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Abstract. The early gas and dust protosolar nebula of the solar composition is considered
analytically. A simultaneous formation of the sun and all the planets around it (≈ 5 × 109 yr
ago) through a local gravitational Jeans-type instability of small-amplitude gravity perturbations
in the nebula disk is suggested. It is shown that a collective process, forming the basis of
the disk instability hypothesis, solves with surprising simplicity the two main problems of the
dynamical characteristics of the system, which are associated with its observed spacing and
orbital momentum distribution, namely, Bode’s law on planet spacing and the concentration of
angular momentum in the planets and mass in the sun. Besides, the analysis is found to imply
the existence of new planets or other Kuiper-type belts of comets at mean distances from the sun
of 87 AU, 151 AU, 261 AU, 452 AU, 781 AU (Mercury, Venus, . . ., Asteroid belt, . . ., Neptune,
Kuiper belt, new planets or other Kuiper-type belts).
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1. Introduction
The “standard” theory of the multistage accretionary formation of planets, or the

so-called core accretion mechanism (Safronov 1972; Pollack et al. 1996) remained the
most popular until recently, when it was criticized by Boss (2002, 2003) and others. The
main problem is the timescale, which is longer than estimates of the lifetime of many
planet-forming disks (Taylor 1992, §1.9.1; Feigelson & Montmerle 1999).

We suggest that the sun and all the planets around it were created simultaneously by
disk instability. That is, at an early stage, the protosolar nebula refers to a fragment
that separated from a molecular cloud. Planetary formation is thought to start with
inelastically colliding gaseous and dust particles settling to the central plane of this
rotating nebula to form a thin layer around the plane. During the early evolution of the
disk it is believed that the dust particles coagulate into kilometer-sized rocky comets–
“planetesimals.” On attaining a certain critical thickness (and, correspondingly, very low
temperature) small in comparison with the radius of the system R, as a result of a local
gravitational collapse the nebula disintegrated into the central body and a number of
separate protoplanets.† Boss (2004) already demonstrated that convective cooling is able
to cool the disk midplanes at the desired rate to produce bound clumps in marginally
unstable disks. Following Boss et al. (2002), the hypothesis of disk instability envisions
coagulation and settling of dust grains within the protoplanets to form ice and rock
cores. A protoplanet accreted an additional amount of gas subsequently from the solar
nebula after accumulating a solid core, followed by the loss of the light elements of the
terrestrial planets through the thermal emission of the early sun. After its formation and

† Destabilizing self-gravity in much more “dangerous” in thin disks than in thick disks. If a
rotating gaseous disk has a large vertical thickness owing to a high internal temperature, then
it is stabilized against gravitational instabilities. Instabilities arise as the thickness of the disk
is reduced (Shu 1970; Safronov 1980).
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Figure 1. Sketch of perturbations of a three-dimensional protoplanetary disk. In (a) a section
of the disk is shown edge-on. In (b) an even (Jeans-type) perturbation is shown (the dashed
line). In (c) an odd (bending firehose-type; Kulsrud et al. 1971; Bertin & Casertano 1982; Griv
& Chiueh 1998) perturbation is illustrated (the dashed line).

the loss of the light elements, the terrestrial planets had suffered a “late planetesimal
bombardment” (Wetherill 1989).

The basic idea of planet formation through gravitational instability has been pioneered
by Kuiper (1951), Urey (1958), and Cameron (1978) by considering the formation of gi-
ant planets in the solar nebula. Gravitational instability appears to be capable of forming
giant planets with modest cores of ice and rock faster than the core accretion mechanism
can (Boss 2002). Apparently, Cassen et al. (1981) were the first to simulate the planet
formation in gravitationally unstable gaseous protostellar disks by N -body experiments.
Recently, Mayer et al. (2002), Johnson & Gammie (2003), and Rice et al. (2003) used
hydrodynamic simulations and N -body orbit integrations to study the long-term evolu-
tion of a fragmenting disk with realistic cooling. The advantages of the disk instability
model are that (1) the instability process itself is quite fast, and could form planets in
� 104 yr (Boss 2003), (2) in unstable, nonaxisymmetric disks differential rotation can
simultaneously transfer angular momentum outward and mass inward through gravita-
tional torques (Larson 1989; Taylor 1992, §2.9.2), and (3) such a model obviates the
requirements for turbulent viscosity, frequently appealed to as a physical mechanism for
outward transfer of angular momentum. This paper has precedents in earlier studies of
gravity disturbances in galactic disks and Saturn’s ring disk (Lin & Shu 1966; Shu 1970;
Griv et al. 2001, 2002, 2003; Griv & Gedalin 2003) and uses a largely previously published
analysis (Griv et al. 1999; Griv & Gedalin 2004) of the linear growth of perturbations in
a rotating disk to draw conclusions about the formation of the solar system.
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2. Oscillation spectrum
The dynamics of the gaseous component in the presence of the collective self-gravita-

