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Extremal Metric for the First Eigenvalue
on a Klein Bottle

Dmitry Jakobson, Nikolai Nadirashvili, and Iosif Polterovich

Abstract. The first eigenvalue of the Laplacian on a surface can be viewed as a functional on the space

of Riemannian metrics of a given area. Critical points of this functional are called extremal metrics.

The only known extremal metrics are a round sphere, a standard projective plane, a Clifford torus and

an equilateral torus. We construct an extremal metric on a Klein bottle. It is a metric of revolution,

admitting a minimal isometric embedding into a sphere S
4 by the first eigenfunctions. Also, this Klein

bottle is a bipolar surface for Lawson’s τ3,1-torus. We conjecture that an extremal metric for the first

eigenvalue on a Klein bottle is unique, and hence it provides a sharp upper bound for λ1 on a Klein

bottle of a given area. We present numerical evidence and prove the first results towards this conjecture.

1 Introduction and Main Results

1.1 Extremal Metrics for the First Eigenvalue

Let M be a closed surface of genus γ and let g be the Riemannian metric on M.
Denote by ∆ the Laplace–Beltrami operator on M, and by λ1 the smallest positive
eigenvalue (the fundamental tone) of the Laplacian. How large can λ1 be on such a
surface? It was proved in [H, YY, LY] that

λ1 Area(M) ≤ const(γ),

where the constant grows linearly with γ. However, for γ ≥ 1, bounds obtained in

this way have no reason to be sharp. In order to study sharp upper bounds we recall
the following

Definition 1.1 A metric g on a surface is called λ1-maximal if for any metric g̃ of
the same area λ1(g̃) ≤ λ1(g).

In other words, a λ1-maximal metric is a global maximum of the functional
λ1 : g → R. Consider critical points of this functional.

Definition 1.2 An extremal metric for the first eigenvalue is a critical point g0 of the
functional λ1 : g → R, i.e., for any analytic deformation gt of the Riemannian metric

g0 in the class of metrics of fixed area λ1(gt ) ≤ λ1(g0) + o(t) as t → 0 (see [EI2]).

Note that the functional λ1 does not have local minima [EI2].
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1.2 Extremal Metrics and Minimal Immersions

Only four examples of extremal metrics for the first eigenvalue are known: (i) stan-
dard metric on S

2, (ii) standard metric on RP2, (iii) flat equilateral torus and (iv)
Clifford torus. Moreover, it was proved that there are no other extremal metrics on

these three surfaces [MR, EI1, EI2]. Metrics (i)–(iii) are λ1-maximal [H, LY, N1];
(iv) is just a local extremum.

The following remarkable property holds for extremal metrics for the first eigen-
value. Any surface with an extremal metric admits a minimal isometric immersion

by the first eigenfunctions into a round sphere of a certain dimension. In all examples
(i)–(iv) the dimension is equal to mult(λ1)− 1, where mult(λ1) is the multiplicity of
the first eigenvalue. There is a vast literature on relations between extremal metrics

and minimal immersions [B, LY, MR, N1, EI1, EI2].

1.3 Extremal Metric on a Klein Bottle

It is proved in [N1] that on a Klein bottle there exists a λ1-maximal (and hence an
extremal) metric, which is a metric of revolution with mult(λ1) = 5. However, no
example of an extremal metric on a Klein bottle has been known. Our main result is
an explicit construction of such a metric.

Theorem 1.3 A metric of revolution

(1.3.1) g0 =
9 + (1 + 8 cos2 v)2

1 + 8 cos2 v

(

du2 +
dv2

1 + 8 cos2 v

)

,

0 ≤ u < π/2, 0 ≤ v < π, is an extremal metric for the first eigenvalue on a Klein bot-
tle K. The surface (K, g0) admits a minimal isometric embedding into a sphere S

4 by the

first eigenfunctions. The first eigenvalue of the Laplacian for this metric has multiplicity
5 and satisfies the equality

(1.3.2) λ1Area(K, g0) = 12πE(2
√

2/3),

where E( · ) is a complete elliptic integral of the second kind.

Remark An extremal metric on a Klein bottle must be a metric of revolution since
any conformal diffeomorphism of an extremal metric is an isometry [MR, EI1] and
any metric on a Klein bottle is conformally equivalent to a flat metric which is in-

variant under a natural S
1-action (see §2.1). The condition mult(λ1) = 5 follows

from the following argument. It is shown in [EI1] that mult(λ1) > 3 for an extremal
metric on any surface but a sphere. On the other hand, on a Klein bottle [N2], we
have mult(λ1) ≤ 5 and the case mult(λ1) = 4 has been excluded in [N1].

We prove Theorem 1.3 in Section 3.

Remark It is shown in [EI3] that the extremal metrics for the first eigenvalue (i)–(iv)
are also the critical points of the functional Tr e−t∆ (the trace of the heat kernel) at
any time t > 0. Theorem 1.3 shows that this is not always the case: there are no
critical points of Tr e−t∆ for all t > 0 on a Klein bottle [EI3].
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1.4 Interpretation in the Language of Minimal Surfaces

The Klein bottle (K, g0) constructed in Theorem 1.3 has the following surprising in-
terpretation in terms of S

1-equivariant minimal surfaces in S
4. Equivariant minimal

immersions into spheres is a classical subject in minimal surfaces (see [HL, U]). In

particular, S
1-equivariant minimal immersions of tori and Klein bottles into S

4 have
been studied in [FP].

Theorem 1.4 The surface (K, g0) is a bipolar surface of Lawson’s τ3,1-torus.

In Section 4 we prove Theorem 1.4 and recall the definitions of Lawson’s tori and

bipolar surfaces (see also [L]). Interestingly enough, the interpretation of g0 as a
metric on a bipolar surface allows us to simplify the explicit formula for g0, cf. (1.3.1)
and (3.3.2).

