much of the
area outside SGLs are developed, RCHs are difficult to identify.
We included a 1 km buffer around all SGLs to both catch some
undeveloped land not owned by the state and demonstrate
whether or not we could identify RCHs in residential areas.

Deep learning is a type of artificial intelligence that can recognize
similar patterns directly from data, such as images. Generally
speaking, deep learning recognizes patterns using multiple pro-
cesses that abstract and amplify common attributes in a set of
images (LeCun et al. 2015). These multiple processes are known as
“layers,” and they represent the depth of deep learning. An
assembly of layers represents a Convolutional Neural Network.
These are also known as ConvNets or CNNs, and they are com-
puter representations of patterns.

As each layer of representation amplifies and abstracts aspects of
an image, it builds a generalized model to recognize other similar
patterns. With the composition of enough layers and repetitions
of training, this computer model can learn to recognize complex
patterns and objects. This is important, given that we want to
generally recognize the features of RCH that vary due to topog-
raphy or size, not just a particular RCH.

We structured our sample around available lidar data provided by
Pennsylvania and the organization of that data. We used the
vector file of SGLs provided by the state and added a 1 km buffer.
We identified overlapping lidar data using the tile index vector.
Because the tile index contained the download link for the lidar

data within its attributes, this allowed us to automate downloading
and organizing the data by SGL. The result was one file folder per
SGL that contained all lidar tiles. Over 4,000 LAS files (the native
format for lidar)—a total of about 350 gigabytes of data in zipped
files—was downloaded and unzipped. Because there was some
overlap in the tiles included between SGLs, 3,925 of these tiles
were unique, representing 28.4% of the entire state (Figure 2).

This data was organized and converted into the desired format.
The goal was to produce a Digital Elevation Model (DEM), a hill-
shade, and a slope analysis for each SGL (all in TIFF format; see
Carter [2019a] for a description on how to do this manually). This
was automated with the assistance of Moritz “Moe” Schiesser who
was able to process this data programmatically so that it was
organized in folders by SGL and processed using LAStools
(specifically las2las.exe, lastile.exe, BLAST2DEM.exe; and QGIS.
Resolution of the resultant DEMs is 1.0 m2. It should be noted,
because Pennsylvania is broken into North and South Tiles (based
on different coordinate reference systems; State Plane 1983 PA
South and North), some of the SGLs have two DEMs, two hill-
shades, and two slope analyses. In order to ensure that we had a
complete set of images and that they loaded correctly, we wrote
utility programs in QGIS to load each TIFF (Tag Image File Format)
that corresponded to our list of SGLs.2

The deep-learning process described below needs to be trained
on known RCHs. Therefore, we reviewed and marked RCHs in 62
SGLs. To identify these RCHs, we primarily utilized the slope
analysis over the Google Maps satellite photos. The latter helps
identify non-RCHs, such as small buildings. In situations where
identification was unclear, we also examined the hillshade. If we
were still unsure of our identification, we also employed a QGIS
plugin called Profile Tool, which allowed us to see the profile of
the suspected RCHs in the DEM (Figure 3). In our review, we
looked for features that represented two distinct but overlapping
signatures (see also Bonhage et al. 2021). RCHs on slopes were
dug into the hillside and therefore have steep slopes above and
below a flat, level area between 10 and 15 m in diameter. The flat
area tends to be ovoid rather than circular likely because the
collier used the portion level with the rest of the slope as a path
and because the steep upper slope eroded over time, partially
covering the circular RCH (Figures 3b, 3d, and 3f). RCHs on flat
areas are more difficult to identify. These tend to be primarily
identifiable through a very flat, round area around 10–15 m in
diameter that normally has a circular berm around the outer edge
that represents the earth from the top of the meiler that had been
raked to the edges. They are also often associated with borrow
pits (Figures 3a, 3c, and 3f). This process resulted in the manual
identification of 4,376 RCHs to serve as our training data. We
attempted to ground truth 174 RCHs identified in this manner. Of
these, 170 (97.7%) were confirmed in the field to be true positives,
and only four (2.3%) were identified as false positives. These fea-
tures are quite distinctive on the landscape and easy to confirm by
their shape (as described above), but all of these were also con-
firmed by digging an informal hole approximately 10 cm deep on
the lower slope that revealed large quantities of charcoal. Most of
those confirmed through fieldwork are located on slopes, so they
are easier to identify in the slope analysis than those on flat areas.
Conner (2018) utilized intensive survey on flat areas to identify
charcoal RCHs. He identified potential hearths in the slope ana-
lysis using a confidence rating system (from 1 = highly confident to
3 = possible but unlikely). Approximately 50% (6/13) of the
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locations that he rated highly (1 or 2 in his system) were confirmed
in the field, and none (out of 8) of the low-confidence-rated
potential RCHs were confirmed. Using systematic field survey of
0.2445 km2, he was also able to identify three RCHs that had not
been identified in the slope analysis (i.e., false negatives).
Therefore, it is likely that our methods for identifying RCHs in the
slope analysis are significantly more accurate for those on slopes
compared to those on flat areas.

