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ADDITION FORMULA 
FOR BIG ^-LEGENDRE POLYNOMIALS 
FROM THE QUANTUM SU(2) GROUP 

H. T. KOELINK 

ABSTRACT. From Koornwinder's interpretation of big g-Legendre polynomials as 
spherical elements on the quantum SU(2) group an addition formula is derived for the 
big g-Legendre polynomial. The formula involves Al-Salam-Carlitz polynomials, little 
^-Jacobi polynomials and dual ^-Krawtchouk polynomials. For the little g-ultraspher-
ical polynomials a product formula in terms of a big </-Legendre polynomial follows 
by ^-integration. The addition and product formula for the Legendre polynomials are 
obtained when q tends to 1. 

1. Introduction. Quantum groups provide a powerful approach to special func
tions of basic hypergeometric type, cf. the survey papers by Koornwinder [12] and by 
Noumi [16], where the reader will also find (more) references to the literature on quan
tum groups and basic hypergeometric functions. In this paper we show how the quan
tum group theoretic interpretation of basic Jacobi polynomials leads to an addition for
mula for the big g-Legendre polynomials involving little g-Jacobi polynomials, dual q-
Krawtchouk polynomials and Al-Salam-Carlitz polynomials. 

There are now several addition formulas available for basic analogues of the Legendre 
polynomial. The addition formula for the continuous ^-Legendre polynomial is proved 
analytically by Rahman and Verma [20], and a quantum SU(2) group theoretic proof of 
this addition formula is given by Koelink [10]. However, the quantum group theoretic 
proof more or less uses knowledge concerning the structure of the addition formula for 
the continuous ^-Legendre polynomials. On the other hand, Koornwinder's [13] addition 
formula for the little ^-Legendre polynomials follows naturally from the interpretation of 
the little g-Jacobi polynomials on the quantum SU(2) group and this formula would have 
been hard to guess without this interpretation. Rahman [19], knowing what to prove, has 
given an analytic proof of the addition formula for the little g-Legendre polynomials. As 
a follow-up to Koornwinder's [14] paper, in which he establishes an interpretation of a 
two-parameter family of Askey-Wilson polynomials as zonal spherical elements on the 
quantum SU(2) group, abstract addition formulas, i.e. involving non-commuting vari
ables, have been given by Noumi and Mimachi [17] (see also [18]) and by Koelink [10]. 
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As a result of this approach there is a (degenerate) addition formula for the two-parameter 
family of Askey-Wilson polynomials, cf. [17], [10]. 

The group theoretic proof of the addition formula for the Legendre polynomials starts 
with the spin 1(1 G Z) representation i of the group SU(2). The matrix elements énm are 
known in terms of Jacobi polynomials and the matrix element /Q 0 is expressible in terms 
of the Legendre polynomial. Moreover, tl

0 0 is the zonal spherical function with respect 
to the one-parameter subgroup K = S(U(l) x f/(l)) of SU(2), i.e. ̂ (gk) = éQ0(kg) = 
/Q 0(g) for all g G SU(2) and for all k € K. Using the homomorphism property we get 

(1.1) io(gh) = Tik(g)io(h\ Vg,h £SU(2), 
k 

which yields the addition formula for the Legendre polynomials. We can also view (1.1) 
as an expression for the unique (up to a scalar) function SU(2) 3 g i—> tfQQ(gh) in the 
span of the matrix elements tl

nm, which is left ^-invariant and right hKh~x -invariant. It 
is this view of (1.1) we adopt in this paper. 

This view of (1.1) implies that we are not using the comultiplication in the quantum 
group theoretic derivation of the addition formula, in contrast with the quantum group 
theoretic proofs of addition formulas mentioned. We start with a formula relating the 
unique (up to a scalar) zonal spherical element, which is left and right invariant with 
respect to different quantum "subgroups", to the matrix elements of the standard irre
ducible unitary representations of the quantum SU(2) group. This formula is proved by 
Koornwinder in his paper [14] on zonal spherical elements on the quantum SU(2) group. 
In [14] Koornwinder interpreted a two-parameter family of Askey-Wilson polynomials 
as zonal spherical elements on the quantum SU(2) group. For a suitable choice of the 
parameters a quantum group theoretic interpretation of the big ^-Legendre polynomials 
is obtained, which is a quantum group analogue of (1.1). 