1.5 Towards a Sharp Upper Bound for the First Eigenvalue

Combining Theorem 1.3 with the existence of a λ1-maximal metric on a Klein bottle
proved in [N1], we make the following conjecture.

Conjecture 1.5 The metric g0 is a unique extremal metric on a Klein bottle, and in
particular it is the λ1-maximal metric. This implies the following sharp upper bound for
the first eigenvalue on a Klein bottle:

(1.5.1) λ1(g) Area(K, g) ≤ 12πE(2
√

2/3) ≈ 13.365π,

with an equality attained only for g = g0.

Recall that the estimate of [LY] gives just

λ1(g) Area(K, g) ≤ 48π.

Remark It is claimed in [N1, Theorem 3] that

λ1(g) Area(K, g) ≤ 8π2/
√

3,

the right-hand side being the supremum for λ1 Area on a torus. However, the proof

of this claim is incorrect; it relies on the assumption that the first eigenvalue on a
Klein bottle is also the first eigenvalue on the covering torus. Though it is an eigen-
value on a torus, it might be not the first eigenvalue. In particular, for (K, g0), the first
eigenvalue is the third eigenvalue on the corresponding torus (see Proposition 3.1).

Note, however, that 12πE(2
√

2/3) < 8π2/
√

3.

In order to prove Conjecture 1.5 one has to study the nonlinear systems of ODEs
(3.1.2) or (3.1.1) that are crucial in the proof of Theorem 1.3. We need to show that
there are no initial conditions 0 < p < 1 except for p =

√

3/8 (which corresponds

to the metric g0) admitting periodic solutions with the required number of zeros, see
Condition A in Section 2.3. We discuss numerical evidence and prove the first results
towards Conjecture 1.5 in Section 5. However, there are serious difficulties in finding
a rigorous proof of this conjecture (see Section 5.7).
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2 A System of ODEs for the Extremal Metric

2.1 Preliminaries

We realize the Klein bottle K as a fundamental domain in R
2 for the group of motions

generated by (x, y) → (x + π,−y), (x, y) → (x, y + a), where a > 0 is a conformal
parameter. K has a double cover, the torus T

2, which is the fundamental domain R
2

for the group of motions generated by (x, y) → (x + 2π, y), (x, y) → (x, y + a). The
functions on K can thus be thought of as functions on T

2 satisfying the symmetry

condition

(2.1.1) f (x, y) = f (x + π,−y).

If we expand the functions on T
2 into Fourier series in x, we can easily see that the

functions in L2(T
2) satisfying (2.1.1) can be expanded in the series of functions of the

form

(2.1.2)
{

φ(y) sin(2kx), φ(y) cos(2kx) : φ(y) = φ(−y), φ(y + a) = φ(y)
}

,

and of the form

(2.1.3)
{

ψ(y) sin(x(2k + 1)), ψ(y) cos(x(2k + 1)) :

ψ(y) = −ψ(−y), ψ(y + a) = ψ(y)
}

,

where k ∈ Z.

As mentioned in Section 1.3, it follows from [N1] that an extremal metric for

the first eigenvalue on a Klein bottle is necessarily a metric of revolution and the
multiplicity of λ1 for this metric is equal to 5.

Hence, without loss of generality, we may assume that our metric is invariant
under the S

1 action (x, y) → (x + t, y), 0 ≤ t ≤ π, and is given by ĝ0 = f (y)(dx2 +
dy2), where f (y) = f (y + a) = f (−y) > 0 is the conformal factor. The area of the

Klein bottle is equal to

Area(K) = π

∫ a

0

f (y) dy.

The Laplacian on K is given by

(2.1.4) ∆ = − 1

f (y)

( ∂2

∂x2
+
∂2

∂y2

)

.

Let λ1 denote the first nonzero eigenvalue of ∆. We want to determine the confor-
mal class, i.e., the value of a, that maximizes the product λ1 Area. Since our metric
is rotationally invariant, the operator ∂/∂x commutes with ∆, so we can find a joint
basis of eigenfunctions of the form (2.1.2) and (2.1.3).

https://doi.org/10.4153/CJM-2006-016-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-016-0


Extremal Metric for λ1 on a Klein Bottle 385

2.2 First Eigenfunctions

By Courant’s nodal domain theorem, any eigenfunction in the first eigenspace should

have exactly two nodal domains. Our eigenfunctions have the form

(2.2.1) ϕk(y) cos(kx), ϕk(y) sin(kx),

where ϕk(−y) = (−1)kϕk(y), ϕk(y + a) = ϕk(y). For k odd, ϕk(0) = 0 so ϕk

vanishes at least once. Also, ϕ0 must vanish at least once since the corresponding
eigenfunction cannot have constant sign. Let ϕk vanish mk times in the period [0, a).

We can choose the fundamental domain for the Klein bottle to be the set X =

[y, y+π]×[−a/2, a/2], with y/π irrational (to avoid vanishing on the vertical sides),

and with the appropriate boundary identifications. The nodal set of an eigenfunction
(2.2.1) consists of a grid with k distinct vertical lines and mk distinct horizontal lines.
It is easy to show that such an eigenfunction has at least k nodal domains: indeed,
k vertical lines divide the set X into k + 1 vertical strips, and of those only the two

boundary strips are glued into one by side identifications. Therefore, by Courant’s
nodal domain theorem we must have k ≤ 2.

Substituting into (2.1.4) and taking into account that mult(λ1) = 5, we conclude

that the eigenspace corresponding to λ has a basis of eigenfunctions of the form

(2.2.2)

ϕ0(y), where ϕ0(−y) = ϕ0(y), ϕ ′′
0 = −λ fϕ0;

cos(x)ϕ1(y),
sin(x)ϕ1(y),

where ϕ1(−y) = −ϕ1(y), ϕ ′′
1 = (1 − λ f )ϕ1;

cos(2x)ϕ2(y),
sin(2x)ϕ2(y),

where ϕ2(−y) = ϕ2(y), ϕ ′′
2 = (4 − λ f )ϕ2.