DEEP-LEARNING OBJECT
RECOGNITION USING MASK R-CNN
We selected Waleed Abdulla’s Mask R-CNN as a deep-learning
platform for object detection (see also Bonhage et al. 2021). Mask
R-CNN is suitable for identifying objects that appear only in a
small part of an image (Brownlee 2019a, 2019b; He et al. 2020;
Rosebrock 2019), such as RCHs in images of much larger land-
scapes. Additionally, a guiding principle for this project is to use
accessible open source technology, such as Mask R-CNN, where
possible to lower the barriers for other researchers so that they can
build on our work.

Abdulla’s Mask R-CNN uses Keras on TensorFlow, programmed in
Python. We implemented Mask R-CNN on a virtual Ubuntu Linux
computer GPU to allow for efficient processing. Anaconda Navi-
gator was used to manage the required packages for Keras and
TensorFlow and the compatible version of Python (Dombrowski
et al. 2019). The use of Anaconda to manage the Python envir-
onment reduced complexity in the project.

Data Preparation
Each slope file (in TIFF format) for a SGL is large. For example, the
file for SGL 33 is 1.5 GB in size. To make these images easier to
process by Mask R-CNN, we wrote a program3 to divide each TIFF
into smaller 1024 × 768 pixel tiles that Mask R-CNN can consume
efficiently. The program divided the TIFF into a grid of tiles and
saved each tile as a JPEG image. Some tiles were empty due to
the irregular shape of SGLs, and the program discarded these
voids.

The shape file containing the points of the 4,376 manually
recognized RCHs was used to identify tiles to be set aside for
training, given that only a portion of tiles contained known RCHs.
If a tile contained the point of a known RCH, the program copied
the tile JPEG to a separate folder for training.

Next, we told Mask R-CNN where to look on each training image
for examples of RCHs. This is done through annotation, which
documents the x,y pixel boundaries (in xml format) that contain
the region of interest (ROI)—in this case, an RCH. The program
used the shapefile of known RCHs and expanded each point to a
rectangular ROI bounding the RCH.4 The size of the ROI was set
to include all of a typically sized RCH (ca. 10–15 m in diameter) as
well as several additional meters of surrounding land for a total
size of 30 × 30 m (Figure 4). Experimentation showed that
including the area surrounding the RCH was part of what dis-
tinguished it from other similar looking objects in the slope
analysis. When the ROI was made smaller, and the boundary was
close to the edge of a typical RCH, training results were less
accurate.

FIGURE 2. Map indicating all Pennsylvania State Game Lands showing those included in training the model and the lidar tiles
used for this study (image by Benjamin Carter and Weston Conner).
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Training the Model
To train the model, the JPEG images mentioned above were split
randomly into training (80%) and testing sets (20%). Inside each
training tile is at least one 30 × 30m ROI (Figures 4 and 5). The
ROIs in these images allow Mask R-CNN to learn to find other
objects like those in the ROI. Once the model has learned to
identify RCHs based on known ROIs, it then runs the model to see
how successfully it can also identify known RCHs in the smaller
“testing” set of known ROIs. In this way, the model recognizes
how well it is working (or not) and makes adjustments.

Models are trained for a number of training/testing cycles called
“epochs” as a way to improve accuracy with repetition. Models
start with a random set of values known as weights that represent
the model’s recognition of a general pattern. The weights are
adjusted as recognition improves with subsequent epochs. This
improvement in learning reaches an optimal point. If a model is

trained for too many epochs, it becomes “overfit” and is biased to
recognize only data it was trained on rather than generally rec-
ognizing similar objects.

