
SIP (2019), vol. 8, e19, page 1 of 14 © The Authors, 2019.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
doi:10.1017/ATSIP.2019.12

overview paper

Evaluating word embedding models: methods
and experimental results

bin wang,1∗ angela wang,2∗ fenxiao chen,1 yuncheng wang1 and c.-c. jay kuo1

Extensive evaluation on a large number of word embedding models for language processing applications is conducted in this
work. First, we introduce popularword embeddingmodels and discuss desired properties of wordmodels and evaluationmethods
(or evaluators). Then, we categorize evaluators into intrinsic and extrinsic two types. Intrinsic evaluators test the quality of a
representation independent of specific natural language processing tasks while extrinsic evaluators use word embeddings as input
features to a downstream task and measure changes in performance metrics specific to that task. We report experimental results
of intrinsic and extrinsic evaluators on six word embeddingmodels. It is shown that different evaluators focus on different aspects
of word models, and some are more correlated with natural language processing tasks. Finally, we adopt correlation analysis to
study performance consistency of extrinsic and intrinsic evaluators.

Keywords: Natural language processing, Word embedding, Word embedding evaluation

Received 21 March 2019; Revised 9 June 2019

I . I NTRODUCT ION

Word embedding is a real-valued vector representation of
words by embedding both semantic and syntacticmeanings
obtained from unlabeled large corpus. It is a powerful tool
widely used in modern natural language processing (NLP)
tasks, including semantic analysis [1], information retrieval
[2], dependency parsing [3–5], question answering [6, 7],
and machine translation [6, 8, 9]. Learning a high-quality
representation is extremely important for these tasks, yet the
question “what is a good word embedding model” remains
an open problem.

Various evaluation methods (or evaluators) have been
proposed to test the qualities of word embedding mod-
els. As introduced in [10], there are two main categories
for evaluation methods – intrinsic and extrinsic evaluators.
Extrinsic evaluators use word embeddings as input features
to a downstream task and measure changes in performance
metrics specific to that task. Examples include part-of-
speech (POS) tagging [11], named-entity recognition (NER)
[12], sentiment analysis [13], and machine translation [14].
Extrinsic evaluators are more computationally expensive,
and they may not be directly applicable. Intrinsic evalu-
ators test the quality of a representation independent of

1University of Southern California, Los Angeles, CA 90089, USA
2University of California, Berkeley, Berkeley, CA 94720, USA

Corresponding author:
Bin Wang,
Email: bwang28c@gmail.com
∗Equal Contribution

specificNLP tasks. Theymeasure syntactic or semantic rela-
tionships among words directly. Aggregate scores are given
from testing the vectors in selected sets of query terms and
semantically related target words. One can further classify
intrinsic evaluators into two types: (1) absolute evaluation,
where embeddings are evaluated individually and only their
final scores are compared, and (2) comparative evaluation,
where people are asked about their preferences among dif-
ferent word embeddings [15]. Since comparative intrinsic
evaluators demand additional resources for subjective tests,
they are not as popular as the absolute ones.

A good word representation should have certain good
properties. An ideal word evaluator should be able to ana-
lyze word embedding models from different perspectives.
Yet, existing evaluators put emphasis on a certain aspect
with or without consciousness. There is no unified eval-
uator that analyzes word embedding models comprehen-
sively. Researchers have a hard time in selecting among
word embeddingmodels becausemodels do not always per-
form at the same level on different intrinsic evaluators. As a
result, the gold standard for a good word embedding model
differs for different language tasks. In this work, we will
conduct correlation study between intrinsic evaluators and
language tasks so as to provide insights into various eval-
uators and help people select word embedding models for
specific language tasks.

Although correlation between intrinsic and extrinsic
evaluators was studied before [16, 17], this topic is never
thoroughly and seriously treated. For example, producing
models by changing the window size only does not happen
often in real-world applications, and the conclusion drawn

1https://doi.org/10.1017/ATSIP.2019.12 Published online by Cambridge University Press

mailto:bwang28c@gmail.com
https://doi.org/10.1017/ATSIP.2019.12

2 bin wang, et al.

in [16] might be biased. The work in [17] only focused on
Chinese characters with limited experiments. We provide
the most comprehensive study and try to avoid the bias as
much as possible in this work.

The rest of the paper is organized as follows. Popular
word embedding models are reviewed in Section II. Prop-
erties of good embedding models and intrinsic evaluators
are discussed in Section III. Representative performance
metrics of intrinsic evaluation are presented in Section IV
and the corresponding experimental results are offered in
Section V. Representative performance metrics of extrin-
sic evaluation are introduced in Section VI and the corre-
sponding experimental results are provided in Section VII.
We conduct consistency study on intrinsic and extrinsic
evaluators using correlation analysis in SectionVIII. Finally,
concluding remarks and future research directions are dis-
cussed in Section IX.

I I . WORD EMBEDD ING MODELS

As extensive NLP downstream tasks emerge, the demand
for word embedding is growing significantly. As a result,
lots of word embedding methods are proposed while some
of them share the same concept. We categorize the existing
word embedding methods based on their techniques.

A) Neural Network Language Model
The Neural Network Language Model (NNLM) [18] jointly
learns a word vector representation and a statistical lan-
guage model with a feedforward neural network that con-
tains a linear projection layer and a non-linear hidden layer.
An N-dimensional one-hot vector that represents the word
is used as the input, where N is the size of the vocabu-
lary. The input is first projected onto the projection layer.
Afterwards, a softmax operation is used to compute the
probability distribution over all words in the vocabulary. As
a result of its non-linear hidden layers, the NNLM model
is very computationally complex. To lower the complexity,
an NNLM is first trained using continuous word vectors
learned from simplemodels. Then, anotherN-gramNNLM
is trained from the word vectors.

B) Continuous-Bag-of-Words and skip-gram
Two iteration-based methods were proposed in the
word2vec paper [19]. The first one is the Continuous-Bag-
of-Words (CBOW) model, which predicts the center word
from its surrounding context. This model maximizes the
probability of a word being in a specific context in the form
of

P(wi|wi−c,wi−c+1, . . . ,wi−1,wi+1, . . . ,wi+c−1,wi+c), (1)

where wi is a word at position i and c is the window size.
Thus, it yields a model that is contingent on the distribu-
tional similarity of words.

We focus on the first iteration in the discussion below.
Let W be the vocabulary set containing all words. The

CBOWmodel trains twomatrices: (1) an input wordmatrix
denoted byV ∈ R

N×|W|, where the ith column ofV is theN-
dimensional embedded vector for input word vi, and (2) an
output word matrix denoted by U ∈ R

|W|×N , where the jth
row of U is the N-dimensional embedded vector for output
word uj. To embed input context words, we use the one-hot
representation for each word initially, and apply VT to get
the corresponding word vector embeddings of dimension
N. We apply UT to an input word vector to generate a score
vector and use the softmax operation to convert a score vec-
tor into a probability vector of size W. This process is to
yield a probability vector that matches the vector represen-
tation of the output word. The CBOWmodel is obtained by
minimizing the cross-entropy loss between the probability
vector and the embedded vector of the output word. This is
achieved by minimizing the following objective function:

J(ui) = −uTi v̂ + log
|W|∑

j=1

exp(uTj v̂), (2)

where ui is the ith row of matrix U and v̂ is the average of
embedded input words.

Initial values for matrices V and U are randomly
assigned. The dimension N of word embedding can vary
based on different application scenarios. Usually, it ranges
from 50 to 300 dimensions. After obtaining bothmatricesV
or U, they can either be used solely or averaged to obtained
the final word embedding matrix.

The skip-grammodel [19] predicts the surrounding con-
text words given a center word. It focuses on maximizing
probabilities of context words given a specific center word,
which can be written as

P(wi−c,wi−c+1, . . . ,wi−1,wi+1, . . . ,wi+c−1,wi+c|wi). (3)

The optimization procedure is similar to that for the CBOW
model but with a reversed order for context and center
words.

The softmax function mentioned above is a method to
generate probability distributions from word vectors. It can
be written as

P(wc|wi) = exp(vTwc
vwi)∑|W|

w=1 exp(vTwvwi)
. (4)

This softmax function is not the most efficient one since
we must take a sum over all W words to normalize this
function. Other functions that are more efficient include
negative sampling and hierarchical softmax [20]. Negative
sampling is a method that maximizes the log probability of
the softmax model by only summing over a smaller subset
ofW words.Hierarchical softmax also approximates the full
softmax function by evaluating only log2 W words. Hier-
archical softmax uses a binary tree representation of the
output layer where the words are leaves and every node rep-
resents the relative probabilities of its child nodes. These
two approaches do well inmaking predictions for local con-
text windows and capturing complex linguistic patterns.
Yet, it could be further improved if global co-occurrence
statistics is leveraged.

https://doi.org/10.1017/ATSIP.2019.12 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2019.12

evaluating word embedding models: methods and experimental results 3

C) Co-occurrence matrix
In our current context, the co-occurrence matrix is a word-
document matrix. The (i, j) entry, Xij, of co-occurrence
matrix X is the number of times for word i in document
j. This definition can be generalized to a window-based co-
occurence matrix where the number of times of a certain
word appearing in a specific sized window around a center
word is recorded. In contrast with the window-based log-
linear model representations (e.g. CBOW or Skip-gram)
that use local information only, the global statistical infor-
mation is exploited by this approach.