This identity involves non-commuting variables, so we use a representation to obtain 
an identity for operators acting on a Hilbert space. By letting these operators act on suit
able vectors of the Hilbert space and taking inner products we obtain in a natural way 
an addition formula for the big g-Legendre polynomial. The addition formula involves 
Al-Salam-Carlitz polynomials, little g-Jacobi polynomials and dual g-Krawtchouk poly
nomials. The big g-Legendre polynomial corresponds to the term /Q 0(gh) on the left hand 
side of (1.1) and the little g-Jacobi polynomials, respectively the dual g-Krawtchouk 
polynomials, correspond to ^k{g), respectively tl

k0(h), in (1.1). The Al-Salam-Carlitz 
polynomials stem from the non-commutativity. 

The dual g-Krawtchouk polynomial tends to the Krawtchouk polynomial as q ] 1 
and the Krawtchouk polynomial can be rewritten as a Jacobi polynomial, cf. Koorn
winder [11, Section 2], Nikiforov and Uvarov [15, Sections 12 and 22]. On the level of 
basic hypergeometric series we can rewrite the dual ^-Krawtchouk polynomial as a ratio
nal function resembling a Jacobi polynomial of argument z/( l +z), cf [9, p. 429]. From 
the addition formula we obtain an expression for the product of a little g-ultraspherical 
polynomial times a dual ^-Krawtchouk polynomial as a ^-integral transformation of the 
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big g-Legendre polynomials. We show that a special case of this addition formula is 
related to a special case of the addition formula for little g-Legendre polynomials, cf. 
[13]. 

Although our initial relation is a special case of the initial relation for Koornwinder's 
second addition formula for g-ultraspherical polynomials, which he announced in [14, 
Remark 5.4], the addition formula for the big g-Legendre polynomial proved here is not 
a special case of that second addition formula. This is due to the fact that we use an 
infinité dimensional * -representation on our initial relation, whereas Koornwinder uses 
a one-dimensional ^representation to obtain the g-Legendre case of his addition formula 
for g-ultraspherical polynomials. 

It should be noted that there is an abstract addition formula for the big g-Legendre 
polynomial as a special case of the general abstract addition formula mentioned before, 
cf [10], [17]. It is (at present) unknown whether it is possible to derive an addition for
mula for the big g-Legendre polynomials from the abstract addition formula. It might 
give an extension of the result presented in this paper. 

This paper is organised as follows. In Sections 2 and 3 we recall the necessary in
formation on basic hypergeometric orthogonal polynomials and on the quantum SU(2) 
group. The main result is proved in Section 4. Finally, in Section 5 the limit q ] 1 is 
considered. This limit transition can be handled with the devices developed by Van Ass-
che and Koornwinder [22] to prove that the addition and product formula for the little 
g-Legendre polynomials tend to the familiar addition and product formula for the Leg-
endre polynomial. 

2. Preliminaries on basic hypergeometric orthogonal polynomials. The nota
tion for ^-shifted factorials and basic hypergeometric series is taken from the book [7] 
by Gasper and Rahman. We will assume q G (0,1). 

The big g-Jacobi polynomials were introduced by Andrews and Askey [3, Section 3] 
and are defined by 

^ ^ n , , , x lq-\abqn+\qaxlc \ 
(2.1) Pn(x;a,b,c,d;q) = 3(p2[ , , m,q,q ) • 

\ qa,—qaa/c f 
The polynomial Pn(x\ 1,1, c, d\ q) is the big g-Legendre polynomial. 

The monic big g-Jacobi polynomials P„ with a = 0, b = 0, can be obtained as a 
limit case of (2.1). First calculate the coefficient of xn in (2.1) and next apply [7, (3.2.3)] 
before taking a—*0,b—>0. We find 

(2.2) Pn(x;0,0,c,d;q) = ^ " " ' V , ( ^ ^ ^ ' " f ) ' 

Pn(x;0,0,c,d;q) = (-crqi«"-"2<pl ^ " " ' ^ W , f ) . 