tional field is considered. A Langrangian description of the motion of a gas element under
the influence of a perturbed gravity field is used, looking for time-dependent waves which
propagate in a differentially rotating, spatially inhomogeneous, and two-dimensional disk.
This approximation of an infinitesimally thin disk is a valid approximation if one considers
perturbations with a radial wavelength that is greater h, the typical disk thickness (Shu
1970; Safronov 1980).

The time dependent surface density σ(�r, t) is splited up into a basic and a developing
(perturbation) part, σ = σ0(r)+σ1(�r, t) and |σ1/σ0| � 1, where r, ϕ, z are the cylindrical
coordinates and the axis of the disk rotation is taken oriented along the z-axis. The
gravitational potential of the disk ℵ(�r, t) and the gaseous pressure P (�r, t) are also of this
form. These quantities σ, ℵ, P are then substituted into the equations of motion of a
gas element, the continuity equation, the Poisson equation, and the second order terms
of the order of σ2

1 , ℵ2
1, P 2

1 may be neglected with respect to the first order terms. In
our study we restrict the analysis to a treatment of “sausage-like” Jeans perturbations
(Bertin & Casertano 1982) which are symmetric with respect to the z = 0 equatorial
plane of the disk (which do not cause it to bend). See Fig. 1 for an explanation. These
perturbations are associated with such phenomena as, for example, the appearance of
the spiral structure of disk galaxies (Lin & Shu 1966; Lin et al. 1969; Shu 1970; Lin &
Lau 1979; Griv et al. 1999). The resultant equations of motion are cyclic in the variables
t and ϕ, and hence by applying the widely used local WKB method (Alexandrov et al.
1984) one may seek solutions in the form of normal modes by expanding

σ1(�r, t) =
∑
�k

σ̃�k exp
(
ikrr + imϕ − iω�kt

)
+ c.c. , (2.1)

where σ̃�k = const is the real amplitude, kr(r) is the real radial wavenumber, m is the non-
negative (integer) azimuthal mode number, ω�k =�ω�k + i�ω�k is the complex frequency
of excited waves, suffixes k denote the �kth Fourier component, and “c.c.” means the
complex conjugate. In the linear theory, one can select one of the Fourier harmonics:
σ̃ exp (ikrr + imϕ − iωt) + c.c.. The solution in such a form represents a spiral plane
wave with m arms or a ring (m = 0). The imaginary part of ω corresponds to a growth
(�ω > 0) or decay (�ω < 0) of the components in time, σ1 ∝ exp(�ωt), and the real
part to a rotation with angular velocity Ωp = �ω/m. Thus, when �ω > 0, the medium
transfers its energy to the growing wave and oscillation buildup occurs.

It is important to note that in the WKB method, the radial wavenumber is presumed
to be of the form

kr(r) = AΨ(r) , (2.2)

where A is a large parameter and Ψ(r) is a smooth, slowly varying function of the radial
distance r, i.e., d ln kr/d ln r = O(1), and in the WKB approximation |kr|r � 1.