One method to process co-occurrence matrices is the
singular value decomposition (SVD). The co-occurrence
matrix is expressed in the form of USVT matrices product,
where the first k columns of bothU andV are word embed-
ding matrices that transform vectors into a k-dimensional
space with an objective that it is sufficient to capture seman-
tics of words. Although embedded vectors derived by this
procedure are good at capturing semantic and syntactic
information, they still face problems such as imbalance
in word frequency, sparsity and high dimensionality of
embedded vectors, and computational complexity.

To combine benefits from the SVD-based model and the
log-linear models, the Global Vectors (GloVe) method [21]
adopts a weighted least-squared model. It has a framework
similar to that of the skip-gram model, yet it has a different
objective function that contains co-occurence counts. We
first define a word–word co-occurence matrix that records
the number of times word j occurs in the context of word
i. By modifying the objective function adopted by the skip-
grammodel, we derive a new objective function in the form
of

Ĵ =
W∑

i=1

W∑

j=1

f (Xij)(uTj vi − logXij)
2, (5)

where f (Xij) is the number of times word j occurs in the
context of word i.

The GloVe model is more efficient as its objective func-
tion contains non-zero elements of the word–word co-
occurrence matrix only. Besides, it produces a more accu-
rate result as it takes co-occurrence counts into account.

D) FastText
Embedding of rarely used words can sometimes be poorly
estimated. Therefore several methods have been proposed
to remedy this issue, including the FastText method. Fast-
Text uses the subword information explicitly so embedding
for rare words can still be represented well. It is still based
on the skip-gram model, where each word is represented as
a bag of character n-grams or subword units [22]. A vector
representation is associated with each of character n-grams,
and the average of these vectors gives the final represen-
tation of the word. This model improves the performance
on syntactic tasks significantly but not much in semantic
questions.

E) N-grammodel
The N-gram model is an important concept in language
models. It has been used inmanyNLP tasks. The ngram2vec
method [23] incorporates the n-gram model in various
baseline embedding models such as word2vec, GloVe,
PPMI, and SVD. Furthermore, instead of using traditional
training sample pairs or the sub-word level information
such as FastText, the ngram2vec method considers word–
word level co-occurrence and enlarges the reception win-
dow by adding the word–ngram and the ngram–ngram
co-occurrence information. Its performance on word anal-
ogy and word similarity tasks has significantly improved. It
is also able to learn negation word pairs/phrases like “not
interesting", which is a difficult case for other models.

F) Dictionary model
Even with larger text data available, extracting and embed-
ding all linguistic properties into a word representation
directly is a challenging task. Lexical databases such as
the WordNet are helpful to the process of learning word
embeddings, yet labeling large lexical databases is a time-
consuming and error-prone task. In contrast, a dictionary
is a large and refined data source for describing words. The
dict2vec method learns word representation from dictio-
nary entries as well as large unlabeled corpus [24]. Using
the semantic information from a dictionary, semantically-
related words tend to be closer in high-dimensional vector
space. Also, negative sampling is used to filter out pairs
which are not correlated in a dictionary.

G) Deep contextualized model
To represent complex characteristics of words and word
usage across different linguistic contexts effectively, a new
model for deep contextualized word representation was
introduced in [25]. First, an Embeddings from Language
Models (ELMo) representation is generated with a function
that takes an entire sentence as the input. The function is
generated by a bidirectional LSTM network that is trained
with a coupled languagemodel. Existing embeddingmodels
can be improved by incorporating the ELMo representation
as it is effective in incorporating the sentence information.
By following ELMo, a series of pre-trained neural network
models for language tasks are proposed such as BERT [26]
and OpenAI GPT [27]. Their effectiveness is proved in lots
of language tasks.

I I I . DES IRED PROPERT IES OF
EMBEDD ING MODELS AND
EVALUATORS

A) Embedding models
Different word embedding models yield different vector
representations. There are a few properties that all good
representations should aim for.

https://doi.org/10.1017/ATSIP.2019.12 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2019.12

4 bin wang, et al.

• Non-conflation [28]
Different local contexts around a word should give rise

to specific properties of the word, e.g. the plural or sin-
gular form, the tenses, etc. Embedding models should be
able to discern differences in the contexts and encode
these details into a meaningful representation in the word
subspace.

• Robustness against lexical ambiguity [28]
All senses (or meanings) of a word should be repre-

sented. Models should be able to discern the sense of a
word from its context and find the appropriate embed-
ding. This is needed to avoid meaningless representations
from conflicting properties that may arise from the pol-
ysemy of words. For example, word models should be
able to represent the difference between the following:
“the bow of a ship” and “bow and arrows”. Qui et al. [29]
are trying to improve word embedding model from this
perspective.

• Demonstration of multifacetedness [28]
The facet, phonetic, morphological, syntactic, and

other properties of a word should contribute to its final
representation. This is important as word models should
yield meaningful word representations and perhaps find
relationships between different words. For example, the
representation of a word should change when the tense
is changed or a prefix is added.

• Reliability [30]
Results of a word embedding model should be reliable.

This is important as word vectors are randomly initial-
ized when being trained. Even if a model creates different
representations from the same dataset because of random
initialization, the performance of various representations
should score consistently.

• Good geometry [31]
The geometry of an embedding space should have a

good spread. Generally speaking, a smaller set of more
frequent, unrelated words should be evenly distributed
throughout the space while a larger set of rare words
should cluster around frequent words. Word models
should overcome the difficulty arising from inconsistent
frequency of word usage and derive some meaning from
word frequency. From this perspective, Mu et al. and
Wang et al. [32, 33] proposed methods to improve word
embedding quality by making words more evenly dis-
tributed in the high-dimensional space.

B) Evaluators
The goal of an evaluator is to compare characteristics of dif-
ferent word embeddingmodels with a quantitative and rep-
resentative metric. However, it is not easy to find a concrete
and uniform way in evaluating these abstract characteris-
tics. Generally, a good word embedding evaluator should
aim for following properties.

• Good testing data
To ensure a reliable representative score, testing data

should be varied with a good spread in the span of a word

space. Frequently and rarely occurring words should be
included in the evaluation. Furthermore, data should be
reliable in the sense that they are correct and objective.

• Comprehensiveness
Ideally, an evaluator should test for many properties

of a word embedding model. This is not only an impor-
tant property for giving a representative score but also for
determining the effectiveness of an evaluator.

• High correlation
The score of a word model in an intrinsic evaluation

task should correlate well with the performance of the
model in downstream natural language processing tasks.
This is important for determining the effectiveness of an
evaluator.

• Efficiency
Evaluators should be computationally efficient. Most

models are created to solve computationally expensive
downstream tasks. Model evaluators should be simple yet
able to predict the downstream performance of a model.

• Statistical significance
The performance of different word embedding models

with respect to an evaluator should have enough statistical
significance, or enough variance between score distribu-
tions, to be differentiated [34]. This is needed in judging
whether a model is better than another and helpful in
determining performance rankings between models.

I V . INTR INS IC EVALUATORS

Intrinsic evaluators test the quality of a representation inde-
pendent of specific NLP tasks. They measure syntactic
or semantic relationships between words directly. In this
section, a number of absolute intrinsic evaluators will be
discussed.

A) Word similarity
The word similarity evaluator correlates the distance
between word vectors and human perceived semantic simi-
larity. The goal is to measure how well the notion of human
perceived similarity is captured by the word vector repre-
sentations, and validate the distributional hypothesis where
the meaning of words is related to the context they occur
in. For the latter, the way distributional semantic models
simulate similarity is still ambiguous [35].

One commonly used evaluator is the cosine similarity
defined by

cos(wx,wy) = wx · wy

||wx|| ||wy|| , (6)

where wx and wy are two word vectors and ||wx|| and ||wy||
are the �2 norm. This test computes the correlation between
all vector dimensions, independent of their relevance for a
given word pair or for a semantic cluster.

Because its scores are normalized by the vector length,
it is robust to scaling. It is computationally inexpensive.
Thus, it is easy to comparemultiple scores from amodel and
can be used in word model’s prototyping and development.

https://doi.org/10.1017/ATSIP.2019.12 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2019.12

evaluating word embedding models: methods and experimental results 5

Furthermore, word similarity can be used to test model’s
robustness against lexical ambiguity, as a dataset aimed at
testing multiple senses of a word can be created.