These polynomials satisfy the three-term recurrence relation 

xPn(x\ 0,0, c, d\ q) = Pn+l(*; 0,0, c, d\ q) + q\c - d)Pn(x; 0,0, c, d\ q) 

+ qn-lcd(\-qn)Pn^(x;0,0,c,d;q). 
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Comparison of (2.3) with the three-term recurrence relation for the Al-Salam-Carlitz 
polynomials, cf. [1, Section 4], [6, Chapter VI, Section 10], shows that these 
monic big #-Jacobi polynomials are Al-Salam-Carlitz polynomials with dilated 
argument, Pn(x'90,0,c,d\q) — cnLrn~ ' (x/c;q). The orthogonality relations for the 
/*„(•; 0,0, c, d; q) can be phrased as 
(2.4) 

J (PnPm)(x; 0,0, c, d\ q)(qx/c, —qx/d; q)oo dqx 

= 6n/ttqi«n-l\cdr(q;q)„(l - q)c(q, -d/c, -qc/d^. 

Here the ^-integral is defined by, cf. [7, Section 1.11], 

fb rb 
r(x)dqx - I f(x)dgx, /A f{x)dqx = a(\-q 

k=o 

fbf(x)dqx = jj(x)dqx - [f(x)dqx, \j(x)dqx = a{\ - q) f:f(aqk)qk. 
J Q. J\j J\J J\J r, r\ 

We will also need the little g-Jacobi polynomials pn(x;a,b;q), cf. Andrews and 
Askey [2, Section 3], [3, Section 3]. The little g-Jacobi polynomials are big g-Jacobi 
polynomials with c = 1 and d = 0 and normalised such that the value at 0 is 1. Explic
itly, 

n n f u ï (q-\qn+Xab 
(2.5) pn(x;a,b;q) = 2(f\ ;q,qx 

\ W 
The last set of orthogonal polynomials needed is the set of dual g-Krawtchouk poly

nomials, cf. [21, Section 4], which is a special case of the g-Racah polynomials, cf [5, 
Section 4]. 

(2.6) Rniq-'-s-^-^Niq) = W2 (^"^^^~"'>«>4 

forn e {0,...,7V}. 

3. Results on the quantum SU(2) group. Let q € (0,1) be a fixed number. The 
unital *-algebra J^ is generated by the elements a and 7 subject to the relations 

(3.1) on = qla, ca* = ql*a, 77*^7*7 , 

a*a + 77* = 1, aa* + q2ll* = 1. 

For q j" 1 the algebra can be identified with the algebra of polynomials on the group 
SU(2). The algebra j ^ is actually a Hopf *-algebra. See [12], [16] for references to the 
literature. 

The irreducible unitary corepresentations of the Hopf * -algebra J^ have been classi
fied. For each dimension 2/ + 1, / G |Z+, there is precisely one such corepresentation, 
which we denote by tl — (tl

nm), n,m G {—/,—/ + 1,.. . , /}. The matrix coefficients 
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tl
nm G 5\q are explicitly known in terms of little #-Jacobi polynomials. For our purposes 

it suffices to have 

(3.2) <m = <4(a*y>-m(77*; q2m,q2m;q2)(-ql*)m 

i-m = dl
mimpl-m(ii*;<i2m,q2m;<i2)<xm 

with 
n—m{l—m) 

di = 
(q2\q2)i+n, 

{q2\q2)m\{q1\q1)i-m 
for / G Z+, m — 0 , . . . , / . See [12], [16] for this result as well as for references to the 
literature. 

Next we recall a special case of Koornwinder's result [14, Theorem 5.2] on general 
spherical elements on the quantum SU(2) group. The case we consider is the case r —-> oo 
of [14, Theorem 5.2]. Explicitly, the following identity in J^ is valid; 

(3-3) É q~m/2c%hm = QiaWp^; 1, \,q2°, \;q2). 
m=-l 

where a G IR, 

cl,° = J,° = L i . R, (a-V _ a-2/~2a. la 2 / . 2* 
VO? ;92)/+m(^2;r)/-m 

CKa)-(-D« ( < / 2 / + W ) / 

are constants and 

pajoo = lim 2qa+T-xpa,T = iqa(a*r - la) - (1 - q2°)>y*l G .%. 

Here p^T is defined in [14, (4.8)]. Equation (3.3) can be proved by redoing Koorn
winder's [14] analysis with XT replaced by Jfoo or by taking the limit r —̂  oo in his 
result [14, Theorem 5.2]. In the latter case we use the limit transition of the Askey-Wilson 
polynomials to the big g-Legendre polynomials as described in [14, Theorem 6.2], cf — 
jlq-^-h^i.qi^n^ a n d t h e l i m i t 

lim q2rlcl>r = ( ~ 1 ) / ^ ° 
11111 Lf L, (JTM. JT\ ' 

This follows for m > 0 from [7, (3.2.3) with e — 0, (1.5.3)] and by the symmetry 
clZm — cl£ for all m. 