Here all functions of y are periodic with period a and λ f is an unknown positive
function. Since an extremal metric necessarily admits a minimal isometric immer-
sion into a sphere (in our case of dimension 4), we get two more conditions on the
functions ϕ0, ϕ1 and ϕ2, cf. [N1]:

ϕ2
0 + ϕ2

1 + ϕ2
2 = 1;(2.2.3)

(ϕ ′
0)2 + (ϕ ′

1)2 + (ϕ ′
2)2

= ϕ2
1 + 4ϕ2

2 = λ f /2.(2.2.4)

We can now substitute for λ f in the second and the third equations in (2.2.2),
getting the following system of second order equations for ϕ1 and ϕ2 (where λ f has
been eliminated):

(2.2.5)
ϕ ′′

1 = (1 − 2(ϕ2
1 + 4ϕ2

2))ϕ1;

ϕ ′′
2 = (4 − 2(ϕ2

1 + 4ϕ2
2))ϕ2.
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2.3 Zeros of the First Eigenfunctions

We use the Courant nodal domain theorem once again (see previous section) to get
a condition on the number of zeros of ϕ0, ϕ1 and ϕ2. Since each of these functions is
a non-trivial solution of a second order differential equation (2.2.2), it is impossible

that ϕk andϕ ′
k vanish simultaneously for k = 0, 1, 2. Periodicity then implies that the

number of zeros mk for any ϕk is an even number. Recalling that each eigenfunction
has exactly two nodal domains, and taking into account boundary identifications as
in the previous section, we get m0 = m1 = 2 and m2 = 0.

Condition A (zeros) ϕ0 and ϕ1 should have exactly two zeros in the period, while ϕ2

should not vanish.

2.4 First Integrals

It is straightforward to check that the following expressions are the first integrals for
the system (2.2.2), (2.2.3), cf. [U]:

(2.4.1)

E0 := ϕ2
0 + (ϕ0ϕ

′
1 − ϕ1ϕ

′
0)2 + (ϕ0ϕ

′
2 − ϕ2ϕ

′
0)2/4,

E1 := ϕ2
1 + (ϕ1ϕ

′
2 − ϕ2ϕ

′
1)2/3 − (ϕ1ϕ

′
0 − ϕ0ϕ

′
1)2,

E2 := ϕ2
2 − (ϕ2ϕ

′
0 − ϕ0ϕ

′
2)2/4 − (ϕ2ϕ

′
1 − ϕ1ϕ

′
2)2/3.

In the verification of this fact, one uses (2.2.3) and its consequence ϕ0ϕ
′
0 + ϕ1ϕ

′
1 +

ϕ2ϕ
′
2 = 0. In fact, all these integrals are equivalent: one can show that E0 + E1 + E2 =

1 = E0 + 3E1/4, E2 = −E1/4. Hence the E j ’s define just one independent first

integral. We will make use of the different expressions (2.4.1) in Section 5.
Let us evaluate E1 at y = 0.

(2.4.2) ϕ1(0) = 0 = ϕ ′
0(0) = ϕ ′

2(0).

It follows that ϕ0(0)2 + ϕ2(0)2
= 1 and that

(2.4.3) ϕ ′
1(0)2

= 4ϕ2(0)2.

Substituting into the expression for E1 we find that

(2.4.4) E1 =
4

3
ϕ2(0)2(4ϕ2(0)2 − 3).

Remark Alternatively, one can start with the system (2.2.5) (or similar systems in-
volving just ϕ0, ϕ1, or just ϕ0, ϕ2) and deduce the following equivalent expressions
for the first integrals (2.4.1):

(2.4.5)

(ϕ ′
1)2 + 4(ϕ ′

2)2 + (ϕ2
1 + 4ϕ2

2)2 − ϕ2
1 − 16ϕ2

2 := κ0,

(ϕ ′
0)2 − 3(ϕ ′

2)2 + 2ϕ2
0 + 6ϕ2

2 − (ϕ2
0 − 3ϕ2

2)2 := κ1,

4(ϕ ′
0)2 + 3(ϕ ′

1)2 + 32ϕ2
0 + 21ϕ2

1 − (4ϕ2
0 + 3ϕ2

1)2 := κ2.
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One can show that κ2 − 3κ0 − 4κ1 = 12 and that κ0 + κ1 = 1, so κ0 + κ2 = 16. One
can also show that E1 =

1
3
κ0. For certain applications it is more convenient to use

the expressions (2.4.5) rather than (2.4.1); however, we shall not use the expressions
(2.4.5) in this paper.

3 Proof of Theorem 1.3

3.1 A System for ϕ0 and ϕ1

The initial conditions in system (2.2.5) can be parametrized as follows:

(3.1.1)

ϕ ′′
1 = (1 − 2ϕ2

1 − 8ϕ2
2)ϕ1

ϕ ′′
2 = (4 − 2ϕ2

1 − 8ϕ2
2)ϕ2

ϕ1(0) = 0, ϕ ′
1(0) = 2p

ϕ2(0) = p, ϕ ′
2(0) = 0,

where 0 ≤ p ≤ 1 is a parameter of the system. Moreover, ϕ0 and ϕ1 both have two
zeros on the period, while ϕ2 has constant sign.

The corresponding system for the functions ϕ0, ϕ1 reads:

(3.1.2)

ϕ ′′
0 = (8ϕ2

0 + 6ϕ2
1 − 8)ϕ0

ϕ ′′
1 = (8ϕ2

0 + 6ϕ2
1 − 7)ϕ1

ϕ1(0) = 0, ϕ ′
1(0) = 2p

ϕ0(0) =

√

1 − p2, ϕ ′
0(0) = 0,

Note that in (3.1.1) and (3.1.2) initial conditions are determined by 2.4.3 modulo
signs. However, changing the signs of the initial conditions may only result in chang-

ing the signs of the solutions (in other words, we will get the same eigenfunctions,
possibly multiplied by −1). Therefore, we may consider only non-negative initial
conditions in (3.1.1) and (3.1.2).