The process of training and deciding when an object detection
model is at peak learning performance is iterative. Because initial
models start out with random weights, outcomes vary. We
adjusted parameters to tune how the model learns in order to get
the best outcome. The learning rate parameter represents how
much weights are adjusted between each epoch of training. The
greater the learning rate, in theory, the faster a model can be
trained. However, high learning rates can quickly lead to a model
being overfit and consequently useless. We used a learning rate of
0.001 for 8 epochs and then reduced it to 0.0001 for epochs 9–18
(Khandelwal 2019; Rosebrock 2019).

We experimented with “detection min confidence,” a threshold
value Mask R-CNN uses while it is training to decide if it has

FIGURE 3. Comparison of relict charcoal hearths on level and sloped landscape in slope analysis, hillshade, and using the Profile
Tool plugin for QGIS (image by Benjamin Carter).
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correctly detected an object. We tried values of 0.7 and 0.9, and
we found that 0.9 produced a more accurate model.

We set a maximum limit of 46 on the number of RCHs detected in
a 1024 × 768 jpg. Sampling showed that this was a reasonable
upper limit of RCHs visible in an image that did not risk loss of true
positives, but it also put a ceiling on possible false positive results.
After each training run, the results were validated with a calcula-
tion known as “average precision” (AP)—a performance metric
based on the model’s ability to detect true positives and minimize
false negatives (Bonhage et al. 2021; Hui 2018). Mask R-CNN uses
mean average precision (mAP), which averages across multiple
classes of objects as a quick way to judge a model. However,
because this model employs only one class of object, mAP = AP.
Models with higher mAP, which is expressed as a proportion (0–1;
see Hui 2018), suggest increased recognition of true positives and
minimized inclusion of false positives.

We trained numerous models after adjusting learning rate and
“detection min confidence.” We also adjusted the number of
epochs used with different learning rates. For example, on the last
training run, for epochs 19–28, we used a value that was 1% of the
learning rate for epochs 1–8 noted above. In the end, this variant
was not relevant because our model’s accuracy peaked at epoch
16.

Once we trained a set of models, we graded it using a four-stage
process in order to select the best. Models that had a peak mAP of
<0.5 were discarded immediately. Models with a mAP of >0.5 were
used to detect RCHs in 20 images. After visual inspection of the
predictions on 20 images, models that failed to find RCHs or had
excessive false positives were discarded. If a model passed the
visual inspection of 20 images, it looked promising, and we formally
scored it using a set of 100 randomly selected images. The score
was analyzed for the model’s predictive value (AP).5 Finalist models
were used for predictions on all images, and large samples of these

predictions were manually examined to determine the model’s
value. For the final model, the mAP peaked at epoch 16 (Train mAP
= 0.622 and Test mAP= 0.554) with the settings LEARNING_RATE
= 0.001 and DETECTION_MIN_CONFIDENCE= 0.9.

Running Predictions
Once we determined appropriate settings, we ran the model on
all JPEG tiles.6 The resultant data comprised rectangles using the
x,y pixel coordinates of the image stored in an XML file (Figures 4
and 5). The program converts the resulting predictions from pixel
coordinates into geolocated 30 × 30 m rectangles stored in a
shape file.

Due to the overlap of images from the two different coordinate
reference systems used for the Pennsylvania SGLs, some RCHs
appeared on two different images and showed up as duplicate
predictions. These duplicates were programmatically eliminated.7

The results also provided a predicted confidence for each RCH—
that is, based on the model, how likely was the predicted RCH a
true RCH (from 0–1). We set our lower limit at 0.7. The final result is
a list of unique geographic points of 52,884 predicted RCHs.

ASSESSING THE MASK R-CNN
PREDICTIONS
Once Mask R-CNN completed its predictions, a quick review
helped us realize that, although lots of the predictions were true
positives, many were not. We used the following methods to
separate these.

For our first attempt, we chose eight SGLs (13, 33, 37, 39, 51, 76,
83, 217) distributed across the state and physiographic provinces.
Rather than examining each predicted RCH, we first divided them
into “confidence” bins (Table 1). We randomly selected four
predicted RCHs from each bin for each SGL (except SGL 83, which
only had two RCHs in the 0.75–0.80 bin; Table 1), for a total of 190
predicted RCHs. We used the methods for manually identifying
RCHs in slope analyses described above to determine if the pre-
dicted RCH was a true positive or a false positive. This resulted in
the recognition of 150 false positives (78.9%) and 40 true positives
(21.1%, see Table 1). Although this initially seems to be an indi-
cation of poor results, this helped us realize that we needed
alternative methods for assessing the predicted sample. For
example, of this sample, two SGLs (13, 37) had no true positives.
There was likely little or no historic charcoal production in these
SGLs. On the other hand, the majority of the true positives were in
the two upper “confidence” bins (27/40, or 67.5%; Table 1).