A *-representation TT of the commutation relations (3.1) is acting on l2(l+) equipped 
with an orthonormal basis {en}^n€Z+y, a n d the explicit action of the generators is given 

by +  

(3.4) ir(a)en = y/l - qlnen-u <l)en = qnen. 

The irreducible ^representations of J^ have been classified, cf. [12] and the references 
therein. The infinite dimensional *-representations are parametrised by the unit circle; 
7T0(a) = ?r(a) and 7^(7) = ei9ir(y) for 0 G [0, 2TT). 
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4. Addition formula for big g-Legendre polynomials. In this section we prove 
an addition formula for the big g-Legendre polynomials. We start by representing the 
relation (3.3) in J^ as an identity for operators in the Hilbert space t2(Z+). Letting these 
operators act on suitable vectors and taking inner products yields the addition formula. 
This addition formula involves Al-Salam-Carlitz polynomials, little g-Jacobi polynomi
als and dual g-Krawtchouk polynomials. From the addition formula we find a ^-integral 
representation for the product of a little g-Jacobi polynomial and a dual g-Krawtchouk 
polynomial. 

Consider the action of the infinité dimensional *-representation 7r in £2(Z+) on pat00. 
The operator 7r(pa0o) is a bounded self-adjoint operator and the action on a basis vector 
en of the standard orthonormal basis is given by 

TTOVOOK = - t f ^ - y i - ^ n - i - qln{\ ~ q2a)en + iq^yfl^q^e^. 

Consequently, E^Lo/7"^ *s a n eigenvector of ^(pa,oo) for the eigenvalue A if and only if 

(4. 1) Xp„ = -iqG+nJ\ - q2n+2
Pn+x - qln(\ - q2a)pn + i^^y/T- q2npn-X V/i. 

Since/7_i = 0 andpo = 1, we view (4.1) as a three-term recurrence for polynomials in 
À. In order to determine the polynomials from (4.1) we calculate the leading coefficient 
lc(pn) = inq~anq~în(n~x\q2\q2)n

 5 and determine the three-term recurrence relation for 
the monic polynomials^; 

(4.2) \pn{\) = / W A ) - g2V - q2°)pn{\) + (1 - q2")q2°+2n-2pn-i(\). 

Comparison of (4.2) with the three-term recurrence relation (2.3) for the big #-Jacobi 
polynomials with a = 0 and b = 0 leads to 

(4.3) pn(X) = fq^nq-L2^-l\q2',q2);^Pn(X;0,0,q2\ \;q2). 

Denote the corresponding vector by v\ = Y^LoPnityen-

PROPOSITION 4.1. For X = -q2*, x G Z+, and X = q2(T+2x, x G Z+, the vectors vA 

constitute an orthogonal basis ofl2(Z+). 

PROOF. From the asymptotic formula, cf. [8, (1.17)], as n —> oo 

Pn(X;0,0,c,d;q)~Xn(c/X,-d/X;q)oo 

for A ^ 0, A ^ ccf and A ^ -dcf, x G Z+, it follows that vA £ £2(Z+) for A ^ -q2* and 
X^q2(J+2x,xeZ+. 

In the remaining cases we use the straightforward estimate 

(4.4) q \q 
2<p\\ 0 \q->z <q x\-q x;q)x(q,-\z\;q)oo, 

for fixed x G Z+, in combination with the series representation (2.2) for the monic big 
g-Jacobi polynomials Pn(-; 0,0, c, d; q) to see that we obtain eigenvectors v\ G £2(Z+) 
for 7r(pa?00) for the eigenvalues A = — g2*, x G Z+, and A = q2a+2x, x G Z+. 
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The orthogonality follows, since the vectors are eigenvectors of a self-adjoint operator 
for different eigenvalues. It remains to prove the completeness of the set of eigenvectors 
in £2(Z+). To do this we first calculate the length of the eigenvectors in £2(Z+). Consider 
A of the form q2a+2x, x G Z+, then we have proved the orthogonality relations 

oo nn{n-\) -Ion I -2x n-2n \ 
h £ V* " " „ V >V . „2 „2+2o+2x \ 

(4.5) x
 x ' 

ss ,„ V 'V . „2 2+2a+2y \ 
x 2 ^ 1 I 0 ,q ,-q I , 

forx,y G Z+, //JC > 0. We view the 2^1 -series as a polynomial of degree* in the variable 
q~2n. It has leading coefficient (—\yq2x(^x+a\ Since (4.5) holds, we have 