3.2 Solution for p =
√

3/8

Our objective is to find values of p such that the system has periodic solutions satis-
fying Condition A, namely that both ϕ0 and ϕ1 have exactly two zeros on the period.

We find a candidate from a numerical experiment: p =
√

3/8. Note that this value
of p is exactly the minimum of the first integral E1 and hence as follows from [FP], it
corresponds to a periodic solution. We discuss this in more detail in Section 4.

Set p =
√

3/8. Let us look for ϕ0 and ϕ1 in the following form:

(3.2.1)
ϕ0(y) =

√

5

8
cos θ(y), ϕ1(y) =

1√
2

sin θ(y),

θ(0) = 0, θ ′(0) =
√

3.
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Such a change of variables is also motivated by numerical experiments, suggesting
that

(3.2.2) 2ϕ2
1 + 8/5ϕ2

0 = 1.

Initial conditions for θ are prescribed by the initial conditions for ϕ1, ϕ0.
Of course, in principle, such an ansatz could make our system overdetermined:

note that instead of two variables ϕ0, ϕ1 we now have one variable θ. However, as
shown below, for this particular choice of constants this does not happen. Indeed,

we have:
8ϕ2

0 + 6ϕ2
1 = 5 cos2 θ + 3 sin2 θ = 5 − 2 sin2 θ,

and hence (3.1.2) can be rewritten as

(3.2.3)

(θ ′)2 − θ ′ ′
cos θ

sin θ
= 2 + 2 sin2 θ,

(θ ′)2 + θ ′ ′
sin θ

cos θ
= 3 + 2 sin2 θ,

θ(0) = 0, θ ′(0) =
√

3.

Subtracting the second equation from the first we get

(3.2.4) θ ′ ′ = sin θ cos θ =
1

2
sin 2θ.

Multiplying by θ ′ and integrating gives

(3.2.5) (θ ′)2
= 3 + sin2 θ.

Exactly the same equation one gets if (3.2.4) is substituted into (3.2.3) and hence the
whole system yields to (3.2.5) with an initial condition θ(0) = 0, implying

y =
1

2

∫ θ

0

dθ
√

1 − 1
4

cos2 θ
.

From this equation we can deduce periodicity conditions. The functions ϕ0, ϕ1 are
periodic in θ with the period 2π. Hence, the period a is equal to

1

2

∫ 2π

0

dθ
√

1 − 1
4

cos2 θ
= 2

∫ π/2

0

dθ
√

1 − 1
4

cos2 θ

= 2

∫ π/2

0

dθ
√

1 − 1
4

sin2 θ
= 2K(1/2),

where K( · ) is a complete elliptic integral of the first kind. Hence, a = 2K(1/2).
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Let us now compute λArea(K) for this metric (even without computing the met-
ric explicitly; this will be done in the next section). Taking into account (2.2.4) we

have:

λArea(K) = λπ

∫ a

0

f (y) dy = 2π

∫ 2K(1/2)

0

4 − 3ϕ2
1(y) − 4ϕ2

0(y) dy

= 2π

∫ 2K(1/2)

0

4 − 5/2 cos2 θ − 3/2 sin2 θ dy

= 2π

∫ 2π

0

(5/2 − cos2 θ)y ′(θ) dθ = 2π

∫ 2π

0

5/2 − cos2 θ√
4 − cos2 θ

dθ

= 2π
(

∫ 2π

0

√

4 − cos2 θ dθ − 3/2

∫ 2π

0

dθ√
4 − cos2 θ

)

= 2π
(

8

∫ π/2

0

√

1 − 1/4 cos2 θ dθ − 3

∫ π/2

0

dθ
√

1 − 1/4 cos2 θ

)

= 2π(8E(1/2) − 3K(1/2)) = 12πE(2
√

2/3).

The last equality follows from an identity relating the complete elliptic integrals of

the first and the second kind, see [Erd, p. 319]. This proves the assertion (1.3.2) in
Theorem 1.3 up to the fact that λ is the first eigenvalue (see Section 3.4).

3.3 The Eigenfunctions

In this section we find explicitly the eigenfunctions corresponding to the value p =
√

3/8, and the corresponding metric ĝ0. We do this using the relation (3.2.2) between
ϕ0 and ϕ1, which implies a similar equation for ϕ2 and ϕ1: 4ϕ2

2 − ϕ2
1 = 3/2. This

allows transforming our system into three separate equations on ϕ0, ϕ1, ϕ2:

ϕ ′′
0 = 16/5ϕ3

0 − 5ϕ0, ϕ ′′
1 = −2ϕ1 − 4ϕ3

1, ϕ ′ ′
2 = 7ϕ2 − 16ϕ3

2.

We then reduce them to first order equations:

(ϕ ′
0)2

= 8/5ϕ4
0 − 5ϕ2

0 + 20/8,

(ϕ ′
1)2

= −2ϕ2
1 − 2ϕ4

1 + 3/2,

(ϕ ′
2)2

= 7ϕ2
2 − 8ϕ4

2 − 3/2.