To better assess this, we used an alternative approach. In the field,
RCHs tend to be clustered in groups. This makes sense because a
collier frequently tends multiple charcoal hearths at one time. To
limit travel time and facilitate working many hearths, hearths are
often located near each other (ca. 80–150 m, but with great vari-
ation). Additionally, in our manual review, we noticed that many of
the false positives were not near other predicted RCHs. Therefore,
we employed cluster analysis as a way to separate true positives
from false positives. We employed the DBSCAN plugin in QGIS
(for the use of DBSCAN in archaeology, see Argote-Espino et al.
2012; Caspari and Jendryke 2017; Maddison 2020; Maddison and

FIGURE 4. Slope analysis of a portion of SGL 33 with manually
recognized relict charcoal hearths (RCHs) in white numbered
squares and Mask R-CNN–identified RCHs in light blue
squares. RCHs with both blue and white were recognized by
both methods. The number above the square is the confi-
dence score (image by Benjamin Carter).
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Schmidt 2020). Density-based spatial clustering of applications
with noise, or DBSCAN, creates clusters based on two variables:
the maximum distance and the minimum number of individuals in
a cluster. Starting with a random RCH, the plugin determines if
there are other points within the maximum distance. If so, that
point is included in a cluster, as long as that cluster reaches or
exceeds the minimum number of RCHs. Anything not within a
cluster is described as “noise.” To start, we experimented with a

variety of variables and observed the results by visualizing the
clusters in QGIS. We learned that there is no combination of
DBSCAN settings that reliably distinguishes individual true posi-
tives from false positives. For example, an RCH on the edge of a
cluster may be identified as noise if it is not close enough to
another RCH. Alternatively, false positives will be included in a
cluster if they are within the parameters. Therefore, we could not
use clustering to determine if an individual predicted RCH was a

FIGURE 5. A close-up of six manually recognized RCHs shown in Figure 4 demonstrating similarities and variation (image courtesy
of Jeff Blackadar).

TABLE 1. Manually Recognized True Positives at a Selected Set of SGLs by Confidence Bin.

State Game Land

Confidence Bin SGL 13 SGL 33 SGL 37 SGL 39 SGL 51 SGL 76 SGL 83 SGL 217 Total

0.70–0.75 0 0 0 1 1 0 0 1 3/32 (9%)

0.75–0.80 0 0 0 1 0 0 0 1 2/30 (7%)

0.80–0.85 0 1 0 0 0 1 2* 1 5/32 (16%)
0.85–0.90 0 0 0 1 0 1 0 1 3/32 (9%)

0.90–0.95 0 3 0 1 0 1 2 2 9/32 (28%)

0.95–1.0 0 1 0 3 2 4 4 4 18/32 (56%)
Total 0/24 (0%) 5/24 (21%) 0/24 (0%) 7/24 (29%) 3/24 (13%) 7/24 (29%) 8/22 (36%) 10/24 (42%) 40/190 (21%)

Note: For example, in the 0.70–0.75 confidence bin, 0 out of 4 of the RCHs recognized by Mask R-CNN were visually confirmed to be true positives.
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true or false positive, but we could use it to get a much better idea
of where clusters were located. Consequently, we used three dif-
ferent combinations of variables (minimum number / maximum
distance = 5 / 300 m, 10 / 500 m, 20 / 1,000 m) to visualize these
clusters.

The results of the DBSCAN analyses allow us to distinguish likely
true clusters from “noise” (i.e., false positives) even if a deter-
mination cannot be made for each RCH. A total of 26,873 RCHs
(50.8% of all predicted RCHs) were placed in a cluster based on at
least one of the three variable combinations. A total of 18,202
predicted RCHs (34.4%) were organized into all three cluster var-
iants. It is likely that most of these predicted RCHs are true positives.
Predicted RCHs not included in these clusters are more likely to be
false positives. For example, none of the predicted RCHs in SGL 13
and 37 (Table 1), where we failed to manually recognize any RCHs in
the slope analysis and therefore know that they are all definitively
false positives (see above), are included in the three clusters.