On the other hand, it has several problems as discussed in
[35]. This test is aimed at finding the distributional similarity
among pairs of words, but this is often conflated with mor-
phological relations and simple collocations. Similarity may
be confused with relatedness. For example, car and train are
two similar words while car and road are two related words.
The correlation between the score from the intrinsic test
and other extrinsic downstream tasks could be low in some
cases. There is doubt about the effectiveness of this evaluator
because it might not be comprehensive.

B) Word analogy
When given a pair of words a and a∗ and a third word b,
the analogy relationship between a and a∗ can be used to
find the corresponding word b∗ to b. Mathematically, it is
expressed as

a : a∗ :: b : __, (7)

where the blank is b∗. One example could be

write : writing :: read : reading. (8)

The 3CosAdd method [36] solves for b∗ using the following
equation:

b∗ = argmax
b′

(cos(b′, a∗ − a + b)), (9)

Thus, high cosine similarity means that vectors share a
similar direction. However, it is important to note that
the 3CosAdd method normalizes vector lengths using the
cosine similarity [36]. Alternatively, there is the 3CosMul
[37] method, which is defined as

b∗ = argmax
b′

cos(b′, b) cos(b′, a∗)
cos(b′, a) + ε

(10)

where ε = 0.001 is used to prevent division by zero. The
3CosMul method has the same effect with taking the
logarithm of each term before summation. That is, small
differences are enlarged while large ones are suppressed.
Therefore, it is observed that the 3CosMul method offers
better balance in different aspects.

It was stated in [38] that many models score under 30
on analogy tests, suggesting that not all relations can be
identified in this way. In particular, lexical semantic rela-
tions like synonymy and antonym are the most difficult.
They also concluded that the analogy test is the most suc-
cessful when all three source vectors are relatively close to
the target vector. Accuracy of this test decreases as their dis-
tance increases. Another seemingly counter-intuitive find-
ing is that words with denser neighborhoods yield higher
accuracy. This is perhaps because of its correlation with dis-
tance. Another problem with this test is subjectivity. Analo-
gies are fundamental to human reasoning and logic. The
dataset on which current word models are trained does not

encode our sense of reasoning. It is rather different from
the way how humans learn natural languages. Thus, given
a word pair, the vector space model may find a different
relationship from what humans may find.

Generally speaking, this evaluator serves as a good
benchmark in testing multifacetedness. A pair of words a
and a∗ can be chosen based on the facet or the property of
interest with the hope that the relationship between them is
preserved in the vector space. This will contribute to a better
vector representation of words.

C) Concept categorization
An evaluator that is somewhat different from both word
similarity andword analogy is concept categorization.Here,
the goal is to split a given set of words into different cat-
egorical subsets of words. For example, given the task of
separating words into two categories, the model should be
able to categorize words sandwich, tea, pasta,water into two
groups.

In general, the test can be conducted as follows. First, the
corresponding vector to each word is calculated. Then, a
clustering algorithm (e.g. the kmeans algorithm) is used to
separate the set of word vectors into n different categories.
A performance metric is then defined based on cluster’s
purity, where purity refers to whether each cluster contains
concepts from the same or different categories [39].

By looking at datasets provided for this evaluator, we
would like to point out some challenges. First, the datasets
do not have standardized splits. Second, no specific cluster-
ing methods are defined for this evaluator. It is important
to note that clustering can be computationally expensive,
especially when there are a large amount of words and cat-
egories. Third, the clustering methods may be unreliable if
there are either uneven distributions of word vectors or no
clearly defined clusters.

Subjectivity is another main issue. As stated by Senel
et al. [40], humans can group words by inference using con-
cepts that word embeddings can gloss over. Given words
lemon, sun, banana, blueberry, ocean, iris. One could
group them into yellow objects (lemon, sun, banana) and
red objects (blueberry, ocean, iris). Since words can belong
to multiple categories, we may argue that lemon, banana,
blueberry, and iris are in the plant category while sun
and ocean are in the nature category. However, due to the
uncompromising nature of the performance metric, there
is no adequate method in evaluating each cluster’s quality.

The property that the sets of words and categories seem
to test for is semantic relation, as words are grouped into
concept categories. One good property of this evaluator is
its ability to test for the frequency effect and the hub-ness
problem since it is good at revealingwhether frequentwords
are clustered together.

D) Outlier detection
A relatively new method that evaluates word clustering
in vector space models is outlier detection [41]. The goal

https://doi.org/10.1017/ATSIP.2019.12 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2019.12

6 bin wang, et al.

is to find words that do not belong to a given group of
words. This evaluator tests the semantic coherence of vector
space models, where semantic clusters can be first identi-
fied. There is a clear gold standard for this evaluator since
human performance on this task is extremely high as com-
pared to word similarity tasks. It is also less subjective. To
formalize this evaluator mathematically, we can take a set
of words

W = w1,w2, . . . ,wn+1, (11)

where there is one outlier.Next, we take a compactness score
of word w as

c(w) = 1
n(n − 1)

∑

wi∈W\w

∑

wj∈W\w,wj �=wi

sim(wi,wj). (12)

Intuitively, the compactness score of a word is the average of
all pairwise semantic similarities of the words in clusterW.
The outlier is the word with the lowest compactness score.
There is less amount of research on this evaluator as com-
pared with that of word similarity and word analogy. Yet, it
provides a goodmetric to check whether the geometry of an
embedding space is good. If frequent words are clustered to
form hubs while rarer words are not clustered around the
more frequent words they relate to, the evaluator will not
perform well in this metric.

There is subjectivity involved in this evaluator as the
relationship of different word groups can be interpreted in
different ways. However, since human perception is often
correlated, it may be safe to assume that this evaluator
is objective enough [41]. Also, being similar to the word
analogy evaluator, this evaluator relies heavily on human
reasoning and logic. The outliers identified by humans are
strongly influenced by the characteristics of words per-
ceived to be important. Yet, the recognized patterns might
not be immediately clear to word embedding models.

E) QVEC
QVEC [42] is an intrinsic evaluator that measures the
component-wise correlation between word vectors from a
word embedding model and manually constructed linguis-
tic word vectors in the SemCor dataset. These linguistic
word vectors are constructed in an attempt to give well-
defined linguistic properties. QVEC is grounded in the
hypothesis that dimensions in the distributional vectors
correspond to linguistic properties of words. Thus, linear
combinations of vector dimensions produce relevant con-
tent. Furthermore, QVEC is a recall-oriented measure, and
highly correlated alignments provide evaluation and anno-
tations of vector dimensions. Missing information or noisy
dimensions do not significantly affect the score.

The most prevalent problem with this evaluator is the
subjectivity of man-made linguistic vectors. Current word
embedding techniques perform much better than man-
made models as they are based on statistical relations from
data. Having a score based on the correlation between the
word embeddings and the linguistic word vectorsmay seem
to be counter-intuitive. Thus, the QVEC scores are not very

representative of the performance in downstream tasks. On
the other hand, because linguistic vectors aremanually gen-
erated, we know exactly which properties the method is
testing for.

V . EXPER IMENTAL RESULTS OF
INTR INS IC EVALUATORS

We conduct extensive evaluation experiments on six word
embedding models with intrinsic evaluators in this section.
The performancemetrics of consideration include: (1) word
similarity, (2) word analogy, (3) concept categorization, (4)
outlier detection, and (5) QVEC.

A) Experimental setup
We select six word embedding models in the experiments.
They are SGNS, CBOW, GloVe, FastText, ngram2vec, and
Dict2vec. For consistency, we perform training on the same
corpus – wiki20101. It is a dataset of medium size (around
6G) without XML tags. After preprocessing, all special
symbols are removed. By choosing a middle-sized train-
ing dataset, we attempt to keep the generality of real-world
situations. Some models may perform better when being
trained on larger datasets while others are less dataset
dependent. Here, the same training dataset is used to fit a
more general situation for fair comparison among different
word embedding models.

For all embedding models, we used their official released
toolkit and default setting for training. For SGNS and
CBOW, we used the default setting provided by the offi-
cial released toolkit2. GloVe toolkit is available from their
official website3. For FastText, we used their codes4. Since
FastText uses sub-word as basic units, it can deal with the
out-of-vocabulary problem well, which is one of the main
advantages of FastText. Here, to compare the word vector
quality only, we set the vocabulary set for FastText to be the
same as othermodels. For ngram2vecmodel5, because it can
be trained over multiple baselines, we chose the best model
reported in their original paper. Finally, codes for Dict2vec
can be obtained from website6. The training time for all
models are acceptable (within several hours) using a mod-
ern computer. The threshold for vocabulary is set to 10 for
all models. It means, for words with frequency lower than
10, they are assigned with the same vectors.