Each of these equations can be solved in terms of elliptic functions (see also [WW,
§20.6]). Finally we get:
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(3.3.1)

ϕ0(y) =

√

5/8
(

1 − 3

2℘ (y; 73/12,−595/216) − 1
6

)

,

ϕ1(y) =
1√
2

(

−1 +
2

℘ (y +
K(1/2)

2
;−8/3, 28/27) + 2

3

)

,

ϕ2(y) =

√

3/8 +
1

4

(

√

3/2

℘ (y; 193/12, 2681/216) + 11
12

)

,

where ℘ (y; γ1, γ2) is a Weierstrass ℘ -function with invariants γ1, γ2.
It can be checked directly (analytically or using Mathematica) that ϕ0, ϕ1, ϕ2

satisfy Condition A.
Using (3.2.2) we find that the normalized metric ĝ0 = λ f (y)(dx2 + dy2) (though

it differs by a normalization factor λ from the metric defined in the beginning of

Section 2.2, we denote it also ĝ0) is given by

(3.3.2) λ f (y) = 2(ϕ2
1(y) + 4ϕ2

2(y)) = 5 − 16

5
ϕ2

0(y),

The metric ĝ0 is conformally equivalent to a flat metric on K corresponding to the
lattice (x, y) → (x + π,−y), (x, y) → (x, y + 2K(1/2)). It still remains to show that

this metric coincides (up to a dilatation) with the metric g0 defined by (1.3.1). We
postpone this until Section 4.

3.4 Why λ is the First Eigenvalue

To complete the proof of Theorem 1.3 we need to show that the eigenvalue λ = 1 of
the normalized metric ĝ0 (3.3.2) is the first eigenvalue of the Laplacian (the eigenvalue
equals 1 due to the choice of normalization (3.3.2)). Note that though Condition A

is a necessary condition for the first eigenfunctions, a priori it is not sufficient.

Proposition 3.1 The eigenvalue λ = 1 corresponding to the eigenfunctions {ϕ0(y),

ϕ1(y) cos x, ϕ1(y) sin x, ϕ2(y) cos 2x, ϕ2(y) sin 2x)}, is the first eigenvalue of the
Laplacian on a Klein bottle (K, ĝ0).

Proof We prove this proposition with the help of oscillation theorems of Haupt and

Sturm (see [CL, BeL]). As was mentioned in Section 2.2, due to Courant’s nodal do-
main theorem the first eigenvalue on a Klein bottle of revolution can be obtained only
from one of the three periodic Sturm–Liouville equations (2.2.2). We need to show
that none of these equations has an eigenfunction corresponding to an eigenvalue

λ < 1 and satisfying Condition A as well as the parity conditions (we are interested
only in even eigenfunctions of the first and the third equation, and only in odd eigen-
functions of the second equation).

Equations (2.2.2) are subject to a theorem of Haupt, stating that each eigenvalue

problem has a sequence of eigenfunctions

ψ0, ψ1, ψ2, . . . , ψ2n−1, ψ2n, . . .
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such that ψ0 does not have zeros and ψ2n−1, ψ2n have exactly 2n zeros. Let us study
the equations (2.2.2) for ϕ0, ϕ1 and ϕ2 separately.

The easiest case is ϕ2. It has no zeros, and hence corresponds to the smallest
eigenvalue of the Sturm–Liouville problem.

To handle ϕ1, we note that since it is odd, it should have zeros and therefore the
0-th eigenvalue for this problem is automatically out of the question (indeed, this

eigenvalue λ̃ ≈ 0.2517 is the first eigenvalue on the corresponding torus which covers
our Klein bottle). Since ϕ1 has exactly two zeros, it is either ψ1 or ψ2. Assume there
exists another odd solution ϕ̃1 of the eigenvalue problem with exactly two zeros, and
the corresponding λ̃ < λ. Then by the Sturm theorem, between each two zeros of ϕ̃1

there should be zeros of ϕ1, but since both of them vanish at 0, this will mean that
ϕ1 should have at least three zeros, while it has only two, and we get a contradiction.
Indeed, numerically one can see that there exists another (but even) eigenfunction
with two zeros. For the normalized problem it corresponds to λ̃ ≈ 1.31.

A similar argument works for ϕ0. Note that in this case the 0-th eigenfunction
is just a constant, and hence is also not relevant. Similarly, ϕ0 is either the first or
the second eigenvalue. Assume there is another even eigenfunction with exactly two
zeros corresponding to some λ̃ < λ. Note that since it is even and periodic with

period 1 it should be symmetric with respect to the mid-point of the period y = 1/2
(indeed, ϕ0(x) =

ϕ0(x)+ϕ0(1−x)

2
), in particular its zeros have this symmetry, as do the

zeros of ϕ0. On the other hand, due to the Sturm theorem, between each zero of ϕ̃0

there should be a zero of ϕ0, or in other words zeros of ϕ0 and ϕ̃0 should interlace,

but this contradicts the fact that they have the symmetry property (symmetry implies
that two zeros of one eigenfunction are between two zeros of the other). Numerically
one can observe that in reality ϕ̃0 is an odd function corresponding to λ̃ ≈ 0.7768.
This completes the proof of the proposition.

3.5 End of the Proof of Theorem 1.3

Let us summarize the results of Sections 3.1–3.4. We have constructed a metric of

revolution ĝ0 on a Klein bottle, admitting an isometric embedding into S
4 by the first

eigenfunctions. The first eigenvalue for this metric satisfies the equality

λ1Area(K, ĝ0) = 12πE(2
√

2/3),

where E( · ) is a complete elliptic integral of the second kind. Hence to complete the
proof we just need to show that the metric ĝ0 is indeed an extremal metric for the first
eigenvalue. We use [EI2, Proposition 1.1], implying that if the isometric immersion is

given by a complete set of the first eigenfunctions, i.e., if the eigenfunctions form a ba-
sis of the corresponding eigenspace, then the metric is extremal for λ1. This is clearly
the case for us, since we have used all five eigenfunctions to construct the immersion,
and five is the maximal possible multiplicity for the first eigenvalue on a Klein bottle.