(4.6) hx = ( - D V ^ ) £ * * 2^, 
n\n-\) -Lan n ' ^ n~zn \ 

q q q ,q 2 2+2<T+2JC \ - 2 H * 

2^ r 2 2\—2(^M n '^ ' ~ ? <? 

w=o (r;r)/i \ ° / In (4.6) we replace the 2^1 -series by its terminating series representation 

A {q~^\ q2)k(q~2n\q2)k ( . ,k2k(\+a+x) 

*=o Or;r)* 
and we interchange the summations, which is justified by the estimate (4.4). The inner 
sum over n starts at n — k and after a shift in the summation parameter the inner sum 
can be evaluated using o^o(—; —\q*z) — (z',q)oo, cf. [7, (1.3.16)]. The remaining sum 
over k can be summed using the ^-binomial theorem 1 (fo(q"pl —'•> q,z) — {q~pz\ q)p, cf. 
[7, (1.3.14)]. The result is 

(4.7) hx = q-^tf^q'U-q^^q'U-q-^iq2)^ 

Sowx = v̂2«r+zr /11 v̂2rr+2x 11 is an eigenvector of length 1 of the self-adjoint operator 7r(paoo). 
The orthogonality relations for the eigenvectors corresponding to eigenvalues of the 

form —q2*, x G Z+, is (4.5) with a replaced by — a. So ux = v_^ / | | v_^ | | is an eigen
vector of length 1 of the self-adjoint operator 7r(paoo). 

The set of orthonormal eigenvectors {ux}{xeI+} U {w*}^^} forms a complete set of 
basis vectors for i2(Z+) if and only if the dual orthogonality relations 

(4.8) 6„im = J2(ux>en)(ux,em) + YJ(wx,en)(wx,efn) 
x=0 x=0 

hold. It is easily seen that (4.8) is equivalent to the orthogonality relations (2.4) for the 
monic big g-Jacobi polynomials P„(-; 0,0, q2°, 1; q2). The first sum in (4.8) corresponds 
to the ^-integral over [—1,0] and the second sum corresponds to the ^-integral over 
[0,q2al m 

The orthogonality relations (ux, uy) = 5x^y (or (wx, wy) = 5x,y) and (ux, wy) = 0 can be 
stated in terms of the g-Charlier polynomials, cf. [7, exercise 7.13]. (Note that the factor 
on the right hand side in [7, exercise 7.13] has to be replaced by its reciprocal.) 
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COROLLARY 4.2. Define the q-Charlierpolynomials by 

cn(x;a;q) = 2¥\(q~n,x;0;q,-qn+l /a\ a > 0, 

then 
oo ax \x{x-\) 
YJ —} x—(cncm)(q~x\a\q) = 6nimq~n(q\q)n(-q/a;q)„(-a;q)c> 

x=o w> q)x and 
oo / 

E — 
x=o (q\q\ 

- (-lYqixb-V 
E 7—^ c"(q x>a><l)cm(q x\a ,q) = 0. 

In order to convert (3.3) into a relation involving commuting variables we apply the 
infinite dimensional *-representation ir to it. We let the resulting bounded operator act on 
a standard basis vector ep and we take inner products with an eigenvector vA G ^2(Z+), 
cf. Proposition 4.1. Next we use the fact that IT is a *-representation to get the following 
identity 

(4.9) £ < r M / 2 ^ M C ) W A > = C,(tj)P,(K 1, \,q2°, Uq2)(eP,vx), 
m=-l 

since P/(A; 1, l,q2a, l;q2) is a polynomial with real coefficients and 7r(paoo) is self-
adjoint. The operator on the left hand side of (4.9) can be calculated explicitly by (3.2) 
and (3.4), since the standard basis vector ep is an eigenvector of 7r(7). Explicitly, for 
m>0, 

