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Abstract. The avalanche of data over the past 10-20 years has propelled cosmology into the
“precision era”. The next challenge cosmology has to meet is to enter the era of accuracy.
Because of the intrinsic nature of studying the Cosmos and the sheer amount of data available
now and coming soon, the only way to meet this challenge is by developing suitable and specific
statistical techniques. The road from precision Cosmology to accurate Cosmology goes through
statistical Cosmology. I will outline some open challenges and discuss some specific examples.
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1. Introduction
Cosmology in the past twenty years or so has made the transition to precision cosmol-

ogy. Cosmological parameters that were known only within an order of magnitude are
now measured with percent precision. This transition was brought about by the avalanche
of data provided by massive large-scale structure surveys and ambitious mapping of the
Cosmic Microwave Background (CMB) radiation. Thanks to this, over the past twenty
years, cosmology has made the transition from a data-starved science to a data driven sci-
ence. As a result, cosmology has now a standard (base, or ΛCDM) model. The standard
model for cosmology requires only a handful of parameters to describe the origin, com-
position and evolution of the entire Universe. However, there is a big difference between
modelling and understanding. While the standard cosmological model works extremely
well it is highly unsatisfactory, as it has many ingredients we do not understand and we
know it is incomplete. This is driving virtually all the experimental efforts in the field of
the near future. From the modelling point of view, there are many plausible extensions
of the base model, where in practice one or more parameters are being added. In these
extended models the “precision” even of the base parameters gets significantly degraded.

In this Cosmology is special among the experimental sciences, but the peculiarity of
Cosmology goes deeper than that.

2. Cosmology is special
As an experimental science Cosmology has a peculiarity in that we cannot make con-

trolled experiments. When we mention experiments we should always bear in mind that
we can only make observations†. And we only have one observable Universe. This is what
I call the curse of cosmology. There are two important consequences of this limitation.
One is that all we can do is to fit models to observations. To be more precise we constrain

† I have seen this limitation only in disciplines like the study of the effect of nuclear fallout
from “unlikey” (and unlucky) events such as accidents with power plants and bombs.
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numerical values of the model’s parameters using observations; very few quantities are di-
rect measurements: therefore any statement is model-dependent. To make matters worst,
non-linearities (which are very hard to model) and poorly known astrophysical processes
(gastrophysics, for aficionados) get in the way. As a result, different observations are
more or less “clean” and robust and more or less trustable. It is however somewhat a
question of personal taste which I like to compare to the Standard & Poor’s credit rating
for countries (enough said).

Cosmological results (and constraints on cosmological parameters) therefore depend
not only on the adopted cosmological model but also on the data sets one is (willing to)
consider. Therefore there is not one, unique, determination from cosmology of a given
quantity (cosmological parameter). This can be quite confusing at first for those not
working in the field.

Like every cloud has a silver lining, the curse of cosmology is also a blessing: we might
have only one observable Universe and we might not perform controlled experiments on it,
but we can –at least in principle– observe all there is to see. This is what I call “ultimate
experiment” in cosmology. The big development for the near future (which has however
already started in the past few years) is that advances in observational techniques have
made possible to perform ultimate experiments and the next generation of large-scale
structure surveys will be a collection of “ultimate experiments”. For example the Planck
satellite (Planck collaboration, 2013a, Planck collaboration, 2013b) has provided us with
the “ultimate experiment” for the Cosmic Microwave Background primary temperature
anisotropies. A mission like the proposed COrE+(COrE collaboration, 2012; PRISM col-
laboration, 2014) will provide the ultimate experiment for CMB lensing and polarisation
– both E modes and B modes– signal.

The other important consequence of having only one observable Universe is more
subtle. In Cosmology we believe that the observed Universe is only one part of the entire
Universe, which is seen as an ensemble of all possible observ-ed/able Universes of which
the observed one is a random draw. Ambitiously, from the limited observations we can
gather, we want to make inferences about the properties of the entire Universe. In this
sense, statistics is very much ingrained in cosmology: any theoretical model will mostly
predict the statistical properties of the Universe. The observations are intrinsically a
statistical quantity. There is therefore a fundamental error floor for any measurement
given by cosmic variance. No wonder many cosmologists are Bayesian!

3. Challenges
The avalanche of data of the past twenty years has brought about challenges, which

the community was able to address and solve. The next generation of surveys will push
the field in to the “big data” era. Undoubtably this will bring in “big challenges” but,
given that so far the community has a good track record on this, I will not focus on this
aspect here.