It follows from the explicit formulas for the eigenfunctions in Section 3.3 that it is in
fact an embedding. To complete the proof of Theorem 1.3 it remains to show that the
metric ĝ0 (3.3.2) coincides up to a dilatation with the metric g0 (1.3.1). This is done
while proving Theorem 1.4 in Section 4.1.
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4 The Extremal Metric and S
1-Equivariant Immersions

4.1 Bipolar Surfaces and Lawson Tori

In this section we follow [L, Ken]. Let µ : M → S
3 ⊂ R

4 be a minimal isometric
immersion of a surface M into S

3. A Gauss map µ∗ : M → S
3 is defined pointwise as

the image of the unit normal in S
3 translated to the origin in R

4. The image µ∗(M)
is called a polar variety.

Let µ̃ = µ ∧ µ∗, the exterior product of µ and µ∗. It is a vector in ∧2
R

4
= R

6,
and one can verify in [L] that it defines a minimal immersion of M into S

5: µ̃ : M →
S

5 ⊂ R
6. The minimal surface M̃ = µ̃(M) in S

5 is called a bipolar surface to M. The
metric on M̃ is given by ds2

= (2− κ)dσ2, where dσ2 is the metric on M and κ is the

Gaussian curvature on M (see [L]).

Let M = τm,k (m ≥ k ≥ 1) be a Lawson’s torus, i.e., a minimal torus defined by a
doubly periodic immersion µ : R

2 → S
3,

(4.1.1) µ(u, v) = (cos mu cos v, sin mu cos v, cos ku sin v, sin ku sin v).

One may check that the bipolar surface for τm,k is a minimal torus or a minimal Klein

bottle in S
4 [L]. The metric on a bipolar surface for τm,k is given by [Ken]:

ds2
=

(k2 + (m2 − k2) cos2 v)2 + m2k2

k2 + (m2 − k2) cos2 v

(

du2 +
dv2

k2 + (m2 − k2) cos2 v

)

.

Proof of Theorem 1.4 Note that for m = 3, k = 1 the metric above is exactly the
metric g0 (1.3.1). Let us check that (K, ĝ0) defines a bipolar surface to the τ3,1-torus.
One should verify that ĝ0 coincides (up to a dilatation) with (1.3.1) (the rest is
straightforward). This result can be deduced from the arguments of [FP]. Indeed,

due to (2.2.2) the metric g0 determines a (2, 1)-equivariant minimal immersion in
S

4. Moreover, the first integral E1 (H2 in the notations of [FP]) achieves its minimum
for p =

√

3/8 (see Section 3.2). Hence, as mentioned in [FP, p. 274], this metric
defines a bipolar surface for Lawson’s torus in S

3 corresponding to (2 + 1, 2 − 1) cir-

cular action, that is, exactly the torus τ3,1. The equation (3.2.2) defining the extremal
metric is equivalent to [FP, (11)] by setting z := ϕ2, w := ϕ1. Therefore, metric ĝ0

indeed coincides with ĝ0 up to a rescaling. This completes the proof of Theorem 1.4
and also finishes the last step of the proof of Theorem 1.3.

Remark In fact, it can be verified directly that ĝ0 = 2g0. It is a lengthy calculation in
elliptic functions. Set x = u and

z(v) =

∫ v

0

dv√
1 + 8 cos2 v

=
1

3

∫ v

0

dv
√

1 − 8
9

sin2 v
.

Then in the (x, z) variables metric (1.3.1) becomes conformal. Note also that the rela-
tion above implies cos v = cn(3z, 2

√
2/3), the corresponding Jacobi elliptic function.

Set y = 2z+
K(1/2)

2
(note that 2K(1/2) =

4
3
K(2

√
2/3) is the period of cn(3z, 2

√
2/3)).
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Taking into account (3.3.1) and (3.3.2) we arrive at the following identity that it suf-
fices to check:

(1 + 8 cn2(3z, 2
√

2
3

)2 + 9)

1 + 8 cn2(3z, 2
√

2
3

)2
= 10 −

( 24℘ (y; 73
12
,− 595

216
) − 38

12℘ (y; 73
12
,− 595

216
) − 1

) 2

.

The clue to this identity is the following relation between the Jacobi and the Weier-
strass elliptic functions [Erd, 13.16.5]:

cn2
(

3z,
2
√

2

3

)

=
12℘ (2z; 73

12
,− 595

216
) − 10

12℘ (2z; 73
12
,− 595

216
) + 17

.

The remainder of the argument is a rather straightforward application of formulas
from [Erd, §13.13].

5 Towards a Sharp Upper Bound for the First Eigenvalue

5.1 Two Intervals of the Parameter

The aim of Section 5 is to present numerical evidence for Conjecture 1.5 and to prove
the first result in that direction (Theorem 5.1). Our ultimate goal is to show that there

are no extremal metrics corresponding to the values of the parameter 0 < p < 1
except for p =

√

3/8. It turns out that the dynamics of the solutions differs for 0 <

p <
√

3/2 and
√

3/2 ≤ p < 1. We study these two intervals separately. In the latter
case we prove the absence of extremal metrics (§5.2 and 5.3). For 0 < p <

√
3/2 we

present a purely numerical argument (§5.6) and explain the nature of difficulties in

proving Conjecture 1.5 (§5.7).

Initial conditions of (3.1.2) and (3.1.1) are parametrized by values of 0 < p < 1.
We shall be using first integrals (2.4.1):

E1 = (4/3)p2(4p2 − 3), E2 = (−1/3)p2(4p2 − 3), E0 = 1 − p2(4p2 − 3).

The periodic solution corresponds to p2
= 3/8 which is the minimum of E1. We

want to show that there are no other periodic solutions satisfying Condition A.

The value p2
= 3/4, E1 = E2 = 0, E0 = 1 corresponds to a separatrix of some

sort, the behavior of the solutions changes (§5.3).

5.2 Ruling Out the Interval 1 > p >
√

3/2

In this section we show that there are no periodic solutions of (3.1.1) satisfying Con-
dition A, if

√
3/2 < p < 1, and hence E1 > 0, E2 < 0, 0 < E0 < 1.