(4.10) 7r(im)ep = dU-\)mqm^XU(^^ 

with the convention en = 0 for n < 0. Furthermore, from (4.3) it follows that for all 
pei+ 

V(<r;<r)p 
(4.11) (ep,vx) = \ - ^ - - - Pp(X;0,0,q2a, Uq2)-

Now we use (4.10) and (4.11) in (4.9) together with the explicit values for Ci(a), cl£ 
and dl

m, cf. (3.2), (3.3). Divide the resulting identity by the factor in front of the monic 
big g-Jacobi polynomial in (4.11) to obtain 

(-\)lq-,1-,(~q
2J'q),Pl{\; 1, \,q2°, l-q^PiX-O^q1", \;q2) 

(q2l+2;q2)i 
1 R,(q-21 - q-2,-2°-q2°,2l-q2)Pl(q

2i>- 1, l;q2)Pp(\;0,0,q2°, \;q2) 
{q2\q2\ 

(4.i2) + £(-1r;2. ™/i ;:R,-m{q-21 - q - 2 l ~ 2 ° ; q
2 \ n , q

2 ) 
q2m(p-\q2p\q-2)m „ (n-2, „-»-•*. j * 

£\ '' (q2;q2)i~m{q2;q2)n, 

xPl_m(q^-^;q2m,q2m;q2)Pp.m(M0,0,q2\l;q2) 
m(m+\)-2m((T+l) 

I ("!)"" , 2 2 , , 2 2 , ^/-m(g"2/ - q'2'-2a;q2a, 
l {q2,q2)i~m{q2;q2)m 

x P / - m ( ^ ; q2m,q2n;q2)Pp+m(k 0,0, ?
2CT, 1 ; ?

2 ) 
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for A = -q2*, x G Z+, or A = q2(J+2x, x G Z+. 
We can now state and prove the main theorem of the paper. 

THEOREM 4.3 (ADDITION FORMULA FOR THE BIG ^-LEGENDRE POLYNOMIAL). With 
the notation of (2.1), (2.2), (2.5) and (2.6) we have for c,d>0,p,leZ+,xe C, 

( - l ) V ^ ( / + 1 ) ( 7 / f i / C ; ^ / p / ^ *> l,c,d;q)Pp{x;0909c9d;q) 

= {q\q)TXRi(q~l - V ' ; ^ ,2 / ; ?)/>/(/; 1, \;q)Pp(x'90909c9d'9q) 

(4.i3) +E(-ir<7 , {y\)mRlJq-'--q-'-,-,2i-,q 
m=\ {q;q)i-m{q;q)m v c of 

X p,-m{qp~m;qm,qm;q)Pp-m(x; 0,0, c, J; q) 

m=i cm(q-9q)^m(q;q)m \ c d J 

x p /_ w ( / ; *w, *w; q)PP+m(x; 0,0, c, </; 4). 

PROOF. Since (4.12) only involves polynomials, it holds for all values of A. In (4.12) 
we replace q2, q2°, A by q9 c/d9 x/d. Now (4.13) follows from 

Pn(xjd\ a9 b9 c/d91 ; q) = Pn(x; a9 b9 c9 d\ q\ 

Pn(x/d; 0,0, c/d,\;q) = d~nPn{x\ 0,0, c, d\ q\ 

which is a consequence of (2.1 ) and (2.2). • 

REMARKS. 1. The choice of the infinité dimensional ^representation does not in
fluence the result. We would obtain the same addition theorem if we had considered 
the development of a (oo,T)-spherical element in terms of the standard matrix elements 
instead of (3.3). 

2. If we specialise c = 1 and d — 0 in (4.13), then we can sum the dual g-Krawtchouk 
polynomials #/_w by the g-Chu-Vandermonde sum [7, (1.5.3)], from which we see that 
Ri^m equals (qm+l

9q)i^m/(ql+m+l'9q)i^m. The monic big g-Jacobi polynomial Pp with 
a — b — d — ^9c — l i s summable by the ^-binomial theorem [7, (1.3.14)], which 
results in (— \fq^p{p~X){(^~px\ q)p. Furthermore, the big g-Legendre polynomial reduces 
to (—iy#5/(/+1)p/(jt; 1,1; ̂ r), so that we obtain the following special case of (4.13); 

/ qm(m-l+p)(q.q^ 

=0 \Qi<l)l-mKq,q)î 
Pl(x9l9\9q)(ql^x-9q)p=Y: \ \ ' yJ^^2

mpl^m(qP;qm
9q

m;q)(ql-P-mx'9q)i 

This corresponds to the case x —» oo of Koornwinder's addition formula for the little 
g-Legendre polynomials [13, Theorem 4.1 with qz = x]. 