In order to address how well DBSCAN effectively distinguished
true and false positives, we reviewed the predicted RCHs in and
around SGL 43 using the methods discussed above. We chose
this area because it is located near Hopewell Furnace, a
National Historic Site as well as one of the best-known and well-
researched iron furnaces in the country (e.g., Kemper 1941;
Straka and Ramer 2010; Walker 1966), and we have begun to
conduct fieldwork there. Table 2 demonstrates that 832 (out of
1,019, or 82.6%) of the predicted RCHs that fall within one, two,

TABLE 2. DBSCAN Clusters of Mask R-CNN–Identified RCHs
Compared to Manual Recognition at SGL 43.

RCHs Predicted by Mask
R-CNN

Number of Clusters False Positive True Positive Total

0 33 (75%) 11 (25%) 44 (100%)

1 37 (63.8%) 21 (36.2%) 58 (100%)
2 27 (45.0%) 33 (55%) 60 (100%)

3 123 (13.7%) 778 (86.3%) 901 (100%)

Total 220 843 1,063

Note: The total number of predicted hearths that fell into at least one cluster is
1,019 (901 + 60 + 58), of which 832 (778 + 33 + 21) were identified as true
positives and 187 (123 + 27 + 37) were false positives.

FIGURE 6. Map showing predicted RCHs and their inclusion in the three DBSCAN cluster analyses compared to a manual review
that identified true positives in and around SGL 43. Base map is the hillshade created using methods described herein. See
Figure 7 for preserved land labels (image by Benjamin Carter).
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or all three of the clusters were identified as true positives—187
(18.4%) were false positives. Of those RCHs that were not
placed into any clusters, the majority (33/44, or 75.0%) were
manually recognized as false positives, and 25.0% (11/44) were
true positives. Figure 6 shows the contexts of these RCHs. Most
of the RCHs not included in a DBSCAN cluster (Figure 6; red
squares) were not confirmed by manual evaluation and are in
residential areas outside of preserved areas. Most of the RCHs
included in all three clusters were confirmed and were located
within local preserved space, including SGL 43, French Creek
State Park, Hopewell National Historic Site, Thomas P. Bentley
Nature Preserve (the location of Warwick Furnace), Coventry
Woods Park, Crow’s Nest Preserve, and Warwick County Park.
Therefore, cluster analysis can, with reasonably high probabil-
ity, indicate that a single predicted RCH is a true or false
positive.

Consequently, clustering provides us with a broader-scale under-
standing of charcoal “fields”—areas of the landscape densely
dotted with RCHs. Figure 8 shows a comparison between pre-
dicted RCHs that fall into all three DBSCAN clusters and the lidar
tiles employed in this analysis. If one drew a line from the south-
west to the northeast of the state, the southeastern half would

have the vast majority of charcoal fields. This includes a near
continuous line of “fields” along the 250-mile stretch of Blue
Mountain, along with numerous fields to the north and south of it.
Fields are notably absent across much of the northern portion of
the state where there were fewer charcoal furnaces and forges.
Small fields are located in the northwest, where the lifespan of
charcoal furnaces was relatively short (ca. 10 years; Knowles
2012:49; see also Williams 2020).

DBSCAN clustering also allows us to examine how well the Mask
R-CNN was able to predict the same RCHs that were used to
construct the model. Of the 4,376 RCHs used to train the model
fully, 4,174 (95.4%) were predicted by the model, demonstrating
both the effectiveness of Mask R-CNN and how the abstraction
created by Mask R-CNN does not automatically detect each of the
individual training RCHs. Of the 4,174 training RCHs included in
the predicted RCHs, 4,004 (96.0%) were placed in at least one of
the DBSCAN clusters, and 3,523 (84.4%) were placed in all three
clusters. Although most individual SGLs mirror these proportions,
localized patterns also exist. For example, the majority of the
training RCHs that were also recognized by Mask R-CNN in SGL
45 and SGL 51 were not placed into any of the clusters (28/36, or
78%; 14/16 or 87.5%, respectively).