Theorem 5.1 Assume that
√

3/2 < p < 1. Then the system (2.2.2) does not have
periodic solutions satisfying Condition A.
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We shall prove Theorem 5.1 by showing that the solutions of the system (3.1.1)
“rotate” around the origin in the (ϕ1, ϕ2)-plane. In other words, if we introduce

polar coordinates in (3.1.1), the angle will be monotone increasing. This fact im-
plies that the function ϕ2 vanishes at some point on any periodic orbit, contradict-
ing Condition A. We use the condition (2.2.3) to introduce spherical coordinates in
the system (2.2.2) and use the integrals E1 and E2 to rule out the initial conditions√

3/2 < p < 1.
We introduce the following spherical coordinates in (2.2.2):

(5.2.1)

ϕ0 = cosψ,

ϕ1 = sinψ sin θ,

ϕ2 = sinψ cos θ.

Taking into account parity conditions in (2.2.2), we find that ψ is an even function,
while θ is an odd function.

Differentiating once, we find that

(5.2.2)
ϕ ′

0 = − sinψ · ψ ′, ϕ ′
1 = cosψ · ψ ′ sin θ + sinψ cos θ · θ ′,

ϕ ′
2 = cosψ · ψ ′ cos θ − sinψ sin θ · θ ′.

It is easy to see that ψ and θ satisfy the following initial conditions:

(5.2.3)
θ(0) = 0, θ ′(0) = 2,

ψ ′(0) = 0, ψ(0) = arcsin p.

We next express the integrals E0, E1, E2 in terms of θ, ψ and their derivatives. An
elementary calculation using (5.2.1) and (5.2.2) gives the following identities:

(5.2.4)

ϕ0ϕ
′
1 − ϕ1ϕ

′
0 = ψ ′ sin θ +

sin(2ψ)

2
cos θ · θ ′,

ϕ0ϕ
′
2 − ϕ2ϕ

′
0 = ψ ′ cos θ − sin(2ψ)

2
sin θ · θ ′,

ϕ1ϕ
′
2 − ϕ2ϕ

′
1 = − sin2 ψ · θ ′.

We now substitute (5.2.1) and (5.2.4) into (2.4.1). We obtain the following iden-
tities for E1 and E2:

(5.2.5) E1 = sin2 θ(sin2 ψ − (ψ ′)2) − ψ ′θ ′ sin(2ψ) sin(2θ)

2

+
(θ ′)2 sin4 ψ

3
−

( θ ′ cos θ sin(2ψ)

2

) 2

,

(5.2.6) E2 = cos2 θ(sin2 ψ − (ψ ′)2/4) +
ψ ′θ ′ sin(2ψ) sin(2θ)

8

− (θ ′)2 sin4 ψ

3
−

( θ ′ sin θ sin(2ψ)

4

) 2

.
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If we now assume that θ ′ = 0, the two expressions simplify to

(5.2.7)
E1 = sin2 θ(sin2 ψ − (ψ ′)2),

E2 = cos2 θ(sin2 ψ − (ψ ′)2/4).

We now prove the main theorem of this section.

Proof of Theorem 5.1 Assume that there exists a periodic orbit such that ϕ2 6= 0

(this is one of the requirements of Condition A). Then this orbit has a point satisfying
θ ′ = 0, since θ is the angle in polar coordinates in (ϕ1, ϕ2)-plane, and the orbit
is a compact set lying in the upper half-plane. Now, if

√
3/2 < p < 1, we have

E1 > 0, E2 < 0. We evaluate those integrals at a point where θ ′ = 0. Substituting

into (5.2.7), we see that

(5.2.8)
sin2 ψ − (ψ ′)2 > 0,

sin2 ψ − (ψ ′)2/4 < 0.

It is clear that (5.2.8) leads to a contradiction. This finishes the proof of Theorem 5.1.

5.3 The Separatrix p =
√

3/2

If p =
√

3/2, the first integral E1 vanishes. The solutions are given explicitly by the
following formulas:

(5.3.1) ϕ0(y) = (3 cos(θ(y)) − 1)/4, ϕ1(y) =
√

3 sin(θ(y))/2,

where
θ(y) = π − 4 arccot(ey).

One can observe that these solutions are not periodic. As y → ∞, we get the upper
half of an ellipse in the plane ϕ0, ϕ1.

In fact, since for p =
√

3/2 the integral E1 = 0, if there existed a corresponding
minimal isometric immersion of a Klein bottle into S

4 it would be superminimal
[FP]. However, as indicated in t [MR, appendix], the only superminimal surface
immersed into S

4 by the first eigenfunctions is the standard sphere (this result is

attributed to N. Ejiri).

5.4 Dynamics in the (ϕ0, ϕ1)-Plane for 0 ≤ p <
√

3/2

We are left to check that the solution for p =
√

3/8 is the only one in the interval

0 < p <
√

3/2. For the first integrals, this interval corresponds to E1 < 0, E2 > 0,

1 < E0 < 25/16.

Proposition 5.2 For 0 < p <
√

3/2, functions ϕ2 and ϕ1ϕ
′
0 − ϕ0ϕ

′
1 do not vanish.

Moreover, the function ϕ2 is bounded away from ±1.
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Proof We recall from (2.4.1) that

(5.4.1) E2 = ϕ2
2 − (ϕ2ϕ

′
0 − ϕ0ϕ

′
2)2/4 − (ϕ2ϕ

′
1 − ϕ1ϕ

′
2)2/3.

Since E2 > 0 for 0 < p <
√

3/2, the positive term ϕ2
2 in the preceding formula

cannot vanish, proving the first part of the proposition.

We recall from (2.4.1) that

(5.4.2) E1 = ϕ2
1 + (ϕ1ϕ

′
2 − ϕ2ϕ

′
1)2/3 − (ϕ1ϕ

′
0 − ϕ0ϕ

′
1)2.