I will instead dwell on the fact that with more data available, making the statistical
error shrink, the systematic errors must be kept under exquisite control. Here we are
entering uncharted territory. While there is a at least well defined framework to deal
with statistical errors, there is no systematic way to address systematic errors.

There are several types of systematic errors, and here is my personal view (paraphrasing
Rumsfeld).

- There are things that we know that we know. But what if what we think we know
isn’t true? Recall that any statement in cosmology is model dependent. “Essentially, all
models are wrong, but some are useful” (Box and Draper, 1987).
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- Known unknowns. These are the systematic effects that are probably easier to deal
with: at least we know what we have to watch out for. Below I will give an example of
how to deal with these.

- Unknown unknowns. Here the general wisdom is to try to measure the same thing
in different, independent ways (e.g., different data) and compare. It might be a very
expensive route, but at the moment it is the only option.

To summarise, after precision cosmology, cosmology should strive to become accurate.
This is not news, see Peebles (2002). Systematic effects may be in the data but may also be
in the model used for their interpretation. In what follows I will present a small selection
of examples where the application of statistical techniques can help in the transition
from precision to accurate cosmology. This selection is not meant to be exhaustive or
representative, it just cover some of the problems I have been working on with my
collaborators over the past couple of years.

3.1. Example 1: Being Bayesian with non-Gaussianity
The search for deviations from primordial non-Gaussianity is a very active research sub-
ject: any deviation from the simplest implementation of slow-roll inflation implies primor-
dial non-Gaussianity, possibly at a detectable level. In addition, even if the initial condi-
tions were Gaussian, non-linear gravitational evolution creates non-Gaussianity. Despite
the fact that Bayesian methods are routinely employed in cosmology, the state-of-the-art
non-Gaussianity analyses are done in the Frequentist framework: a bispectrum estima-
tor is employed which has been shown to be optimal but only in the limit of vanishing
non-Gaussianity.

The problem in applying the Bayesian method in this context is that a full, analytic
probability distribution function does not exist even for the simplest non-Gaussian model.
The available literature on this has concentrated on the local type of non-Gaussianity
where the field of interest Φ is expressed in terms of a Gaussian auxiliary field φ and a
dimensionless non-Gaussianity parameter fNL:

Φ(x) = φ(x) + fNL
[
φ2(x) − 〈φ2(x)〉

]
. (3.1)

Recall that 〈φ2(x)〉 = σ2
φ . Here we also consider this model. The goal is to find the

posterior distribution of the amplitude of non-Gaussianities given the data, P (fNL |d);
this includes information from all correlation orders not just the bispectrum. This has
been attempted by Elsner and Wandelt (2010), Elsner et al. (2010), Ensslin et al. (2008),
here I follow the approach of Verde et al. (2013). I will only outline the philosophy of
the approach and explain the implications of the findings, the detailed expressions and
equations may be found in Verde et al. (2013).

To understand the set up, let us warm up by re-deriving known results in the Gaussian
case.

Let us define a field A, which is the observable field and can be the temperature of
the CMB or the am

� or the matter overdensity field etc. The value of the observed field
at any spatial point i is related to the underlying potential Φ via

A(x) = Ai =
∫

d3yM(x,y)Φ(y) ≡ (M,Φ) . (3.2)

The full information about the Gaussian field φ is given by the Gaussian generating
functional P[φ]; for example the joint multivariate probability of A1 , ..., An is

P(A1 , A2 , ...An ) =
∫

[Dφ]P(φ)
n∏

i=1

δD [Ai − (M,Φ(φ))] . (3.3)
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Here,

P(φ) =
exp[−1/2(φ,K0 , φ)]∫

D[φ] exp[−1/2(φ,K0 , φ)]
(3.4)

and we have used the shorthand notation∫
d3y d3z φ(y)K(y − z)φ(z) ≡ (φ,K, φ), (3.5)

with K0 defined by the relation to the 2-point correlation function of φ, ξφ :∫
d3yK0(|x − y|)ξφ(|y − z|) = δ(|x − z|). (3.6)

This is a very powerful approach although sometimes it is tricky to deal with the Dirac
delta function which Fourier representation involves highly oscillatory functions. On the
other hand, observations are often discretized/pixelized, so we discretize these integrals
to simplify their analytic calculation, then, if needed, one take the continuous limit at
the end. All the above convolutions then become just matrix operations.