B) Experimental results
1) Word similarity
We choose 13 datasets for word similarity evaluation. They
are listed in Table 1. The information of each dataset is
provided. Among the 13 datasets, WS-353, WS-353-SIM,

1http://nlp.stanford.edu/data/WestburyLab.wikicorp.201004.txt.bz2
2https://code.google.com/archive/p/word2vec/
3https://nlp.stanford.edu/projects/glove/
4https://github.com/facebookresearch/fastText
5https://github.com/zhezhaoa/ngram2vec
6https://github.com/tca19/dict2vec

https://doi.org/10.1017/ATSIP.2019.12 Published online by Cambridge University Press

http://nlp.stanford.edu/data/WestburyLab.wikicorp.201004.txt.bz2
https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://github.com/facebookresearch/fastText
https://github.com/zhezhaoa/ngram2vec
https://github.com/tca19/dict2vec
https://doi.org/10.1017/ATSIP.2019.12

evaluating word embedding models: methods and experimental results 7

Table 1. Word similarity datasets used in our experiments where pairs
indicate the number of word pairs in each dataset

Methods Adj/Feature Accuracy

WS-353 [43] 353 2002
WS-353-SIM [44] 203 2009
WS-353-REL [44] 252 2009
MC-30 [45] 30 1991
RG-65 [46] 65 1965
Rare-Word (RW) [47] 2034 2013
MEN [48] 3000 2012
MTurk-287 [49] 287 2011
MTurk-771 [50] 771 2012
YP-130 [51] 130 2006
SimLex-999 [52] 999 2014
Verb-143 [53] 143 2014
SimVerb-3500 [54] 3500 2016

WS-353-REL, Rare-Word (RW) are more popular ones
because of their high quality of word pairs. The RW dataset
can be used to test model’s ability to learn words with low
frequency. The evaluation result is shown in Table 2. We
see that SGNS-basedmodels perform better generally. Note
that ngram2vec is an improvement over the SGNS model,
and its performance is the best. Also, The Dict2vec model
provides the best result against the RW dataset. This could
be attributed to that Dict2vec is fine-tuned word vectors
based on dictionaries. Since infrequent words are treated
equally with others in dictionaries, the Dict2vec model is
able to give better representation over rare words.

2) Word analogy
Two datasets are adopted for the word analogy evaluation
task. They are:

(1) the Google dataset [19] and (2) the MSR dataset

[36]. TheGoogle dataset contains 19544 questions. They are
divided into “semantic” and “morpho-syntactic” categories,
each of which contains 8869 and 10675 questions, respec-
tively. Results for these two subsets are also reported.
The MSR dataset contains 8,000 analogy questions. Both
3CosAdd and 3CosMul inferencemethods are implemented.
We show the word analogy evaluation results in Table 3.
SGNS performs the best. One word set for the analogy task
has four words. Since ngram2vec considers n-grammodels,
the relationship within word sets may not be properly cap-
tured. Dictionaries do not have such word sets and, thus,
word analogy is not well-represented in the word vectors
of Dict2vec. Finally, FastText uses sub-words, its syntactic
result is much better than its semantic result.

3) Concept categorization
Three datasets are used in concept categorization evalua-
tion. They are: (1) the AP dataset [55], (2) the BLESS dataset
[56], and (3) the BM dataset [57]. The AP dataset con-
tains 402 words that are divided into 21 categories. The BM
dataset is a larger one with 5321 words divided into 56 cat-
egories. Finally, the BLESS dataset consists of 200 words
divided into 27 semantic classes. The results are shown
in Table 4. We see that the SGNS-based models (includ-
ing SGNS, ngram2vec, and Dict2vec) perform better than
others on all three datasets.

4) Outlier detection
We adopt two datasets for the outlier detection task: (1)
the WordSim-500 dataset and (2) the 8-8-8 dataset. The
WordSim-500 consists of 500 clusters, where each cluster
is represented by a set of eight words with 5–7 outliers [58].

Table 2. Performance comparison (×100) of six-word embedding baseline models against 13-word similarity datasets

Word similarity datasets

WS WS-SIM WS-REL MC RG RW MEN Mturk287 Mturk771 YP SimLex Verb SimVerb

SGNS 71.6 78.7 62.8 81.1 79.3 46.6 76.1 67.3 67.8 53.6 39.8 45.6 28.9
CBOW 64.3 74.0 53.4 74.7 81.3 43.3 72.4 67.4 63.6 41.6 37.2 40.9 24.5
GloVe 59.7 66.8 55.9 74.2 75.1 32.5 68.5 61.9 63.0 53.4 32.4 36.7 17.2
FastText 64.8 72.1 56.4 76.3 77.3 46.6 73.0 63.0 63.0 49.0 35.2 35.0 21.9
ngram2vec 74.2 81.5 67.8 85.7 79.5 45.0 75.1 66.5 66.5 56.4 42.5 47.8 32.1
Dict2vec 69.4 72.8 57.3 80.5 85.7 49.9 73.3 60.0 65.5 59.6 41.7 18.9 41.7

Table 3. Performance comparison (×100) of six-word embedding baseline models against word analogy datasets

Word analogy datasets

Google Semantic Syntactic MSR

Add Mul Add Mul Add Mul Add Mul

SGNS 71.8 73.4 77.6 78.1 67.1 69.5 56.7 59.7
CBOW 70.7 70.8 74.4 74.1 67.6 68.1 56.2 56.8
GloVe 68.4 68.7 76.1 75.9 61.9 62.7 50.3 51.6
FastText 40.5 45.1 19.1 24.8 58.3 61.9 48.6 52.2
ngram2vec 70.1 71.3 75.7 75.7 65.3 67.6 53.8 56.6
Dict2vec 48.5 50.5 45.1 47.4 51.4 53.1 36.5 38.9

https://doi.org/10.1017/ATSIP.2019.12 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2019.12

8 bin wang, et al.

Table 4. Performance comparison (×100) of six-word embedding
baseline models against three concept categorization datasets

Concept categorization datasets

AP BLESS BM

SGNS 68.2 81.0 46.6
CBOW 65.7 74.0 45.1
GloVe 61.4 82.0 43.6
FastText 59.0 73.0 41.9
ngram2vec 63.2 80.5 45.9
Dict2vec 66.7 82.0 46.5

Table 5. Performance comparison of six-word embedding baseline
models against outlier detection datasets

Outlier detection datasets

WordSim-500 8-8-8

Accuracy OPP Accuracy OPP

SGNS 11.25 83.66 57.81 84.96
CBOW 14.02 85.33 56.25 84.38
GloVe 15.09 85.74 50.0 84.77
FastText 10.68 82.16 57.81 84.38
ngram2vec 10.64 82.83 59.38 86.52
Dict2vec 11.03 82.5 60.94 86.52

Table 6. QVEC performance comparison (×100) of six-word embedding
baseline models

QVEC QVEC

SGNS 50.62 FastText 49.20
CBOW 50.61 ngram2vec 50.83
GloVe 46.81 Dict2vec 48.29

The 8-8-8 dataset has eight clusters, where each cluster is
represented by a set of eight words with eight outliers [41].
Both Accuracy and Outlier Position Percentage (OPP) are
calculated. The results are shown in Table 5. They are not
consistent with each other for the two datasets. For exam-
ple, GloVe has the best performance on the WordSim-500
dataset but its accuracy on the 8-8-8 dataset is the worst.
This could be explained by the properties of these two
datasets. We will conduct correlation study in Section VIII
to shed light on this phenomenon.

5) QVEC
We use the QVEC toolkit7 and report the sentiment con-
tent evaluation result in Table 6. Among six word models,
ngram2vec achieves the best result while SGNS ranks the
second. This is more consistent with other intrinsic evalua-
tion results described above.

7https://github.com/ytsvetko/qvec

6) Best intrinsic evaluation results
In this section, we have reported various embeddingmodels
trained on the same dataset (wiki2010) for a fair compari-
son. However, how to generate the best performance over
intrinsic evaluators is still of great interest to researchers.
There are several guidelines to generate good word embed-
ding: (1) A larger training corpus can yield a better embed-
ding. Among all different datasets, Wikipedia dump is a
very good training corpus resource8. (2) For word embed-
ding dimension, normally 50–300 is enough. Usually for
semantic tasks, larger dimension is favored. (3) Domain-
specific data could bemore helpful to a specific downstream
task but not for intrinsic evaluators. Formore detailed guid-
ance on how to train a good word embedding, we refer
to [59].

V I . EXTR INS IC EVALUATORS

Based on the definition of extrinsic evaluators, any NLP
downstream task can be chosen as an evaluation method.
Here, we present five extrinsic evaluators: (1) POS tagging,
(2) chunking, (3) named-entity recognition, (4) sentiment
analysis, and (5) neural machine translation (NMT).

