# Multiple stellar populations in the massive clusters M22 and Omega Centauri

## A. F. Marino

Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany email: amarino@MPA-Garching.MPG.DE

Abstract. An intriguing discovery in the field of multiple stellar populations in globular clusters is that some of them show internal variations in the bulk of the heavy-element content. I summarize the chemical properties of one of these clusters, M22, in comparison with the most extreme  $\omega$  Centauri, underlying the analogies and differences between the two objects.

**Keywords.** stars: abundances, globular clusters: individual (M22,  $\omega$  Centauri).

### 1. Introduction

Since the '80s we know that light elements show peculiar patterns in globular clusters (GCs). On the other hand, variations in heavier elements were considered to be a trait of more massive systems capable to retain SN fast ejecta. In this respect the most massive Galactic GC  $\omega$  Cen was always considered a peculiarity. In fact, to account for its well known huge metallicity variations, it has even been suggested that  $\omega$  Cen is the remnant of a tidally disrupted dwarf galaxy rather than a *real* GC.

Surprisingly, recent discoveries have revealed that some GCs, besides  $\omega$  Cen, have variations also in the bulk heavy element content, in analogy with more massive systems. Differently from the simple *normal GCs* that do not show evidence for SN-based self enrichment, in these objects successive generation(s) may need to be invoked, with SNe also playing a role in the pollution of intra-cluster medium.

Among these anomalous GCs, M22 is the first discovered (Marino *et al.* 2009, hereafter M09; Da Costa *et al.* 2009) and surely the one whose spectroscopic features more closely resemble  $\omega$  Cen (Da Costa & Marino 2011).

#### 2. M22 versus $\omega$ Centauri

The most striking similarity between M22 and  $\omega$  Cen is the internal variation in the overall metallicity. In M22, M09 and Marino *et al.* (2011a, hereafter M11a) obtain a total metallicity spread of more than a factor of two:  $-1.97 \leq [Fe/H] \leq -1.57$ , a range that cannot be explained by observational uncertainties. Note that, although metallicity variations are present in both clusters, in  $\omega$  Cen the range in [Fe/H] is more than a factor of 20 larger, with stars from [Fe/H]  $\approx -1.90$  to [Fe/H]  $\approx -0.60$ .

In addition to this, the abundance distribution for elements mainly produced in the slow (s) neutron-capture processes is clearly bimodal in M22 (M09, M11a). The two stellar groups with different s element content (s-rich and s-poor groups) are also characterized by: (ii) a mean different metallicity (M09); (ii) a mean different C+N+O content (M11a, Alves-Brito *et al.* 2012); (iii) in both groups internal variations in elements involved in the high temperature H-burning are present (M11a), so that each group individually traces the (anti)correlations in light elements found in *normal* GCs; (iv) on



**Figure 1.** C, N, O Na relative to Fe as a function of [CNO/Fe], [Fe/H], and [La/Fe] for M22 and  $\omega$  Cen stars. Dark-green and yellow points are the Na-poor and Na-rich stars in M22, and light-green and magenta points are the Na-poor and Na-rich stars in  $\omega$  Cen, respectively.

the photometric side, M22 shows a split sub-giant branch (Piotto *et al.* 2012), whose sequences correspond to the two s groups (Marino *et al.* 2012a).

The properties observed in M22 are also present in  $\omega$  Cen, but again, in this latter they are much more extreme. In Figure 1 a collection of chemical abundances for M22 (from M09 and M11a) and  $\omega$  Cen (Marino *et al.* 2011b, 2012b, hereafter M11b, M12b) is shown. In both clusters, stars have been divided into two groups on the basis of their position along the O-Na anti-correlation (see M12b for details). Note that the separation of different stellar groups on the basis of their light-element abundances is just a possibility. Alternatively, the separation in stellar groups could be explored on the basis of metallicity or *s* content (as in M11a, and M11b). An inspection of Figure 1 immediately gives an idea of how more extreme are the chemical variations in  $\omega$  Cen, and, at the same time, how similar are these objects in terms of chemical patterns: (*i*) all the *p*-capture elements (on the y-axis) have similar trends as a function of the CNO, Fe and *s* element La; (*ii*) Na-poor and Na-rich stars separately show similar patterns in the two clusters.

The most natural development of these findings is to understand where these objects formed. The analogies with  $\omega$  Cen, considered the possible relict of a dwarf galaxy, suggest the fascinating idea that also M22 could be the surviving nuclei of more massive system.

### References

Alves-Brito, A., Yong, D., Meléndez, J., Vásquez, S., & Karakas, A. I., 2012, A&A, 540, A3

- Da Costa, G. S., Held, E. V., Saviane, I., & Gullieuszik, M., 2009, ApJ, 705, 1481
- Da Costa, G. S., & Marino, A. F., 2011, PASA, 28, 28
- Marino, A. F., Milone, A. P., Piotto, G., et al., 2009, A&A, 505, 1099
- Marino, A. F., Sneden, C., Kraft, R. P., et al., 2011a, A&A, 532, A8
- Marino, A. F., Milone, A. P., Piotto, G., et al., 2011b, ApJ, 731, 64
- Marino, A. F., Milone, A. P., Sneden, C., et al. 2012a, A&A, 541, A15
- Marino, A. F., Milone, A. P., Piotto, G., et al. 2012b, ApJ, 746, 14
- Piotto, G., Milone, A. P., Anderson, J., et al., 2012, arXiv:1208.1873