For example it is easy to see that if M is invertible and Φ is Gaussian then A is also
Gaussian with covariance given by the covariance of A: K̂0 =

(
M−1

)T
K0M−1 (matrix

multiplication) and [K̂−1
0 ]ij = ξA

ij .
If M is not invertible (say Φ is the three dimensional gravitational potential and

the observable field A is the CMB temperature spherical harmonic coefficients am
� ) it

is still possible to split it in two blocks M = (ℵ N ) where the ℵ block is invertible.
Then standard linear algebra yields the known results i.e., that the A (i.e., am

� ) field is
Gaussian with correlation function given by MT ξΦM.

The moment a nonzero fNL is introduced, things complicate. It is instructive to first
consider the case where M is the identity matrix. Then it is well known that in this case
one can solve the Dirac delta function in Eq. (3.3) by finding its roots. Neglecting the
exponentially suppressed root (which is an excellent approximation over virtually all the
support of the Probability Density Function, PDF) it is possible to write down the exact
multi-variate PDF, P(Φ).

Of course in the more general case for M, once one has the expression for P(Φ), one
could simply say:

P( �A|fNL) =
∫

D[Φ]P(Φ)δD (A −
∫

MΦ) . (3.7)

This then must be integrated numerically via Monte-Carlo methods, as for example
explored in Elsner et al. (2010), Elsner and Wandelt (2010). This is computationally
extremely intensive, as the dimensionanity of the integrand is given by Φ it is not that of
the observable field. We can attempt to proceed further analytically. Of course if M is
invertible (e.g., A is the matter over density field) one could do a suitable transformation
on the observables:

Ab −→
∑

a

(M−1)baAa ≡ Ãb , (3.8)

and get a nice closed expression. In the general case when M is not invertible it is pos-
sible to further simplify the resulting expressions, to yield a (still) highly-dimensional
integral but where the dimensionality is that of the observed field A. What remains to
perform numerically is still computationally intensive especially for applications such as
mega-pixel CMB maps. Still, compared to Eq. 3.7, the dimensionality has been dramat-
ically reduced, for example, by a factor O(106), for a full sky CMB map from current
experiments!
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Figure 1. PDF for the non-Gaussianity parameter fn l = fNL σφ given a value of the field Φ:
left panel Φ = 1, right panel Φ = 1.5. Note the discontinuity on the left panel and, on the right
panel, the sharp divergencies at the edge of a region where the PDF is zero.

Before proceeding further it is important to understand the following warning and its
consequences. So far we have been aiming at constructing P(Φ|fNL). Assuming a uniform
prior on fNL, this can be interpreted as P(fNL |Φ). However P(fNL |Φ) has discontinuities
which prevent any perturbative expansion. Only well away from these these discontinu-
ities the moments are defined and the central limit theorem applies. In particular while
in P(Φ|fNL) fNL is fixed and can be taken to be small, and maybe there one might find
that perturbative expansions work well, in P(fNL |Φ) the values of fNL are not bounded
and can (and do) get very large. Fig. 1 shows an example of a 1-dimensional PDF for
fnl = fNLσφ , for different values of Φ.

Discontinuities are clearly visible. The support of the PDF depends on the value of
the parameter fNL: the PDF is zero for Φ < −fnl − 1/(4fnl). This creates many prob-
lems. For example, one could try to find a maximum likelihood estimator (rather than
working with the full PDF). But because of this the Cramer-Rao bound is invalid. This
sharp discontinuity will also prevent any truncated expansion of the PDF being a good
approximation.

The above discussion is valid for a single pixel, but it has consequences when many
pixels (measurements) are combined. The full posterior when n independent pixels can
be computed analytically and is shown in the left panel of Fig. 2: the PDF is zero for
fnl > ftrue

nl . This sharp discontinuity will also prevent any truncated expansion of the
PDF being a good approximation.

Under some conditions however, the chances of reaching the “excluded” regions can
be made vanishingly small, especially for small fnl , for example because of sampling or
in the presence of noise as shown in the right panel of Fig. 2. The cutoff disappears also
if we now consider that for a sample of finite size the tails of the distribution are not
well sampled. For example for for fnl = 0.05 the “excluded” region is not sampled if
the sample is smaller than about 1.7 × 106. This explains why for small values of fNL
and for realistic surveys the popular Non-Gaussianity estimator (which is a maximum
likelihood estimator only if fNL is zero) works. This also explains why, at the end of the
day, perturbative expansions could work. Note however that a truncation to first order
will yield to a PDF that does not have a maximum, which therefore cannot be a good
approximation. At the minimum to have a maximum the approximated PDF must be
truncated at second order or higher in fNL.