A) POS tagging
POS tagging, also called grammar tagging, aims to assign
tags to each input token with its POS like noun, verb,
adverb, conjunction. Due to the availability of labeled cor-
pora, many methods can successfully complete this task
by either learning probability distribution through linguis-
tic properties or statistical machine learning. As low-level
linguistic resources, POS tagging can be used for several
purposes such as text indexing and retrieval.

B) Chunking
The goal of chunking, also called shallow parsing, is to label
segments of a sentencewith syntactic constitutes. Eachword
is first assignedwith one tag indicating its properties such as
noun or verb phrases. It is then used to syntactically group-
ing words into correlated phrases. As compared with POS,
chunking provides more clues about the structure of the
sentence or phrases in the sentence.

C) Named-entity recognition
TheNER task is widely used in natural language processing.
It focuses on recognizing information units such as names
(including person, location, and organization) and numeric
expressions (e.g. time and percentage). Like the POS tag-
ging task, NER systems use both linguistic grammar-based
techniques and statistical models. A grammar-based system
demands lots of efforts on experienced linguists. In contrast,
a statistical-based NER system requires a large amount of
human labeled data for training, and it can achieve higher

8https://dumps.wikimedia.org/

https://doi.org/10.1017/ATSIP.2019.12 Published online by Cambridge University Press

https://github.com/ytsvetko/qvec
https://dumps.wikimedia.org/
https://doi.org/10.1017/ATSIP.2019.12

evaluating word embedding models: methods and experimental results 9

precision. Moreover, the current NER systems based on
machine learning are heavily dependent on training data.
It may not be robust and cannot generalize well to different
linguistic domains.

D) Sentiment analysis
Sentiment analysis is a particular text classification prob-
lem. Usually, a text fragment is marked with a binary/
multi-level label representing positiveness or negativeness
of text’s sentiment. An example of this could be the IMDb
dataset by [60] on whether a given movie review is pos-
itive or negative. Word phrases are important factor for
final decisions. Negative words such as “no” or “not” will
totally reverse the meaning of the whole sentence. Because
we are working on sentence-level or paragraph-level data
extraction, word sequence and parsing plays important
role in analyzing sentiment. Tradition methods focus more
on human-labeled sentence structures. With the develop-
ment of machine learning, more statistical and data-driven
approaches are proposed to deal with the sentiment analy-
sis task [13]. As compared to unlabeled monolingual data,
labeled sentiment analysis data are limited. Word embed-
ding is commonly used in sentiment analysis tasks, serv-
ing as transferred knowledge extracted from generic large
corpus. Furthermore, the inference tool is also an impor-
tant factor, and it might play a significant role in the final
result. For example, when conducting sentimental analy-
sis tasks, we may use Bag-of-words, SVM, LSTM, or CNN
based on a certain word model. The performance boosts
could be totally different when choosing different infer-
ence tools. The current state-of-the-art result for IMDb and
SST dataset is [61] and [62], respectively. They are models
specifically designed for sentiment analysis tasks.

E) Neural machine translation
NMT [14] refers to a category of deep-learning-basedmeth-
ods for machine translation. With large-scale parallel cor-
pus data available, NMT can provide state-of-the-art results
for machine translation and has a large gain over traditional
machine translation methods. Even with large-scale paral-
lel data available, domain adaptation is still important to
further improve the performance. Domain adaption meth-
ods are able to leverage monolingual corpus for existing
machine translation tasks. As compared to parallel corpus,
monolingual corpus are much larger and they can provide
a model with richer linguistic properties. One representa-
tive domain adaption method is word embedding. This is
the reason why NMT can be used as an extrinsic evaluation
task.

The recent development of NMT is very fast. All kinds of
models are utilized inNMT tasks likeCNN[63], LSTM[64],
and Transformer [65]. With the development of pre-trained
language model, the state-of-the-art result is obtained by
using cross-lingual pre-training model in [66].

V I I . EXPER IMENTAL RESULTS OF
EXTR INS IC EVALUATORS

A) Datasets and experimental setup
1) POS tagging, chunking and NER
By following [67], three downstream tasks for sequen-
tial labeling are selected in our experiments. The Penn
Treebank (PTB) dataset [68], the chunking of CoNLL’00
share task dataset [69], and the NER of CoNLL’03 shared
task dataset [70] are used for the POS tagging, chunking,
and NER, respectively. We adopt standard splitting ratios
and evaluation criteria for all three datasets. The details
for datasets splitting and evaluation criteria are shown in
Table 7.

For inference tools, we use the simple window-based
feed-forward neural network architecture implemented by
[16]. It takes inputs of five at one time and passes them
through a 300-unit hidden layer, a tanh activation function
and a softmax layer before generating the result. We train
eachmodel for 10 epochs using theAdamoptimizationwith
a batch size of 50.

2) Sentiment analysis
We choose two sentiment analysis datasets for evaluation:
(1) the Internet Movie Database (IMDb) [60] and (2) the
Stanford Sentiment Treebank dataset (SST) [71]. IMDb con-
tains a collection ofmovie review documents with polarized
classes (positive and negative). For SST, we split data into
three classes: positive, neutral, and negative. Their doc-
ument formats are different: IMDb consists several sen-
tenceswhile SST contains only single sentence per label. The
detailed information for each dataset is given in Table 8.

To cover most sentimental analysis inference tools,
we test the task using Bidirectional LSTM (Bi-LSTM),
Convolutional Neural Network (CNN), and FastText. We
choose two-layer Bi-LSTM with 256 hidden dimensions.
The adopted CNN has three layers with 100 filters per layer
of size [3, 4, 5], respectively. For FastText [72], we use the
bi-gram setting and only one layer for optimization. Partic-
ularly, the embedding layer for all models are fixed during
training. Allmodels are trained for 5 epochs using theAdam
optimization with 0.0001 learning rate.

Table 7. Datasets for POS tagging, chunking, and NER

Name Train (#Tokens) Test (#Tokens) Criteria

PTB 337195 129892 Accuracy
CoNLL’00 211727 47377 F-score
CoNLL’03 203621 46435 F-score

Table 8. Sentiment analysis datasets

Classes Train Validation Test

SST 3 8544 1101 2210
IMDb 2 1 7500 7500 2 5000

https://doi.org/10.1017/ATSIP.2019.12 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2019.12

10 bin wang, et al.

Table 9. Extrinsic evaluation results

SA(IMDb) SA(SST) NMT
POS Chunking NER Bi-LSTM CNN FastText Bi-LSTM CNN FastText Perplexity

SGNS 94.54 88.21 87.12 85.36 88.78 68.52 64.08 66.93 55.53 79.14
CBOW 93.79 84.91 83.83 86.93 85.88 69.55 65.63 65.06 60.73 102.33
GloVe 93.32 84.11 85.3 70.41 87.56 67.94 65.16 65.15 58.29 84.20
FastText 94.36 87.96 87.10 73.97 83.69 67.00 50.01 63.25 52.77 82.60
ngram2vec 94.11 88.74 87.33 79.32 89.29 68.98 66.27 66.45 61.05 77.79
Dict2vec 93.61 86.54 86.82 62.71 88.94 70.23 62.75 66.09 58.89 78.84

It is worth mentioning here that FastText usually refers
to two algorithms: (1) training word embedding [22] and (2)
text classification [72]. We consider both in this work.

For sentimental analysis evaluation, we report the classi-
fication accuracy and the accuracy is average across all the
testing samples instead of each class.

3) Neural machine translation
As compared with sentiment analysis, NMT is a more chal-
lenging task since it demands a larger network and more
training data. We use the same encoder–decoder architec-
ture as that in [64]. The Europarl v8 [73] dataset is used
as training corpora. The task is English–French translation.
For French word embedding, a pre-trained FastText word
embedding model9 is utilized. As to the hyper-parameter
setting, we use a single-layer bidirectional-LSTM of 500
dimensions for both the encoder and the decoder. Both
embedding layers for the encoder and the decoder are fixed
during the training process. The batch size is 30 and the total
training iteration is 100,000.

B) Experimental results and discussion
Experimental results of the above-mentioned five extrinsic
evaluators are shown in Table 9. Generally speaking, both
SGNS and ngram2vec perform well in POS tagging, chunk-
ing, and NER tasks. Actually, the performance differences
of all evaluators are small in these three tasks. As to the
sentimental analysis, their is no obvious winner with the
CNN inference tool. The performance gaps become larger
using the Bi-LSTM and FastText inference tool, and we see
that Dict2vec and FastText perform the worst. Based on
these results, we observe that there exist twodifferent factors
affecting the sentiment analysis results: datasets and infer-
ence tools. For different datasets with the same inference
tool, the performance can be different because of different
linguistic properties of datasets. On the other hand, differ-
ent inference tools may favor different embedding mod-
els against the same dataset since inference tools extract
the information from word models in their own manner.
For example, Bi-LSTM focuses on long-range dependency
while CNN treats each token more or less equally. For Fast-
Text, because of the usage of n-gram model and averaging
overall token embeddings, the quality of word embedding

9https://github.com/facebookresearch/fastText/blob/master/
pretrained-vectors.md

becomes very important for generating sentence embed-
dings.