The following ^-integral representation for the product of a dual g-Krawtchouk poly
nomial and a little g-ultraspherical polynomial is a direct consequence of Theorem 4.3 
and the orthogonality relations (2.4). Just multiply (4.13) by Pp+m(x'9 0,0, c, d\ q) and q-
integrate over [—d, c] with respect to the weight function (qx/c9 —qx/d; q)^. 
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COROLLARY 4.4. For c, d > 0, p, I e 1+, m e {0, . . . , /} we have 
(4.14) 

R^m [q-1 - V ' ; -j 2/; q)Pi-.m(qp; qm, qm\ q) 

/
c „ 

Pi(x; l,l,c,d;q)(PpPp+m)(x', 0,0,c,d;q)(qx/c, -qx/d;q)^ dqx 
with 

C = 
(1 - q)c(ql+{ ; q)i(qm+l ; q)p(q, -d/c, -qc/d; q)& 

Multiplying (4.13) by Pp-m(x; 0,0, c, d, ; q) and ^-integrating over [—d, c] yields the 
same result (4.14). Specialising m = 0 in (4.14) shows that the product of the little q-
Legendre polynomial and a dual g-Krawtchouk polynomial can be written as a ^-integral 
transform with a positive kernel of the big g-Legendre polynomial. 

5. The limit case q \ 1. In this section we show that the addition formula for the 
big g-Legendre polynomials (4.13) and the product formula (4.14) tend to the addition 
and product formula for the Legendre polynomials as q \ 1. The general theorems of 
Van Assche and Koornwinder [22] used to obtain the addition and product formula for 
the Legendre polynomials form the addition and product formula for the little g-Legendre 
polynomials, cf. [13], are applicable in this case as well. See Askey [4, Lecture 4] for 
information on addition formulas for classical orthogonal polynomials. 

We use the notation R^\x) for the Jacobi polynomial normalised by R^\\) = 1. 
First we note that the little and big g-Jacobi polynomials tend to the Jacobi polynomials 
of shifted argument as q j 1 ; 

(5.1) limPn(x;q»^,c, d;q) = R^(^-£), 
q\\ V C + d I 

\impn(x;qa,qP;q) = R^Xl -2x). 

The dual g-Krawtchouk polynomial can be rewritten as a 2^2-series, which tends to a 
Jacobi polynomial as q f 1. This has also been used in [9, p. 429] to prove that the 
g-Krawtchouk polynomial tends to Jackson's g-Bessel function. We can also let the 
dual g-Krawtchouk tend to the Krawtchouk polynomial and use the relation between 
Krawtchouk polynomials and Jacobi polynomials, cf. [11, Section 2], [15, Sections 12, 
22]. The result is 

(5.2) l i m ^ - ' - V ; Cj,2l;q) = . / " + ̂ 7" (l + i)'^^). 
q]\ \ c d J (/ + m+l)/_mV c) \c + dJ 

In order to apply the theorems of Van Assche and Koornwinder [22] we have to con
sider the orthonormal big q-Jacobi polynomials with a = 0, b — 0. Define 

(r ~ , x Pk(x;0,0,c,d;q) 
(5.3) Pk(x;q)~ 

q\Kk-\\cdfl2{x _ q)U2ci/2^(q;q)k(q9_d/c^qJl^^Q' 
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then the polynomials pk(x\ q) satisfy the recurrence relation 

xpk(x; q) = ak+l(q)pk+l(x; q) + bk(q)pk(x; q) + ak(q)pk- \ (x; q) 

with 
ak(q) = q^-VyfidV^), bk(q) = q\c - d). 