Encouraged by this finding, we proceed in finding a useful approximation to the full
PDF based on a second-order Edgeworth expansion (i.e., for small deviations from Gaus-
sianity). The full expression can be found in Eqs. 4.28 and 5.2 of Verde et al. (2013),
and we will not report it here in full. It will suffice to say that it involves the three- and
four-point functions and that, when written explicitly for the CMB am

� , one can recog-
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Figure 2. Left panel: Log(Posterior) for fn l , with true f tr u e
n l = 0.1 and 106 pixels but ignoring

sampling issues and noise. fn l > f tru e
n l is excluded, as the true PDF is non-zero for some values

of Φ where the trial PDF is zero. Right panel: Log(Posterior) for fn l given 106 pixels, and
f tr u e

n l = 0.03. A Gaussian noise of rms 0.01σφ is added. The noise makes all values of Φ reachable
in principle, and so the posterior is always non-zero. This removes the strict cutoff apparent in
the left panel.

nise the optimal bispectrum estimator (see e.g., Mangilli and Matarrese’s contributions)
and the trispectrum estimator of Regan et al. (2010). The expression is valid for non-
Gaussianities more general than the local form as long as departures from Gaussianity is
small. This opens up the possibility to extent the work beyond the CMB and possibly to
galaxy surveys where, however, non-Gaussianity is not strictly small so the applicability
of the expansion would need to be verified.

3.2. Example 2: Are two (or more) measurements in agreement?

Let us imagine we have performed two measurements (A and B) of cosmologically in-
teresting quantities in the form of a two or higher dimensional posterior distribution. In
the Bayesian framework, how would one quantify whether these two measurements are
or not in agreement (tension)? (see Fig.3).

In other words, if the null hypothesis is that the two measurements are sampled from
the base model adopted, when should the null hypothesis be abandoned? If the answer
is that the two measurements are in tension, Bayesian model selection can be used to
study extensions to the base model adopted and select which is the favoured model.
Alternatively the detected tension might indicate the presence of unaccounted for, resid-
ual systematic errors (e.g., “unknown unknowns”). Possible options at this point are:
discredit the measurement most likely affected by systematics or artificially increase its
errors. If instead no tension is detected, the measurements can be combined to per-
form, for example, joint parameter estimation. This has been investigated for example
in Verde et al. (2013b) which is the approach I will outline here but see also Marshall
et al. (2016), March et al. (2011). For each measurement A, B, we produce a posterior
PA,B (θ|DA,B ) where θ represents the parameters of the model and DA,B represents the
data from experiments A,B respectively. Let us also assume that for producing both
posteriors we have used the same, uniform priors, π, over the same support, x, i.e.,
πA = πB = π, π = 1 or 0 and therefore πAπB = π. Let H1 be the (null) hypothesis
that both experiments measure the same quantity, the models are correct and there are
no unaccountable errors. In this case, the two experiments will produce two posteriors,
which, although can have different (co)variances, and different distributions, have means
that are in agreement. The alternative hypothesis, H¬1 is when the two experiments, for
some unknown reason, do not agree, either because of systematic errors or because they
are effectively measuring different things or the model (parameterization) is incorrect. In
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Figure 3. Schematic representation of the set up. Although the contours are reminiscent of
Gaussians 1 and 2 σ confidence regions, the argument applies to any form for the distributions.
The left hand side situation can be taken as the reference (“straw man”) null hypothesis, a “just
so” scenario. On the right hand side a situation where clearly the two measurements are not
in agreement, but there is a continuum between these two cases, and we would like to find a
quantitative scale for it (and know at what point the two measurements are not consistent).

this case, the two experiments will produce two posteriors with two different means and
different variances.