Paralleling the analysis leading to Eq. (34) in Griv et al. (1999), we obtain that

σ1 =
σ0�

ω2
∗ − κ2

(
k2

r +
4Ω2 − κ2 + ω2

∗
ω2
∗

m2

r2
+

2Ω
ω∗

m

rL

)
+ c.c. , (2.3)

where σ1(t → −∞) = 0, so by considering only growing perturbations we neglected the
effects of the initial conditions, ω∗ = ω−mΩ is the Doppler-shifted (in a rotating frame)
wavefrequency, Ω(r) is the angular velocity of rotation at the distance r from the center,
κ ≈ Ω is the epicyclic frequency, � = ℵ1 + c2σ1/σ0, and c = (∂P/∂σ)1/2 is the sound
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Figure 2. A schematic model of a Jeans-unstable disk with m = 3 spiral arms; (a) the
Safronov–Toomre unstable disk (c < cT) and (b) the Safronov–Toomre stable disk (c � cT

but c < (2Ω/κ)cT and in the protosolar nebula 2Ω/κ ≈ 2).

speed. In Eq. (2.3) only the most important low-frequency (|ω2
∗| < κ2) perturbations

developing in the z = 0 plane between the inner and outer Lindblad resonances are
considered (Lin & Shu 1966; Shu 1970; Griv et al. 1999, 2002).

Equating the perturbed density σ1 (Eq. (2.3)) to the perturbed density given by the
asymptotic (k2

r � m2/r2) solution of the Poisson equation σ1 = −|k|ℵ1/2πG+c.c. (e.g.,
Griv et al. 1999, 2003), the solution of the generalized Lin–Shu-type dispersion relation
is easily obtained

ω∗1,2 ≈ ±p|ωJ| − 2πGσ0
Ω
ω2

J

m

r|k|L , (2.4)

where p = 1 for gravity-stable perturbations with ω2
∗ ≈ ω2

J > 0, p = i for gravity-
unstable perturbations with ω2

∗ ≈ ω2
J < 0, |L| = |∂ ln σ0/∂r|−1 is the radial scale of

spatial inhomogeneity, |kL| � 1, the term involving L−1 is the small correction,

ω2
J = κ2 − 2πGσ0(k2

∗/|k|) + k2
∗c

2 (2.5)

is the squared Jeans frequency, k =
√

k2
r + m2/r2 is the total wavenumber, k2

∗ =
k2

{
1 + [(2Ω/κ)2 − 1] sin2 ψ

}
is the squared effective wavenumber, and ψ = arctan(m/rkr)

is the perturbation pitch angle. Equation (2.4) determines the spectrum of oscillations.
This equation differs from the standard Lin–Shu expression (Lin & Shu 1966; Lin et al.
1969; Shu 1970) by the appearance of the total k and effective k∗ wavenumbers, which
originate from the consideration of the nonaxisymmetrical modes ∝ ψ, and by the factor
∝ L−1, which originates from the consideration of the effects of spatial inhomogeneity
(see Morozov 1980, 1981 and Griv et al. 2002, 2003 for a discussion).

From Eq. (2.5), the disk is Jeans-unstable (ω2
J < 0) to both axisymmetric (radial) and

nonaxisymmetric (spiral) perturbations if c < cT, where cT = πGσ0/κ is the Safronov–
Toomre (Safronov 1960; Toomre 1964) critical sound speed to suppress the instability
of axisymmetric m = 0 perturbations. Nonaxisymmetric (m, or ψ 
= 0) instabilities in
a differentially rotating disk is more difficult to stabilize; stability is achieved only for
sufficiently large sound speed c ≈ (2Ω/κ)cT ≈ 2cT (Morozov 1980, 1981; Griv et al.
1999, 2002). Thus, if the disk is thin, c � rΩ, and dynamically cold, c < cT (or Toomre’s
stability parameter Q ≡ c/cT < 1, respectively), then such a model will be gravitationally
unstable, and it should almost instanteneously (see below for a time estimate) taken on
the form of a cartwheel, that is, a structure of spirals and rings (Fig. 2a). One concludes
that Toomre’s Q-parameter that is < 1 suggests that the disk is likely subject to radial
and azimuthal gravitational instabilities and might therefore be clumpy. The instability
is driven by a strong nonresonant interaction of the gravity fluctuations (e.g., those
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produced by a spontaneous perturbation or a satellite system) with the bulk of the
particle population: in Eq. (2.3), ω∗ − lκ 
= 0, where l = 0,±1.