Perplexity is used to evaluate the NMT task. It indicates
variability of a prediction model. Lower perplexity corre-
sponds to lower entropy and, thus, better performance. We
separate 20000 sentences from the same corpora to gener-
ate testing data and report testing perplexity for the NMT
task in Table 9. As shown in the table, ngram2vec, Dict2vec,
and SGNS are the top three word models for the NMT
task, which is consistent with the word similarity evaluation
results.

We conclude from Table 9 that SGNS-based models
including SGNS, ngram2vec, and dict2vec tend to work
better than other models. However, one drawback of
ngram2vec is that it takes more time in processing n-gram
data for training. GloVe and FastText are popular in the
research community since their pre-trainedmodels are easy
to download. We also compared results using pre-trained
GloVe and FastText models. Although they are both trained
on larger datasets and properly find-tuned, they do not
provide better results in our evaluation tasks.

V I I I . CONS ISTENCY STUDY V IA
CORRELAT ION ANALYS IS

We conduct consistency study of extrinsic and intrinsic
evaluators using the Pearson correlation (ρ) analysis [74].
Besides the six-word models described above, we add two
more pre-trained models of GloVe and FastText to make
the total model number eight. Furthermore, we apply the
variance normalization technique [33] to the eightmodels to
yield eightmoremodels. Consequently, we have a collection
of 16-word models.

Figure 1 shows the Pearson correlation of each intrinsic
and extrinsic evaluation pair of these 16 models. For exam-
ple, the entry of the first row and the first column is the
Pearson correlation value of WS-353 (an intrinsic evalua-
tor) andPOS (an extrinsic evaluator) of 16-wordmodels (i.e.
16 evaluation data pairs). Note also that we add a negative
sign to the correlation value of NMT perplexity since lower
perplexity is better.

A) Consistency of intrinsic evaluators
• Word similarity

All embedding models are tested over 13 evaluation
datasets and the results are shown in the top 13 rows.

https://doi.org/10.1017/ATSIP.2019.12 Published online by Cambridge University Press

https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://doi.org/10.1017/ATSIP.2019.12

evaluating word embedding models: methods and experimental results 11

Fig. 1. Pearson’s correlation between intrinsic and extrinsic evaluator, where the x-axis shows extrinsic evaluators while the y-axis indicates intrinsic evaluators.
The warm indicates the positive correlation while the cool color indicates the negative correlation.

We see from the correlation result that larger datasets
tend to givemore reliable and consistent evaluation result.
Among all datasets, WS-353, WS-353-SIM, WS-353-REL,
MTrurk-771, SimLex-999, and SimVerb-3500 are recom-
mended to serve as generic evaluation datasets. Although
datasets like MC-30 and RG-65 also provide us with rea-
sonable results, their correlation results are not as con-
sistent as others. This may be attributed to the limited
amount of testing samples with only dozens of testing
word pairs. The RWdataset is a special one that focuses on
low-frequency words and gains popularity recently. Yet,
based on the correlation study, the RW dataset is not as
effective as expected. Infrequent words may not play an
important role in all extrinsic evaluation tasks. This is why
infrequent words are often set to the same vector. The
RW dataset can be excluded for general purpose evalu-
ation unless there is a specific application demanding rare
words modeling.

• Word analogy
The word analogy results are shown from the 14th row

to the 21st row in the figure. Among four-word analogy
datasets (i.e. Google, Google Semantic, Google Syntac-
tic, and MSR), Google and Google Semantic are more
effective. It does notmakemuch difference in the final cor-
relation study using either the 3CosAdd or the 3CosMul
computation. Google Syntactic is not effective since the
morphology of words does not contain as much informa-
tion as semantic meanings. Thus, although the FastText
model performs well in morphology testing based on the
average of sub-words, its correlation analysis is worse than

othermodels. In general, word analogy providesmost reli-
able correlation results and has the highest correlation
with the sentiment analysis task.

• Concept categorization
All three datasets (i.e. AP, BLESS, and BM) for con-

cept categorization perform well. By categorizing words
into different groups, concept categorization focuses on
semantic clusters. It appears that models that are good at
dividing words into semantic collections are more effec-
tive in downstream NLP tasks.

• Outlier detection
Two datasets (i.e. WordSim-500 and 8-8-8) are used

for outlier detection. In general, outlier detection is not a
good evaluation method. Although it tests semantic clus-
ters to some extent, outlier detection is less direct as com-
pared to concept categorization. Also, from the dataset
point of view, the size of the 8-8-8 dataset is too small while
the WordSim-500 dataset contains too many infrequent
words in the clusters. This explains why the accuracy for
WordSim-500 is low (around 10–20). When there are
larger and more reliable datasets available, we expect the
outlier detection task to have better performance in word
embedding evaluation.

• QVEC
QVEC is not a good evaluator due to its inherit proper-

ties. It attempts to compute the correlation with lexicon-
resource-based word vectors. Yet, the quality of lexicon-
resource-based word vectors is too poor to provide a reli-
able rule. If we can find a more reliable rule, the QVEC
evaluator will perform better.

https://doi.org/10.1017/ATSIP.2019.12 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2019.12

12 bin wang, et al.

Based on the above discussion, we conclude that word
similarity, word analogy, and concept categorization are
more effective intrinsic evaluators. Different datasets lead
to different performance. In general, larger datasets tend
to give better and more reliable results. Intrinsic evalua-
tors may perform very differently for different downstream
tasks. Thus, when we test a new word embedding model,
all three intrinsic evaluators should be used and considered
jointly.

B) Consistency of extrinsic evaluators
For POS tagging, chunking, and NER, none of the intrin-
sic evaluators provide high correlation. Their performance
depend on their capability in sequential information extrac-
tion. Thus, wordmeaning plays a subsidiary role in all these
tasks. Sentiment analysis is a dimensionality reduction pro-
cedure. It focuses more on the combination of word mean-
ing. Thus, it has a stronger correlation with the properties
that the word analogy evaluator is testing. Finally, NMT is
sentence-to-sentence conversion, and themapping between
word pairs is more helpful in translation tasks. Thus, the
word similarity evaluator has a stronger correlationwith the
NMT task. We should also point out that some unsuper-
visedmachine translation tasks focus onword pairs [75, 76].
This shows the significance of word pair correspondence in
NMT.

I X . CONCLUS ION AND FUTURE
WORK

In this work, we provided in-depth discussion of intrinsic
and extrinsic evaluations on many word embedding mod-
els, showed extensive experimental results, and explained
the observed phenomema. Our study offers a valuable guid-
ance in selecting suitable evaluation methods for different
application tasks. There are many factors affecting word
embedding quality. Furthermore, there are still no perfect
evaluation methods testing the word subspace for linguis-
tic relationships because it is difficult to understand exactly
how the embedding spaces encode linguistic relations. For
this reason, we expect more work to be done in devel-
oping better metrics for evaluation on the overall quality
of a word model. Such metrics must be computationally
efficient while having a high correlation with extrinsic eval-
uation test scores. The crux of this problem lies in decoding
how the word subspace encodes linguistic relations and the
quality of these relations.

We would like to point out that linguistic relations and
properties captured by word embedding models are dif-
ferent from how humans learn languages. For humans, a
language encompasses many different avenues, e.g. a sense
of reasoning, cultural differences, contextual implications,
and many others. Thus, a language is filled with subjective
complications that interfere with objective goals of models.
In contrast, word embedding models perform well in spe-
cific applied tasks. They have triumphed over the work of

linguists in creating taxonomic structures and other man-
ually generated representations. Yet, different datasets and
different models are used for different specific tasks.

We do not see a word embedding model that consis-
tently performs well in all tasks. The design of a more
universal word embedding model is challenging. To gen-
erate word models that are good at solving specific tasks,
task-specific data can be fed into amodel for training. Feed-
ing a large amount of generic data can be inefficient and
even hurt the performance of a word model since different
task-specific data can lead to contending results. It is still
not clear what is the proper balance between the two design
methodologies.

ACKNOWLEDGEMENTS

Computation for the work was supported by the Univer-
sity of Southern California’s Center for High Performance
Computing (hpc.usc.edu).

REFERENCES

[1] Yu, L.-C.; Wang, J.; Lai, K.R.; Zhang, X.: Refining word embeddings
using intensity scores for sentiment analysis. IEEE/ACMTrans. Audio
Speech Language Processing (TASLP), 26 (3) (2018), 671–681.