To distinguish the two hypothesis we use the Bayes factor, that is the ratio of the
Bayesian Evidences (see D. Mortlock contribution and references there). In any practical
application, the absolute normalization of the posteriors is often unknown, but we can
still work as follows. We define:∫

PAPB dx = λ

∫
LALB πAπB dx = λ

∫
LALB πdx = λE = E , (3.9)

where L denotes the likelihood and λ−1 =
∫
LAπAdx

∫
LB πB dx′. E is the Bayesian

Evidence for the joint distribution, thus E is akin to an unnormalized Evidence.
However we can consider a “straw man” null hypothesis where the maxima of the two

distributions coincide. For example, imagine that we perform a translation (shift) of (one
or both of) the distributions in x and let us define P̄A the shifted distribution. Eq. (3.9)
becomes ∫

P̄A P̄B dx = Ē |maxA=maxB . (3.10)

This translation changes the location of the maximum but does not change the shape
or the width of the distribution. Clearly the Evidence ratio for the (null) hypothesis E1
is E/Ē |maxA=maxB , as the normalization factors λ cancel out, and the Evidence ratio for
the alternative H¬1 is its reciprocal. We therefore introduce:

T =
Ē |maxA=maxB

E , (3.11)

which denotes the degree of tension that can be interpreted in the widely used Jeffrey’s
(Jeffreys, 1973; Kass and Raftery, 1995) scale. T indicates the odds: 1 : T are the chances
for the null hypothesis. In other words, a large tension mens that the null hypothesis
(maxA = maxB) is unlikely. E can be seen as the evidence for the joint distribution
where we interpret one data set as the prior. Then this is normalised by a “just so”
scenario: Ē |maxA=maxB .

Of course, and as already mentioned, the obvious application of this is in searching
for either new physics or systematics of the “unknown unknowns” type. But, is there a
way to distinguish new physics from systematics? As far as I know there is no systematic
treatment for that but some insights can be garnered by considering more than two
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measurements. Let us take for example the recent collection of claims of non-zero neutrino
mass that have appeared in the literature and follow the approach of Leistedt et al.
(2014). The authors argue that the need for extra parameters describing new physics
beyond the base cosmological model, yielding a new cosmological concordance can only
be convincing if the combined datasets are in tension in the minimal model, and in
agreement in extended model. If the tension remains in the extended model it is due to
systematic effects (or to new physics different from the one considered). In my view more
work remains to be done to put all this into a consistent framework.

3.3. Example 3: Bias (clustering of peaks of a Gaussian field)
Most theoretical models predict the statistical properties of the distribution of dark
matter. Unfortunately most of the observations rely on objects that “light up” (such
as galaxies) which may not be faithful tracers of the dark matter distribution. This is
known as (galaxy) bias: the clustering properties of the observed (tracers) field are not
the same as those of the dark matter. For most applications the bias is assumed to be
scale-independent or to be very slowly varying with scale. A strongly scale-dependent
bias would be very problematic for the interpretation of large-scale structure data. But
galaxies are expected inhabit dark matter halos which are believed to correspond to high
peaks of the initial density field. The initial distribution is expected to be very close to
Gaussian, thus modelling the clustering properties of peaks of a Gaussian distribution is
of great interest. Attempts to address this go back to Otto Politzer and Wise (1986). We
can start by considering the expression for the (joint) N points probability distribution
of peaks above a threshold t of a Gaussian field φ(r) which can be written using the
Gaussian path integral:

P (r1 , . . . , rN ) =
∫

[dφ(r)]P [φ(r)] × (3.12)

N∏
j=1

[∫
dw(j ) |det w(j ) |δ3(∇φ(rj ))δ6(∇∇φ(rj ) − w(j ))θ(φ(rj ) − t)

]
.

In this equation P [φ] is the Gaussian probability distribution function, θ denotes the
Heaviside step function and w(j ) in three spatial dimensions is the symmetric 3×3 matrix
of the second derivatives of φ at position rj and δ3 , δ6 denote Dirac delta functions.
In Eq. (3.13) the integration on dw(j ) has to be extended only over negative definite
eigenvalues, in order to identify local maxima. Then the correlation function ξN is given
by 1 + ξn = P (r1 ..rN )/PN (r) where P (r) is known (e.g., Bardeen et al., 1986). Eq. 3.13
might look innocuous but it is extremely complicated, no exact analytic solution has
been found beyond one spatial dimension, despite extensive studies in the literature
over a number of years, staring with the pioneering works of Rice(1944), Rice(1945),
Adler(1981), Bardeen et al. (1986), Peacock and Heavens (1985), Kaiser(1984), Jensen &
Szalay(1986). Here I follow the approach of Verde et al. (2014) and report their findings.
They argue (and show on simulations) that virtually all extrema are peaks above a not
too high threshold, therefore one could simply compute the properties of extrema rather
than peaks without introducing significant systematics. This gets rid of the (immensely
complicated to deal with) six dimensional Dirac delta function.