The growth rate of the instability is relatively high, �ω∗ ≈
√

2πGσ0(k2
∗/|k|) ∼ Ω,

that is, the instability develops rapidly on a dynamical time scale (on a time of 3-4 disk
rotations, or � 104 yr in the solar nebula). An important feature of the instability under
consideration is the fact that it is almost aperiodic (|�ω∗/�ω∗| � 1). From Eq. (2.5),
the growth rate of the instability has a maximum at the wavelength λ ≈ 4c2/Gσ0. At
the boundary of instability (c ≈ cT, or Q ≈ 1, respectively), λ ≈ λcrit = 4π2Gσ0/κ2 ∼
(2−4)πh; thus λcrit � h. It means that of all harmonics of initial gravity perturbation, one
perturbation with λcrit ≈ 3πh, with the associated number of spiral arms mcrit, and with
the pitch angle ψcrit will be formed asymptotically. For the parameters of the solar nebula
(R ∼ 1 000 AU, κ = 2π/Torb ∼ 10−10 s−1, and the total mass of the disk Md ∼ M�), one
obtains the typical mass of a protoplanet Mc ∼ λ2

critσ0 ∼ 10−3 M� ∼ 300M⊕. The latter
is coincident in order of magnitude with the masses of giant planets. (The detection of
a number of extrasolar planets with minimum masses ranging from 0.5 to 4MJ, where
MJ = 318M⊕ = the mass of Jupiter, has removed much of the concern that giant planets
might be rare in our Galaxy; Boss 2002.)

The larger part of the initial mass of protoplanets of the Earth’s group was probably
blown away due to intensive thermal emission of the early sun. Such a point of view is
not unnatural since the planets of the Earth’s type consist mainly of elements with a
high melting temperature and are almost lacking light elements. By adding to the present
masses of the terrestrial planets the amount of light gases which is necessary to restore
the chemical composition of giant planets, one obtains masses larger by a factor of several
hundreds, coincident with the masses of giant planets.

3. Spacing of the planets
There exists the empirical Titius–Bode (TB) rule which gives the mean orbital dis-

tances of the planets and which can be written in the Blagg–Richardson formulation:

rn = r0A
n , (3.1)

where rn is the distance of the nth planet from the Sun (in AU), n = 1 for Mercury, 2 for
Venus, . . ., and 9 for Neptune, A ≈ 1.73 is the mean ratio between two consecutive plan-
etary distances, and r0 ≈ 0.21. (The pure geometric sequence in the Blagg–Richardson
form is better than the original TB form rn = 0.4 + 0.3 × 2n, where n = −∞, 0, 1, . . . , 5
and rn are the distances (in AU), respectively, to Mercury, Venus, . . . , Neptune. In
particular, the skip in index from minus infinity to zero in the older form is quite un-
natural. The mean Asteroid belt distance is considered as a regular planetary distance,
r5 ≈ 2.8 AU. Unlike Polyachenko (Polyachenko & Fridman 1972), we do not treat Pluto
as a planet but as a member of a “resonant” population of the Kuiper belt objects. The
recently discovered Kuiper belt constitutes one of the few fossil records of the formation
of planets and planetesimals in the early solar system.) Also, one cannot overlook the
fact that many of the regularities which are found in the planetary system are also to be
seen in the regular satellite systems of Jupiter, Saturn, and Uranus, e.g., the spacing of
the regular satellites is a variation of the TB rule (Fig. 3). This suggests that the same
cosmogonic process must have been responsible for the origin of both types of systems.
Lynch (2003) has argued that it is not possible to conclude unequivocally that laws of TB
type are, or are not, significant. Therefore, the possibility of a physical explanation for
the observed distributions remains open. Using the Lynch method, Neslušan (2004) has
continued the discussion on the statistical significance of agreement between planetary
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Figure 3. Relation between distances of planets (satellites) from the Sun (giant planets) r and
their numbers n. Data observed are represented by circles: (a) the solar system, r0 = 0.21 and
A = 1.73, (b) the satellite system of Jupiter, r0 = 249.679 and A = 1.649, (c) the satellite
system of Saturn, r0 = 92.416 and A = 1.503, (d) the satellite system of Uranus, r0 = 89.737
and A = 1.46. The crosses represent the TB rule, Eq. (3.1). The organization of both types of
systems does not contradict to the TB rule.
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Figure 4. (a) Dependence of the perturbed surface density of the protoplanetary disk σ1(r)
(arbitrary units) on the radius r, Eq. (3.3). The maxima of the perturbed density coincide with
locations of the planets. (b) Spiral density waves with m = 1 arm in the (r, ϕ)–plane, (c) density
waves with m = 2 arms, and (d) density waves with m = 3 arms. The filled circles represent
the maxima of the perturbed density (protoplanets) of Jeans waves, which are unstable to both
axisymmetric and nonaxisymmetric perturbations.