[2] Manning, C.; Raghavan, P.; Schutze, H.: Introduction to information
retrieval. Natural Language Engineering, 16 (1) (2010), 100–103.

[3] Chen, W.; Zhang, M.; Zhang, Y.: Distributed feature representa-
tions for dependency parsing. IEEE Trans. Audio Speech Language
Processing, 23 (3) (2015), 451–460.

[4] Ouchi, H.; Duh, K.; Shindo, H.; Matsumoto, Y.: Transition-based
dependency parsing exploiting supertags. IEEE/ACM Trans. Audio
Speech Language Processing, 24 (11) (2016), 2059–2068.

[5] Shen, M.; Kawahara, D.; Kurohashi, S.: Dependency parse reranking
with rich subtree features. IEEE/ACM Trans. Audio Speech Language
Processing, 22 (7) (2014), 1208–1218.

[6] Zhou, G.; Xie, Z.; He, T.; Zhao, J.; Hu, X.T.: Learning the multilingual
translation representations for question retrieval in community ques-
tion answering via non-negative matrix factorization. IEEE/ACM
Trans. Audio Speech Language Processing (TASLP), 24 (7) (2016),
1305–1314.

[7] Hao, Y., et al.: An end-to-end model for question answering over
knowledge base with cross-attention combining global knowledge. in
Proc. of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), vol. 1, 2017, 221–231.

[8] Zhang, B.; Xiong, D.; Su, J.; Duan, H.: A context-aware recurrent
encoder for neural machine translation. IEEE/ACM Trans. Audio
Speech Language Processing (TASLP), 25 (12) (2017), 2424–2432.

[9] Chen, K. et al.: A neural approach to source dependence based
context model for statistical machine translation. IEEE/ACM Trans.
Audio Speech Language Processing (TASLP), 26 (2) (2018), 266–280.

[10] Bakarov, A.: A survey of word embeddings evaluationmethods. arXiv
preprint arXiv:1801.09536, 2018.

[11] Li, Z.; Zhang, M.; Che, W.; Liu, T.; Chen, W.: Joint optimization
for chinese pos tagging and dependency parsing. IEEE/ACM Trans.
Audio Speech Language Processing (TASLP), 22 (1) (2014), 274–286.

[12] Xu, J.; Sun, X.; He, H.; Ren, X.; Li, S.: Cross-domain and semi-
supervised named entity recognition in chinese social media: a

https://doi.org/10.1017/ATSIP.2019.12 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2019.12

evaluating word embedding models: methods and experimental results 13

unified model. IEEE/ACM Trans. Audio Speech Language Processing,
26 (11) (2018), 2142–2152.

[13] Ravi, K.; Ravi, V.: A survey on opinion mining and sentiment analy-
sis: tasks, approaches and applications. Knowl. Based. Syst., 89 (2015),
14–46.

[14] Bahdanau, D.; Cho, K.; Bengio, Y.: Neural machine translation by
jointly learning to align and translate. In: Proceedings of Interna-
tional Conference on Learning Representations 2015, 1-15 (2015).

[15] Schnabel, T.; Labutov, I.; Mimno, D.; Joachims, T.: Evaluation meth-
ods for unsupervised word embeddings. in Proc. of the 2015 Conf. on
Empirical Methods in Natural Language Processing, 2015, 298–307.

[16] Chiu, B.; Korhonen, A.; Pyysalo, S.: Intrinsic evaluation of word vec-
tors fails to predict extrinsic performance. in Proc. of the 1stWorkshop
on Evaluating Vector-Space Representations for NLP, 2016, 1–6.

[17] Qiu, Y.; Li, H.; Li, S.; Jiang, Y.; Hu, R.; Yang, L.: Revisiting correlations
between intrinsic and extrinsic evaluations of word embeddings. in
Chinese Computational Linguistics and Natural Language Processing
Based on Naturally Annotated Big Data, Springer, 2018, 209–221.

[18] Bengio, Y.; Ducharme, R.; Vincent, P.; Janvin, C.: A neural probabilis-
tic language model. J. Mach. Learn. Res., 3 (2003), 1137–1155.

[19] Mikolov, T.; Chen, K.; Corrado, G.; Dean, J.: Efficient estimation of
word representations in vector space. CoRR, vol. abs/1301.3781, 2013.

[20] Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J.: Dis-
tributed representations of words and phrases and their composi-
tionality. in Advances in neural information processing systems, 2013,
3111–3119.

[21] Pennington, J.; Socher, R.; Manning, C.: Glove: Global vectors for
word representation. in Proc. of the 2014 Conf. on Empirical Methods
in Natural Language Processing (EMNLP), 2014, 1532–1543.

[22] Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T.: Enriching word vec-
tors with subword information. Trans. Assoc. Comput. Linguistics, 5
(1) (2017), 135–146.

[23] Zhao, Z.; Liu, T.; Li, S.; Li, B.; Du, X.: Ngram2vec: learning improved
word representations from ngram co-occurrence statistics. in Proc. of
the 2017 Conf. on Empirical Methods in Natural Language Processing,
2017, 244–253.

[24] Tissier, J.; Gravier, C.; Habrard, A.: Dict2vec: learning word
embeddings using lexical dictionaries. in Conf. on Empirical
Methods in Natural Language Processing (EMNLP 2017), 2017,
254–263.

[25] Peters, M., et al.: Deep contextualized word representations, in Proc.
of the 2018 Conf. of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, vol. 1,
2227–2237.

[26] Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K.: Bert: pre-training
of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[27] Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I.: Improving
language understanding by generative pre-training. Technical report,
OpenAI, 2018.

[28] Yaghoobzadeh, Y.; Schütze, H.: Intrinsic subspace evaluation of word
embedding representations. in Proc. of the 54th Annual Meeting of the
Association for Computational Linguistics, vol. 1, 2016, 236–246.

[29] Qiu, L.; Cao, Y.; Nie, Z.; Yu, Y.; Rui, Y.: Learning word representation
considering proximity and ambiguity. in Twenty-eighth AAAI Conf.
on Artificial Intelligence, 2014.

[30] Hellrich, J.; Hahn, U.: Don’t get fooled by word embeddings: better
watch their neighborhood. inDigitalHumanities 2017–Conf. Abstracts
of the 2017 Conf. of the Alliance of Digital Humanities Organizations
(ADHO). Montréal, Quebec, Canada, 2017, 250–252.

[31] Gladkova, A.; Drozd, A.: Intrinsic evaluations of word embeddings:
what can we do better? in Proc. of the 1st Workshop on Evaluating
Vector-Space Representations for NLP, 2016, 36–42.

[32] Mu, J.; Bhat, S.; Viswanath, P.: All-but-the-top: simple and effective
postprocessing for word representations. arXiv preprint arXiv:1702.
01417, 2017.

[33] Wang, B.; Chen, F.; Wang, A.; Kuo, C.-C.J.: Post-processing of word
representations via variance normalization and dynamic embedding.
in 2019 IEEE Int. Conf. on Multimedia and Expo (ICME), IEEE,
2019.

[34] Shalaby, W.; Zadrozny, W.: Measuring semantic relatedness using
mined semantic analysis. CoRR, abs/1512.03465, 2015.

[35] Faruqui, M.; Tsvetkov, Y.; Rastogi, P.; Dyer, C.: Problems with evalua-
tion of word embeddings using word similarity tasks.ACL 2016, 2016,
30.

[36] Mikolov, T.; Yih, W.-t.; Zweig, G.: Linguistic regularities in continu-
ous space word representations. in Proc. of the 2013 Conf. of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2013, 746–751.

[37] Levy, O.; Goldberg, Y.: Linguistic regularities in sparse and explicit
word representations. in Proc. of the Eighteenth Conf. on Computa-
tional Natural Language Learning, 2014, 171–180.

[38] Rogers, A.; Drozd, A.; Li, B.: The (too many) problems of analogical
reasoning with word vectors. in Proc. of the 6th Joint Conf. on Lexical
and Computational Semantics (* SEM 2017), 2017, 135–148.

[39] Baroni, M.; Dinu, G.; Kruszewski, G.: Don’t count, predict! a sys-
tematic comparison of context-counting versus context-predicting
semantic vectors. in Proc. of the 52nd Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), vol. 1,
2014, 238–247.

[40] Senel, L.K.; Utlu, I.; Yucesoy,V.; Koc,A.; Cukur, T.: Semantic structure
and interpretability of word embeddings. IEEE/ACM Trans. Audio
Speech Language Processing, 2018.

[41] Camacho-Collados, J.; Navigli, R.: Find the word that does not
belong: A framework for an intrinsic evaluation of word vector rep-
resentations. in Proc. of the 1st Workshop on Evaluating Vector-Space
Representations for NLP, 2016, 43–50.