For a high threshold the value of the integral above the threshold can be approximated
by the value of the function at the threshold. Thus the integral involving the threshold
can be dropped (or performed eventually numerically if needed).

At this point the residual hurdle is the presence of the |det w| in the integrand. However
this could be regarded as a weight and so one could simplify it (or drop it altogether) if

https://doi.org/10.1017/S1743921314013593 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921314013593


Statistical Cosmology 231

Figure 4. The BAO feature as P (k)/PNW . The left panel shows the theory prediction ob-
tained by Fourier transforming eq.3.13, the right panel shows the mean of 20 Gaussian re-
alisations. Solid/Black for matter, green/dashed for 2σ peaks, red/dot-dashed for 3σ peaks;
purple/dashed-dot-dot-dot for 4σ peaks.

the data could be suitably weighted to compensate. To begin with, |det w| was simply
substituted by unity, leaving to forthcoming work to find a weighting scheme for the
observations that can compensate for this.

With these simplifications it is possible to find an analytic expression at least for the
two-point function:

P ′(r1 , r2 ,m1 ,m2) =
2π

det X ′
(2π)1/2

(det H ′)1/2 ×

2π

det(ξ − QT H ′−1Q)
exp

[
−1

2
mT (ξ − QT H ′−1Q)−1m

]
, (3.13)

where m1 and m2 denote the thresholds, and Q, H ′ and X ′ are matrices that can be
computed from the two point function of the dark matter, see Verde et al. (2014) for the
explicit expressions. This might look ugly, but it is not. An important implication of this
result is that, since the matter power spectrum is not a featureless power law the tracers’
bias as function of scale b(r), defined from the ratio of the correlation functions of tracers
to that of matter, is not scale independent, even at linear scales. In particular, a new scale-
dependent feature is found in the bias (a “bump”) which is located very near the Baryon
Acoustic Oscillation feature. The BAO feature corresponds to the (local) minimum of b(r)
at around r = 110 Mpc/h. The presence of the BAO signal in the matter power spectrum
introduces a changing first and second derivative of the correlation function which are
responsible for non-negligible effects. In other words, selecting peaks of a Gaussian field
is a highly non-linear operation which creates a highly non-Gaussian peaks field. The
essence of non-Gaussianity is mode coupling which, by moving power across scales, tends
to move around, distort or even erase localized features. In the BAO case the localised
scale-dependence of the bias does not move the BAO feature but reduces its amplitude.
The smoothing is more marked for higher thresholds as seen in Fig. 4.

The figure shows the ratio of the power spectrum divided by a power spectrum without
the BAO feature as a function of the threshold. Note that the BAO feature is smoothed
and the smoothing increases with the threshold height. While it is reassuring that this
effect does not change the location of the BAO feature, it might have nevertheless im-
portant practical implications. The signal-to-noise for measurements that depend on the
BAO location is usually computed adopting a model with a fixed BAO smoothing param-
eter interpreted as the one generated by non-linearities. Should this be underestimated,
as the effective one is a combination of the effect of non-linearities and this new effect,
then the signal-to-noise would be overestimated.
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There are consequences also for survey selection considerations: highly biased tracers
are preferentially targeted to beat shot noise when designing a BAO survey –in technical
terms, to maximise nP where n denotes the tracer number density–. In fact given a finite
amount of observing time and a finite aperture telescope the selection of bright, highly
biased objects yields the best signal-to-noise. However highly biased tracers will have a
reduced BAO feature: it may be advantageous to select less rare and less biased tracers
if they carry a more pronounced signal.

3.4. Example 4: Cancelling out systematics
Suppose we have N observables (data points) Oi , i = 1, .., N that depend on m interesting
quantities μi and n nuisance quantities νi which can possibly introduce systematic errors
on μi if fixed at incorrect values. The usual approach is to treat systematics as nuisance
parameters and marginalise. However this might not be satisfactory especially if we are
ignorant about the mean values and the errors of the nuisance parameters. There are
some example in the literature on how to deal with this situation but not a lot of work
on a systematic approach. Here I outline the approach proposed by Noreña et al. (2012).