Fix r G (0,1) and define ak,n — ̂ k(r^n) ar*d bkt„ = bk{rxln). The following limits are 
easily established; 

lim a„,„ = Jrcd(\ — r) > 0, lim bn,n = r(c — d) G R 
n—>oo ' «—>oo 

and 
lim (a2

kn - a\_x „) = 0, lim {bKn - bk^ln) = 0 

uniformly in A:. Now [22, Theorem 1] can be applied and it yields 

(5.4) j i m / , T w . / = P 
«—->00 

Pa+ifor1/1') = f * - r(c - rf) > 

Pn(x\rxl») P\2^rcd{\-r)j 

uniformly on compact subsets of C \ [—d,c\ Here p(x) = x + v7*2 — 1 and the square 
root is the one for which \p(x)\ > 1 for x £ [—1,1]. Rewriting (5.4) in terms of the big 
g-Jacobi polynomial and iterating yields 

PM-Mc^h = , ^ _ y/2 (x^r(c-d)\ 
p^oo Pp(X;0,0,c,d;rl/P) V V n \2y/rcd(\ - r)) 

for all m G Z and JC <E C \ [-d, c]. 
Now the proof that (4.13) tends to the addition formula for Legendre polynomials can 

be finished. Replace q by rxlp in (4.13), divide both sides by (ql+{;q)JxPp(x;0,0,c,d\ 
rxlp) and let/? —* oo, /.<?. g j 1, then we can use (5.1), (5.2) and (5.5) to obtain, after a 
short calculation, 

<'1^H-'«"'(^Kw<'-2'-> 
< 5 - 6 > + É „ (';"',<;:,;'>r;> ( - » * • < ' + ' > - ( - K > ^ - / ; 

_ , (/ — m)\m\(l + m+ !);_„ c Vc 
m=l 

The term in square brackets equals 2TmUx — r{c — d])j2\]rcd(\ — r ) j , where 
Tm(cos0) = cos m6 is the Chebyschev polynomial of the first kind. In (5.6) we also use 
R^'m\—x) — (— 1 )nR^m\x)9 then we find, after a short manipulation of the Pochhammer 
symbols, 

(5-7) +2±n«\fn +
 d-riUl-r)Y,2^:)fd~C 

(/-m)!(/w!)2V c Vc v V 7-w \c + d 
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Since the dependence on x in (5.7) is polynomial, the restriction x G C \ [—d, c] can be re
moved. Formula (5.7) is equivalent to the addition formula for the Legendre polynomial, 
cf. [4, Lecture 4], 

4- (' + '«)! ,-2m (5-8) + 2 Z n JL.22-^(y/(r:^i~-yi))m^)M^)(y)n (0 

by identifying (d — c)/(c + d), 1 — 2r, (JC — r(c — d)^/2^/rcd(\ — r) with x,7 and /. 

The limit case of the product formula (4.14) can also be handled with the methods 
developed by Van Assche and Koornwinder [22]. Note that 

A = lim an+kn = Jrcd(\ - r), B = lim bn+Kn = r(c - d) 

for all k G Z. Now [22, Theorem 2] can be applied to yield 

re . , , , 1 rB+2A f(z)Tm Uz — B)/2A) 
(5.9) lim f(z)pp(z;rlhpp+m(z'y/p)dlip(z) = ~ L 7Â )A£ , ' / dz 

p^œ J-d r r ^ jB_2A ^/4A2 — (z — B)2 

for all continuous functions/ on [—d, c\. Here 

j_J(?)dlip{z) = J_J'(z)(qz/c,-qz/d;q)00dqz 

with q on the right hand side replaced by rxlp, and the pp(z; q) are the orthonormal big 
g-Jacobi polynomials with a — b = 0,cf (5.3). 

If we now use (5.9), (5.3), (5.2) and (5.1) to take the limit q = rxlp j 1, i.e. p —> 00, 
in (4.14), we obtain 

(-if-(^i-.)/c)"m/2(/:m)!w! r ^ r ^ - * ) ^ - ^ 2 ^ 
V V 7 7 ( / + 1)/7T JB-2A l V C + d J ^4A2 - (Z - £ ) 2 

" ( / + m + l ) / _ m
U V Kl-m\c + d)

Kl-m^ ») 

with v4 = \Jrcd{\ — r), B — r{c — d). By changing the integration variable to / = 
(z-B)/2A,replacing(d-c)/(c+d), l - 2 r b y x , 7 a n d u s i n g ^ m ) ( - x ) = (-\fR^m\x) 
we obtain the product formulas 

«Wr 'oo=2^ ( / ~^y(>/ ( r^) ( r37)) - -
(5.10) *• j ' 

x /' * r v W ( i - ^ 2 x r - ^ ) - ^= *• 
• / _ l v 1 — r 
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