distributions and a power law. Interestingly, the mean orbital distance to the recently
discovered Kuiper belt objects, r ≈ 46 AU (Luu & Jewitt 2002), is in fair agreement with
that given by the TB rule for the solar system’s 10th planet, r10 ≈ 50 AU. Liboff (2004)
has predicted the existence of a planet at a mean radius from the sun of ≈ 51 AU.

Equation (3.1) can be rewritten:

(2π/ ln 1.73) ln(rn/0.21) = 2πn . (3.2)

Next, the surface density of the disk may be represented in the form of the sum of the
basic equilibrium surface density σ0(r) and the perturbed surface density

σ1(r) = σ̃(r)e�ωt cos [11.46 ln(r/0.21) + mϕ] , (3.3)

where σ̃(r) is the amplitude varying slowly with radius, and [11.46 ln(r/0.21) + mϕ]
represents the phase varying rapidly with r, that is,

|kr|r ≡ 11.46 |(d/dr) ln(rn/0.21)| r � 1 .

Equation (3.2) and the condition σ̃(r) > 0 on the initial phase imply that the maximum
values of the perturbed density in Eq. (3.3) coincide with the positions of all the planets
(Fig. 4a).
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Interestingly, and this is the central part of our theory, the TB rule (Eq. (3.2)) satisfies
the conditions of the WKB wave with the effective TB radial wavenumber (Eq. (3.3))

keff = 11.46 r−1 , (3.4)

d ln keff/d ln r=O(1), and keffr�1 (cf. Eq. (2.2)). Note that Polyachenko (Polyachenko &
Fridman 1972) has considered this analogy in his investigation of the possibility of the
explanation of the law of planetary distances by the gravitational instability, but evidently
without success. In particular, Polyachenko studied only axisymmetric perturbations,
which do not carry angular momentum (see §4 below). Because keffr � 1, the short-
wavelength (λcrit/R � 1) WKB approximation used in the theory does not fail.

Thus, if the space dependence of the perturbed surface density of the protoplanetary
disk has the form of Eq. (3.3) with �ω > 0, the maxima of both radially and azimuthally
unstable gravity perturbations are located in places of the solar system’s planets (Figs 4b,
c, d). Let us define conditions under which the density maxima are localized on planetary
orbits. If the disk is inhomogeneous with respect to equilibrium parameters, the radial
wavelength of a perturbation with a maximum growth rate λcrit will be a function of the
radius r. From the above, the radial wavelength λcrit ≈ 4π2Gσ0/κ2, corresponding to
the minimum on the dispersion curve (2.4) (see also Griv et al. 2002, their Fig. 1). On
the other hand, the radial wavelength is λeff = 2π/keff . Comparing λcrit with λeff , we see
that in the case where the disk density is dependent on radius according to the law

σ0(r) ≈ 0.014G−1 κ2 r , (3.5)

the maxima of time-increasing, both radially and azimuthally Jeans-unstable density
perturbations are arranged in it according the TB rule. Interestingly, both optical and
near-infrared observations of pre-main-sequence stars of intermediate mass have revealed
the structure of spirals and rings, and thus presumably the Jeans instability of radial
and spiral perturbations, in the circumstellar disks (Fukagawa et al. 2004).

One concludes, therefore, that if the surface density of a protoplanetary disk falls ac-
cording to the law (3.5), the increasing maxima of density perturbations of a Safronov–
Toomre unstable disk (c < cT, or Q < 1, respectively) are located between the Lindblad
resonances in places of the planets. We believe to have obtained a theoretical inter-
pretation of the TB rule: the distance between planets is the wavelength of the most
Jeans-unstable perturbations λcrit at the given point of the protoplanetary disk.