[42] Tsvetkov, Y.; Faruqui, M.; Ling, W.; Lample, G.; Dyer, C.: Evaluation
of word vector representations by subspace alignment. in Proc. of the
2015 Conf. on EmpiricalMethods inNatural Language Processing, 2015,
2049–2054.

[43] Finkelstein, L. et al.: Placing search in context: the concept revis-
ited, in Proc. of the 10th Int. Conf. on World Wide Web, ACM, 2001,
406–414.

[44] Agirre, E.; Alfonseca, E.; Hall, K.; Kravalova, J.; Paşca,M.; Soroa, A.: A
study on similarity and relatedness using distributional and wordnet-
based approaches. in Proc. of Human Language Technologies: The
2009 Annual Conf. of the North American Chapter of the Associa-
tion for Computational Linguistics, Association for Computational
Linguistics, 2009, 19–27.

[45] Miller, G.A.; Charles, W.G.: Contextual correlates of semantic simi-
larity. Lang. Cogn. Process., 6 (1) (1991), 1–28.

[46] Rubenstein, H.; Goodenough, J.B.: Contextual correlates of syn-
onymy. Commun. ACM, 8 (10) (1965), 627–633.

[47] Luong, T.; Socher, R.; Manning, C.: Better word representations with
recursive neural networks for morphology. in Proc. of the Seven-
teenth Conf. on Computational Natural Language Learning, 2013,
104–113.

[48] Bruni, E.; Tran, N.-K.; Baroni, M.: Multimodal distributional seman-
tics. J. Artif. Intell. Res., 49 (2014), 1–47.

https://doi.org/10.1017/ATSIP.2019.12 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2019.12

14 bin wang, et al.

[49] Radinsky, K.; Agichtein, E.; Gabrilovich, E.; Markovitch, S.: A word
at a time: computing word relatedness using temporal semantic
analysis, in Proc. of the 20th Int. Conf. onWorld wide web, ACM, 2011,
337–346.

[50] Halawi, G.; Dror, G.; Gabrilovich, E.; Koren, Y.: Large-scale learn-
ing of word relatedness with constraints. in Proc. of the 18th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, ACM,
2012, 1406–1414.

[51] Turney, P.D.:Mining the web for synonyms: Pmi-ir versus lsa on toefl.
in European Conf. on Machine Learning, Springer, 2001, 491–502.

[52] Hill, F.; Reichart, R.; Korhonen, A.: Simlex-999: evaluating semantic
models with (genuine) similarity estimation. Comput. Linguistics, 41
(4) (2015), 665–695.

[53] Baker, S.; Reichart, R.; Korhonen, A.: An unsupervised model for
instance level subcategorization acquisition. in Proc. of the 2014 Conf.
on EmpiricalMethods inNatural Language Processing (EMNLP), 2014,
278–289.

[54] Gerz, D.; Vulić, I.; Hill, F.; Reichart, R.; Korhonen, A.: Simverb-3500:
a large-scale evaluation set of verb similarity. in Proc. of the 2016
Conf. on Empirical Methods in Natural Language Processing, 2016,
2173–2182.

[55] Almuhareb, A.: Attributes in lexical acquisition. Ph.D. thesis, Univer-
sity of Essex, 2006.

[56] Baroni, M.; Lenci, A.: How we blessed distributional semantic eval-
uation. in Proc. of the GEMS 2011 Workshop on GEometrical Mod-
els of Natural Language Semantics, Association for Computational
Linguistics, 2011, 1–10.

[57] Baroni,M.;Murphy, B.; Barbu, E.; Poesio,M.: Strudel: a corpus-based
semantic model based on properties and types. Cognitive Sci., 34 (2)
(2010), 222–254.

[58] Blair, P.; Merhav, Y.; Barry, J.: Automated generation of multilin-
gual clusters for the evaluation of distributed representations. ICLR
workshop, 2017.

[59] Lai, S.; Liu, K.; He, S.; Zhao, J.: How to generate a good word embed-
ding. IEEE Intell. Syst., 31 (6) (2016), 5–14.

[60] Maas, A.L.; Daly, R.E.; Pham, P.T.; Huang, D.; Ng, A.Y.; Potts, C.:
Learning word vectors for sentiment analysis. in Proc. of the 49th
annualmeeting of the association for computational linguistics: Human
language technologies-volume 1, Association for Computational Lin-
guistics, 2011, 142–150.

[61] Howard, J.; Ruder, S.: Universal language model fine-tuning for text
classification. arXiv preprint arXiv:1801.06146, 2018.

[62] Liu, X.; He, P.; Chen, W.; Gao, J.: Multi-task deep neural networks
for natural language understanding. arXiv preprint arXiv:1901.11504,
2019.

[63] Gehring, J.; Auli, M.; Grangier, D.; Dauphin, Y.N.: A convolu-
tional encoder model for neural machine translation. arXiv preprint
arXiv:1611.02344, 2016.

[64] Klein, G.; Kim, Y.; Deng, Y.; Senellart, J.; Rush, A.: Opennmt: Open-
source toolkit for neural machine translation. in Proc. of ACL 2017,
System Demonstrations, Association for Computational Linguistics,
2017, 67–72.

[65] Vaswani, A. et al.: Attention is all you need. in Advances in neural
information processing systems, 2017, 5998–6008.

[66] Lample, G.; Conneau, A.: Cross-lingual language model pretraining.
arXiv preprint arXiv:1901.07291, 2019.

[67] Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.;
Kuksa, P.: Natural language processing (almost) from scratch. J.
Machine Learning Res., no. Aug, vol. 12, 2011, 2493–2537.

[68] Marcus, M.P.; Marcinkiewicz, M.A.; Santorini, B.: Building a large
annotated corpus of english: the penn treebank. Comput. Linguistics,
19 (2) (1993), 313–330.

[69] Tjong Kim Sang, E.F.; Buchholz, S.: Introduction to the conll-2000
shared task: chunking. in Proc. of the 2nd workshop on Learning lan-
guage in logic and the 4th Conf. on Computational natural language
learning-Volume 7, Association for Computational Linguistics, 2000,
127–132.

[70] Tjong Kim Sang, E.F.; De Meulder, F.: Introduction to the conll-
2003 shared task: Language-independent named entity recognition.
in Proc. of the Seventh Conf. on Natural language learning at HLT-
NAACL 2003-Volume 4, Association for Computational Linguistics,
2003, 142–147.

[71] Socher, R., et al.: Recursive deep models for semantic compositional-
ity over a sentiment treebank. in Proc. of the 2013 Conf. on Empirical
Methods in Natural Language Processing, 2013, 1631–1642.

[72] Joulin, A.; Grave, E.; Bojanowski, P.; Mikolov, T.: Bag of tricks
for efficient text classification. arXiv preprint arXiv:1607.01759,
2016.

[73] Koehn, P.: Europarl: a parallel corpus for statistical machine transla-
tion. in MT summit, vol. 5, 2005, 79–86.

[74] Benesty, J.; Chen, J.; Huang, Y.; Cohen, I.: Pearson correlation
coefficient. in Noise reduction in speech processing, Springer, 2009,
1–4.

[75] Artetxe, M.; Labaka, G.; Agirre, E.: Learning bilingual word embed-
dings with (almost) no bilingual data. in Proc. of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), vol. 1, 2017, 451–462.

[76] Artetxe, M.; Labaka, G.; Agirre, E.; Cho, K.: Unsupervised neural
machine translation. in Proc. of the Sixth Int. Conf. on Learning
Representations, April 2018.

https://doi.org/10.1017/ATSIP.2019.12 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2019.12

	I Introduction
	II Word Embedding Models
	A Neural Network Language Model
	B Continuous-Bag-of-Words and skip-gram
	C Co-occurrence matrix
	D FastText
	E N-gram model
	F Dictionary model
	G Deep contextualized model

	III Desired Properties of Embedding Models and Evaluators
	A Embedding models
	B Evaluators

	IV Intrinsic Evaluators
	A Word similarity
	B Word analogy
	C Concept categorization
	D Outlier detection
	E QVEC

	V Experimental Results of Intrinsic Evaluators
	A Experimental setup
	B Experimental results
	1 Word similarity
	2 Word analogy
	3 Concept categorization
	4 Outlier detection
	5 QVEC
	6 Best intrinsic evaluation results

	VI Extrinsic Evaluators
	A POS tagging
	B Chunking
	C Named-entity recognition
	D Sentiment analysis
	E Neural machine translation

	VII Experimental Results of Extrinsic Evaluators
	A Datasets and experimental setup
	1 POS tagging, chunking and NER
	2 Sentiment analysis
	3 Neural machine translation

	B Experimental results and discussion

	VIII Consistency Study via Correlation Analysis
	A Consistency of intrinsic evaluators
	B Consistency of extrinsic evaluators

	IX Conclusion and Future Work