Our goal should be to find combinations of the observables Oi that are insensitive to
the nuisance parameters νi . In other words we must find a set of M = N − n functions

fk = fk (O1 , .., ON ) (3.14)

where k = 1, ..,M , so that

dfk

dνi
=

N∑
j=1

∂fk

∂Oj

∂Oj

∂νi
= 0 for i = 1, .., n . (3.15)

A natural interpretation of this is the renormalisation group equation (Wilson & Kogut,1974).
Of course one must know how Oi depend on νi so this can apply only to “known un-
knowns”. Let us consider for example a power-law dependence on nuisance parameters
νi :

Oi − Ôi = g(�μ)
n∏

j=1

(νj − ν̂j )αi j (3.16)

where thêsymbol denotes the true value and g is some function of �μ, a vector containing
all other quantities on which the observables depend. Then the solution for the system
of differential equations, Eq. 3.15, is of the form:

fk =
N∏

i=1

(Oi − Ôi)bk
i (3.17)

which gives a system of linear algebraic equations for the unknown bk
i . If M = N −n > 0,

i.e., there are more data than nuisance parameters, then there are m non -trivial solutions:
M∑
i=1

αij b
k
i = 0 . (3.18)

There are therefore N −n combinations of data that cancel out the effect of the system-
atics (nuisance parameters). A similar solution can be found in other cases, e.g, linear
dependence on the νi etc.

Obviously it follows that it is not possible to do better than marginalisation, but with
marginalisation the true value and the dispersion of the nuisance parameters must be
known or assumed. Also one needs more data than nuisance parameters otherwise exact
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solutions do not exist. However, even for more nuisance parameters than data it is still
possible in some cases to find approximate solutions. A particular case of interest is
when observables have similar, but not identical, dependences on some of the nuisance
parameters. In this case it is possible to minimise (rather than cancel completely) the
effects of systematics. It turns out that one must minimise this:

Lk =
n∑

j=1

(
dfk

dνj

)2

Δ2
νj

− λk

(∑
i

(bk
i )2 − A2

k

)
(3.19)

where λk is a Lagrange multiplier to be solved for, Ak is the norm of the vector bk
i , and

Δνj is the uncertainty on the j nuisance parameter. For example for the power law case
discussed above we obtain the eigenvalue equations:

N∑
l=1

Mil =
N∑

l=1

⎡⎣f 2
k

n∑
j=1

(
Δνj

νj

)
αijαlj

⎤⎦ bk
l = λkbk

l . (3.20)

This formulation is general and include the case discussed above. Note that the eigen-
values of the matrix M measure how much the solution is affected by the nuisance
parameters. The eigenvectors correspond to independent combinations of observables,
and, if we are interested in minimizing the impact of nuisance parameters, we should
choose those eigenvectors corresponding to eigenvalues which are small with respect to
typical entries of the matrix. If an eigenvalue is zero, there is an independent non-trivial
solution which is unaffected by changes of the nuisance parameters, as n the previous
set-up.

For an example of a possible application, let us consider the case of Baryon Acoustic
Oscillations which rely on the CMB to determine the “standard ruler”: the sound horizon
at radiation drag rs . Since the determination of rs is model-dependent, using an incorrect
model (e.g., adiabatic model in the presence of isocurvature or non-standard neutrino
properties in the presence of new physics in the neutrino sector) can introduce unwanted
systematic errors in the interpretation of the results. For N redshift bins and therefore
2N measurements (radial and tangential BAO scale) there are 2N − 1 independent com-
binations (i.e., N − 1 tangential, N − 1 radial and one tangential vs radial relative BAO
measurements) which cancel out completely the dependence on rs . For more than ∼ 10
redshift bins this does not increase significantly the statistical errors on the recovered
cosmological parameters, but makes the measurement much more robust.

4. Summary and conclusions
I hope I have motivated why one cannot study Cosmology without being fluent in sta-

tistical techniques. Moreover, the forthcoming challenges that Cosmology faces cannot be
addressed without the development of suitable statistical techniques. I have concentrated
on dealing with systematic errors (rather than statistical errors), because systematic er-
rors will likely be the major limitation in the near future and there is no systematic
framework to deal with them. I have presented four specific examples, which are not rep-
resentative of exhaustive, but I hope they serve to illustrate the point. The route from
precision cosmology to accurate cosmology goes trough statistical cosmology.
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