Since E1 < 0 for 0 < p <
√

3/2, the negative term−(ϕ1ϕ
′
0−ϕ0ϕ

′
1)2 in the preceding

formula cannot vanish, proving the second part of the proposition.

Finally, if ϕ2 = ±1 then ϕ0 = ϕ1 = 0, contradicting the fact that

ϕ1ϕ
′
0 − ϕ0ϕ

′
1 6= 0.

Corollary 5.3 For 0 < p <
√

3/2, the solutions of the system (3.1.2) “rotate” around
the origin in the (ϕ0, ϕ1)-plane. In other words, if we introduce polar coordinates in
(3.1.2), the angle will be monotone increasing.

Proof The angle in polar coordinates in the (ϕ0, ϕ1)-plane is given by θ =

arctan(ϕ1/ϕ0), and

θ ′ = (ϕ0ϕ
′
1 − ϕ1ϕ

′
0)/(ϕ2

0 + ϕ2
1).

Proposition 5.2 now implies that θ ′ 6= 0.

Using Corollary 5.3 we conclude that Condition A, (i.e., that ϕ0, ϕ1 both have two
zeros in the period) means that a periodic orbit should make one turn around the
origin. The periodic solution corresponding to p =

√

3/8 does exactly that (the
orbit in that case is the ellipse 10ϕ2

1 + 8ϕ2
0 = 5).

5.5 Intersection Angle

Consider the first (for y > 0) intersection of the trajectory on the (ϕ0, ϕ1)-plane with
the ϕ0-axis. Let y(p) be the intersection point, α(p) be the angle of the intersection.

In this section we establish

Proposition 5.4 If p corresponds to an extremal metric, α(p) = π/2, or, equivalently,
ϕ ′

0(y(p)) = 0.

Proof We know from (2.2.2)

ϕ0(−y) = ϕ0(y), ϕ1(−y) = −ϕ1(y),

i.e., that the solution for y > 0 and the solution for y < 0 are symmetric with respect
to the ϕ0-axis.
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Assume now that for some p > 0 the system (3.1.2) has a periodic solution with
period a(p). We have

ϕ0(y(p)) = ϕ0(−y(p)), ϕ1(y(p)) = −ϕ1(−y(p)) = 0.

The periodicity condition together with Condition A imply that y(p) = a(p)/2 and
that

ϕ0(y(p) + t) = ϕ0(−y(p) + t), ϕ1(y(p) + t) = ϕ1(−y(p) + t).

But since ϕ0 is an even function, we also have

ϕ0(y(p) + t) = ϕ0(−y(p) + t) = ϕ0(y(p) − t).

The last equality implies ϕ ′
0(y(p)) = 0.

5.6 Ruling Out the Interval (0,
√

3/2) Numerically

To rule out the interval (0,
√

3/2) we use the following

Conjecture 5.5 The angle α(p) is a monotone function for p ∈ (0,
√

3/2).

We check this conjecture numerically for p ∈ (δ,
√

3/2− δ) for small δ > 0 using

Mathematica.

We have included the values of cot(α(p)) for 999 values of p, p =

√
3 j

2000
, 1 ≤ j ≤

999. Those values were computed using a Mathematica program. The differential
equation solved by that program is obtained by first writing the system of two second
order differential equations for the variables (ψ, θ) corresponding to the change of

variables

ϕ2 = cosψ, ϕ1 = sinψ sin θ, ϕ0 = sinψ cos θ,

then rewriting that system using θ as an independent variable (we can do that for
0 < p <

√
3/2 by Corollary 5.3). The results are shown in Figure 1. Clearly, since

cot(α(p)) is monotone, the same is true for α(p).

We next prove the following

Proposition 5.6 Conjecture 5.5 implies Conjecture 1.5.

Proof Since the angle α(p) is monotone, it takes the value α(p) = π/2 only once.

This happens exactly for p =
√

3/8, so by Proposition 5.4, the only extremal metric
on the interval (0,

√
3/2) is the metric g0.

5.7 Difficulties in Proving Conjecture 1.5

One would like to have a computer-assisted proof of Conjecture 5.5, or of a weaker
statement, still impliying Conjecture 1.5, that the conclusion of Proposition 5.4 only
holds for p =

√

3/8. The main obstacle to finding a rigorous — even a computer-
assisted — proof seems to be that the systems (3.1.2) and (3.1.1) are lacking stability,
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Figure 1: Graph of cot(α(p)) for 0 < p <
√

3/2. The only zero occurs for p =

√

3

8
≈ 0.612.

and therefore estimates for the dependence of the solutions on the initial conditions
are very rough. Accordingly, one has to make numerical measurements with the

step not 10−3 as in the previous section, but a dozen orders of magnitude smaller.
Otherwise it seems impossible to control the behavior of the solutions between the
two measurements. However, such precision seems to be beyond the reach of existing
numerical software.

A similar difficulty occurs near the ends of the interval (0,
√

3/2). It can be shown
that

lim
p→0

y(p) = lim
p→

√
3/2

y(p) = ∞,

in fact that y(p) → ∞ as c| ln p| for an explicit constant c. Consequently, if the
system (3.1.2) for p > 0 has a periodic solution with period a(p), then

lim
p→0

a(p) = lim
p→

√
3/2

a(p) = ∞.

It is also shown that there exists an explicit M > 0 such that for any a > M and for

any metric ga on K with the conformal class a, we have (in the notation of section 1),

λ1(ga) Area(K
2, ga) < 12πE(2

√
2/3).

Altogether this implies the existence of a computable constant δ > 0 such that
an extremal metric for λ1 Area cannot be attained for p < δ and p >

√
3/2 − δ.

However, the value of δ we could obtain is way too small to be useful in a computer-
assisted proof.
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