FIGURE 7. Map showing true positives and false negatives for RCHs in and around SGL 43. Note that both are concentrated in
preserved areas. Base map is the hillshade create using methods described herein (image by Benjamin Carter).
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The DBSCAN of the results of the Mask R-CNN provides a much
broader view of the immense impact of charcoal production on
the landscape of Pennsylvania. It also allows us to differentiate
where in the state the majority (if not all) of the impact was located
and where it was unlikely. In particular, charcoal production
focused on the 400 km (250-mile) long Blue Mountain and the hilly
areas within approximately 100 km (60 miles) to the north and
west, as well as on the hills to south. This more fully addresses the
impact of charcoal production on the landscape of Pennsylvania.
There are some limitations, however. First, this is only a partial
sample of the entire state—other undeveloped lands (e.g., state
parks, county parks, private preserves) could also be examined.
Second, the combined use of Mask R-CNN and DBSCAN is more
appropriate for identifying individual charcoal hearths that col-
lectively form “fields.” This means that individual (or small clusters
of) RCHs will be missed. Third, additional work may be able to
demonstrate additional variables—such as proximity to furnaces,
water, et cetera—that impact both the construction of hearths and
the recognition of those hearths in lidar derivatives. These vari-
ables may be employed to increase our ability to separate true
positives from false. Fourth, we have limited our conversation
about false negatives. Though the comparison between the
training data and the examination of SGL 43 suggests that false
negatives are rare (ca. 5% or less), more work needs to be done.
Last, in order to better understand charcoal production and con-
sumption, these fields of RCHs should be reconnected with the
forges and furnaces that consumed the charcoal to make iron.

We also reviewed SGL 43 to identify false negatives—those RCHs
missed by the Mask R-CNN model but identifiable in the slope
analysis. Two of the authors (WC, BC) scanned the slope analysis
of SGL 43 at a scale of 1:1000 looking for the features discussed

above—flat, round areas approximately 10–15 m in diameter that
either had clear steep uphill and downhill slopes on sloped terrain
or circular berms on flat terrain. Any identifications on which the
reviewers disagreed were reassessed, and a final collaborative
determination was made. A total of 46 potential RCHs were
identified (Figure 7)—in comparison to the 843 RCHs detected by
Mask R-CNN and confirmed as true positives. Although we have only
confirmed a few of the RCHs in the field at SGL 43, the ground
truthing discussed above suggests that these methods are likely
quite accurate on slopes, although we are less confident in our
identification of RCHs on flat terrain. This is particularly important
because Williams (2020) has identified 279 colliers in the 1850 census
for Clarion County (in the northwest of Pennsylvania). In our own
preliminary analysis, we believe this to be an incredibly high number
of colliers. Yet, although the heat map does indicate RCH “fields” in
Clarion county, this would seem to underrepresent the number of
colliers. We are not arguing, therefore, that the techniques described
herein are able to identify all RCH fields—only that, compared to
previous attempts, they move us significantly in the right direction.

CONCLUSION
This research demonstrates how the impact of charcoal produc-
tion in Pennsylvania can be understood by using deep learning
(Mask R-CNN) and cluster analysis (DBSCAN in QGIS) to analyze
lidar derivatives. Charcoal production is a relatively poorly known
industry that has left extensive modifications of the landscape
across hundreds of square kilometers of terrain. Whereas a recent
spike in research on RCHs (largely due to the availability of lidar)
has demonstrated the prevalence and impact of charcoal pro-
duction, this research is able to show the presence of hundreds of

FIGURE 8. Map showing a heat map of predicted RCHs included in all three DBSCAN analyses compared to tiles included in the
sample. Darker red indicates lower density, and lighter red indicates higher density (image by Benjamin Carter).
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kilometers of “fields’‘ of RCHs, as well as large swaths of the state
where RCHs are absent, although we may underrepresent the size
of these fields. As Bernhard Fernow suggested, based on our
research, charcoal production appears to be associated with
“waste places,” particularly the arid tops of long ridges, such as
the Blue Mountain.
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NOTES
1. For detailed information, please see the following document, which contains

links to the data and code used in this work: https://zenodo.org/record/4766351.
2. See programs qgis_1_check_predictions.py, qgis_2_add_poly_layers_for_

north_east.py, qgis_3_load_rasters_north_east.py, and qgis_4_check_we_
have_all_layers.py in https://github.com/jeffblackadar/charcoalhearths/tree/
master.

3. https://github.com/jeffblackadar/charcoalhearths/blob/master/0_split_tifs_
refactored.ipynb.

4. See def annotate_tif_if_it_has_hearths in 0_split_tifs_refactored.ipynb.
5. An analysis for model cfg20200826T2315 epoch 16 is here: https://github.

com/jeffblackadar/charcoalhearths/blob/master/prediction_results.pdf.
6. Predictions on all images are performed in the later cells of notebook

data_5000_3_rcnn_charcoal_hearths.ipynb.
7. The last cell of 2_read_predictions_from_xml_put_into_shp.ipynb eliminates

duplicates in the results.
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