4. The transfer of angular momentum
We next turn to the question of how to account for the concentration of angular

momentum in the planets and of mass in the sun. The collective torque exerted by the
gravity perturbations on the disk is Γ = −

∫ ∫
d2r(�r × �∇ℵ1)σ1 or

Γ = −
∫ r2

r1

rdr

∫ 2π

0

σ1(r, ϕ′)
∂ℵ1(r, ϕ′)

∂ϕ′ dϕ′ . (4.1)

The points r1 and r2 in which ω∗±κ = 0 are called the points of inner and outer Lindblad
resonances. They play an important role in the theory: the solution of spiral type (2.1)
rapidly oscillating in the radial direction lies between r1 and r2. Outside the resonances,
r < r1 and r > r2, the solution decreases exponentially. A special analysis of the solution
near spatially limited corotation (ω∗ = 0) and Lindblad (ω∗ ± κ = 0) resonances is
required. Resonances of a higher order, ω∗ ± lκ = 0 and l = 2, 3, · · ·, are dynamically of
less importance (Shu 1970). The present analysis is restricted to consideration of only
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the main part of a disk between the inner and outer Lindblad resonances. Lynden-Bell
& Kalnajs (1972), Goldreich & Tremaine (1980), Meyer-Vernet & Sicardy (1987), and
Griv et al. (2000) have investigated the wave–particle resonances.

Using Eq. (2.3), in terms of the Fourier components defined in Eq. (2.1), Γ =
∑∞

m=1 Γm,
from Eq. (4.1) one finds (|ω2

∗| < κ2)

Γm ≈ − 8πm2

Ω�ω∗
ℵ1ℵ∗

1

∫ r2

r1

dr
∂σ0

∂r
≈ −8π

m2σ0

Ω�ω∗
|ℵ̃|2e2�ω∗t if �ω∗ > 0 , (4.2)

or Γm = 0 if �ω∗ � 0. In Eq. (4.2), ℵ∗
1 is the complex conjugate potential, and the values

of ℵ1, ℵ∗
1, σ0, Ω are evaluated at r = r1. Four physical conclusions can be deduced from

Eq. (4.2). (a) The distribution of the angular momentum of a disk will change under the
action of only the nonaxisymmetric forces ∝ m. The latter is obvious: axially symmetric
motions of a system, studied by Polyachenko, produce no gravitational couplings between
the inner parts and the outer parts. (b) The distribution of the angular momentum will
change with time only under the action of growing, that is, Jeans-unstable perturbations
(�ω∗ > 0). In the opposite limiting case, �ω∗ → 0, absorption and emission of angular
momentum are confined only to resonate particles (Lynden-Bell & Kalnajs 1972). (c)
Unstable perturbations can transfer angular momentum only in an inhomogeneous disk
(∂σ0/∂r 
= 0). And (d) Γm < 0: the spiral perturbations remove angular momentum from
the disk. This takes place in the main part of the disk between the Lindblad resonances
where spiral density waves are self-excited by means of a nonresonant wave–“fluid” inter-
action. This in turn cannot be done for all masses because the total orbital momentum
must remain constant. As a result, the bulk of angular momentum is transferred out-
ward whereas the bulk of mass is correspondingly transported inward; a relatively small
group of outer particles with radii r > r2 moves outward, taking almost all of the angu-
lar momentum. We speculate that a large portion of the initial mass of the nebula was
transported toward the sun about 5 × 109 yr ago by the gravitational torque.†

Finally, let us evaluate the gravitational torque for a realistic model of the protoplan-
etary disk. In accordance with the theory developed above, the fastest growing spiral
mode with m � 1, k∗ = kcrit, and �ω∗ ∼ Ω is considered. Taking into account that
8πm2ℵ1ℵ∗

1 ∼ ℵ2
0 (an astrophysicist might well consider a perturbation with ℵ1/ℵ0 of

1/10 or even 1/3 to be quite small) and ℵ0 ∼ r2Ω2, where ℵ0 is the basic potential,
from Eq. (4.2) one obtains |Γ| ∼ σ0r

4Ω2. The angular momentum of the disk L ∼ σ0r
4Ω.

Then the characteristic time of the angular momentum redistribution is t ∼ L/|Γ| ∼ Ω−1.
Thus, already in the first three to four disk revolutions, in, say, about 104 yr, the gas–
dust protoplanetary disk sees almost all of its angular momentum transferred outward
and mass transported inward. With this efficient transport of angular momentum the
sun would be able to grow in mass. We conclude that the Jeans instability studied here
can give rise to torques that can help to clear the nebula on timescales of 105 − 106 yr,
in accord with astronomical requirements (Taylor 1992, §2.9.2). Besides, the analysis is
found to imply the existence of new planets or other Kuiper-type belts of comets at mean
distances from the sun of r11 ≈ 87 AU, r12 ≈ 151 AU, r13 ≈ 261 AU, r14 ≈ 452 AU,
r15 ≈ 781 AU (Mercury, Venus, . . ., Asteroid belt, . . ., Neptune, Kuiper belt, new planets
or other Kuiper-type belts).

† Lynden-Bell & Kalnajs (1972, p. 6) have proved that the gravitational torques can only
communicate angular momentum outward if the spirals trail. However, in contrast to the present
study, Lynden-Bell & Kalnajs considered a model perturbation propagating in a gravitationally
stable disk, �ω = 0.
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5. Discussion
With the paradigm of the standard accretion theory in crisis, the theory of “disk

instability,” proposed back in the 1950s, is regaining popularity. It postulates the disin-
tegration of a gas-and-dust protosolar nebula under the influence of local gravitational
instabilities into massive fragments, which then collapse into planets (and the sun). In
this work, we considered the rather neglected in the theory and numerical simulations
Safronov–Toomre unstable disks of gas and dust with Toomre’s Q-values less than unity.
Clearly, more detailed studies, in particular, simulations which include a realistic treat-
ment of the system under study, are needed to definitely distinguish between different
mechanisms of the solar system formation. In turn, observations may provide an indica-
tion on whether the Q-value for protostellar disks is indeed comparable to or less than
unity. (Interestingly, observations have already indicated that the outer regions of accre-
tion disks in both active galactic nuclei and young stellar objects are close to gravitational
instability, e.g., Johnson & Gammie 2003).

Even though the analysis presented here shows that there is a dominant nonaxisym-
metric Fourier mode of maximum instability with the wavelength λcrit, the number of
spiral arms mcrit, and the pitch angle ψcrit in the protosolar nebula, at the present we
cannot explain these quantities in the local WKB version of our theory. In this work
we investigate the collective instabilities of the self-gravitating protoplanetary disk on
the following fundamental assumption, i.e., the local WKB analysis. This assumption
may has essential defects for the wave phenomena and instabilities of self-consistent sys-
tems though the physical mechanisms of the instabilities are well clarified (Alexandrov
et al. 1984). Therefore we have to investigate the effects of nonlocality in the next step
(Alexandrov et al. 1984, p. 249). In the local WKB approximation it is assumed that the
wave vector and the wavefrequency vary continuously. We will show in the next paper
of the series by utilizing the more accurate nonlocal WKB approximation that in fact
the characteristic oscillation frequencies of an inhomogeneous disk must be “quantized,”
i.e., must pass through a discrete series of values. According to the WKB method the
spectrum of frequencies ω is determined by the quasiclassical rules of Bohr–Sommerfeld
quantization: ∫ r2

r1

kr(r′)dr′ =
(

n +
1
2

)
π , (5.1)

where r1, r2 are the “reflection” points (say, the inner and outer Lindblad resonances) and
n = 0, 1, 2, · · ·. Equation (5.1) implies that ω is independent of r; that is, the spiral-wave
front is not distorted by differential rotation. The pattern is composed of one or more
modes, and discrete modes are stationary in a rotating frame and hence do not wind up.
It seems likely that such an approach will alow us to determine the critical wavelength
λcrit, the critical number of spiral arms mcrit, and the critical pitch angle ψcrit. The
weakly inhomogeneous approximation (|kL| � 1) used throughout this paper has the
meaning that the discrete spectrum will differ little from a continuous spectrum, and
in the zero approximation may be regarded as continuous. Further, the nonlocal theory
provides a formal basis for the main idea that formed the basis for the local description,
namely, that of short-wavelength approximation |kr|r � 1.
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