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Abstract

In this paper we investigate the asymptotic behavior of sequences of successive Steiner and
Minkowski symmetrizations. We state an equivalence result between the convergences
of those sequences for Minkowski and Steiner symmetrizations. Moreover, in the case of
independent (and not necessarily identically distributed) directions, we prove the almost-
sure convergence of successive symmetrizations at exponential rate for Minkowski, and at
rate e−c√n with c > 0 for Steiner.
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1. Introduction

Let A be a convex body of R
d , i.e. a convex compact set with nonempty interior, and let

u ∈ S
d−1 be a unit vector. The set A can be considered as a family of line segments parallel to

the direction u. Sliding these segments along u and centering them with respect to the hyperplan
u⊥ gives SuA, the Steiner symmetral of A.

Steiner symmetrization plays an important role in geometry and its applications. Indeed, this
transformation possesses certain contraction properties which allow in many cases to round off
the initial set after multiple applications. Moreover, the limiting ball delivers the solution of
several optimization problems, such as, for instance, the isoperimetric inequality, the Brunn–
Minkowski inequality, and the Blaschke–Santaló inequality (see Section 9.2 of [6]).

Another important transformation is the Minkowski symmetrization (sometimes called the
Blaschke symmetrization). The Minkowski symmetral of a convex body A with direction
u ∈ S

d−1, denoted by BuA, is defined as the arithmetic mean of A and πu(A), its orthogonal
symmetric with respect to u⊥.

Our aim is to study the asymptotic behavior of successive Steiner and Minkowski sym-
metrizations. Recently, this area of study has undergone considerable development. Without
applying for completeness, we will note here a few works characterizing the main tendencies.

Among the works concerning deterministic sequences of directions, we mention Klain [7].
For directions chosen among a finite set, Klain gave the convergence of the sequence of
successive Steiner symmetrals to a limiting set, which is symmetric under reflection in any
of the directions that appear infinitely often in the sequence. Bianchi et al. [2] proved that,
from any dense set of directions (in S

d−1), it is always possible to extract a countable sequence
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rounding off any convex body by successive Steiner symmetrizations. They also exhibited
countable dense sequences of directions and convex bodies whose corresponding sequences of
Steiner symmetrals do not converge at all (the order of directions matters).

The case of random Steiner symmetrizations has also been investigated. The first result (to
the authors’ knowledge) is due to Mani-Levitska [9] and concerns the case of independent and
identically distributed (i.i.d.) directions, chosen uniformly on the sphere S

d−1. He established
the almost-sure convergence of the sequence of successive Steiner symmetrals of any convex
body to a ball. Volčič [13] extended Mani-Levitska’s result to measurable sets with finite
measure, and to any probability measure assigning positive mass to any open set of S

d−1.
Burchad and Fortier [4] stated that the almost-sure convergence still occurs for (independent but)
nonidentically distributed directions provided they satisfy some restrictive condition (see (3.2)
below). Combining a probabilistic approach and the powerful analytical device of spherical
harmonics, Klartag [8] provided in his remarkable article a rate of convergence for successive
Steiner symmetrizations. Specifically, for any given convex body A, there exists an (implicit)
sequence of n directions such that the Hausdorff distance between the resulting sequence of
successive Steiner symmetrals and the limiting ball is smaller than e−c√n with c > 0. As a
key step, Klartag proved a similar result for successive Minkowski symmetrizations, but at an
exponential rate.

Our first result (Theorem 5.1) complements and strengthens the results of [8], [9], and [13].
Indeed, it affirms that the convergence of the sequence of successive Steiner symmetrizations
is almost sure on the one hand, and at rate e−c√n on the other hand. Moreover, the random
directions are allowed to be nonidentically distributed and their distributions may avoid some
open sets of the sphere S

d−1, which is forbidden in [4] and [13]. The independence hypothesis of
directions can also be relaxed (see Remark 5.3). The proof of Theorem 5.1 substantially follows
the ideas of Klartag [8]. We first give the almost-sure convergence of successive Minkowski
symmetrizations at exponential rate (Theorem 4.1). The main advantage of Minkowski sym-
metrization over Steiner symmetrization is that it exhibits a (strict) contraction property (see
Proposition 4.1) from which Theorem 4.1 is derived. Thus, the passage from Minkowski to
Steiner is based only on the inclusion SuA ⊂ BuA. This explains the loss in the rate of
convergence between Minkowski and Steiner symmetrizations.

Our second result (Theorem 3.1) provides a surprising link between Steiner and Minkowski
symmetrizations. A sequence of directions (un)n∈N is said to be S-universal if, for any k, the se-
quence of successive Steiner symmetrizations corresponding to the shifted sequence (uk+n)n∈N

rounds off any convex body. The concept of an M-universal sequence (for Minkowski sym-
metrization) is introduced similarly. Theorem 3.1 states that the concepts of S- and M-
universality coincide; thus, we omit the prefixes S and M . This allows us in many cases to
use known results about Steiner symmetrization to deduce new results about Minkowski sym-
metrization. For example, from the aforementioned result in [9] concerning random i.i.d. Steiner
symmetrizations, we immediately deduce a similar result for Minkowski symmetrizations,
without the sophisticated use of spherical harmonics (Proposition 3.1). Theorem 3.1 also
allows us to extend the results of [2] and [4] to Minkowski symmetrizations. In particular, any
dense set of directions (in S

d−1) contains a universal subsequence (Proposition 3.3).
The paper is organized as follows. Section 2 contains precise definitions of Steiner and

Minkowski symmetrizations, and their preliminary properties. In Section 3 we introduce the
concepts of S- andM-universal sequences. Theorem 3.1 is proved and applied in two different
contexts; random (Propositions 3.1 and 3.2) and deterministic (Propositions 3.3 and 3.4).
Sections 4 and 5 are respectively devoted to random symmetrizations, and Minkowski and

https://doi.org/10.1239/aap/1409319551 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1409319551


Random symmetrizations of convex bodies SGSA • 605

Steiner symmetrizations. The proof of Proposition 4.1, which is rather long and technical, is
given in Section 4.2. Finally, some open questions are formulated in Section 6.

2. Steiner and Minkowski symmetrizations

In this section we give the definitions of Steiner and Minkowski symmetrizations, and their
basic properties. Let us denote by Kd the set of convex bodies in R

d .

Definition 2.1. Let A ∈ Kd and u ∈ S
d−1. The convex body A can be considered to be a

family of line segments parallel to the direction u. Sliding each of these segments along u so that
they become symmetrically balanced around the hyperplane u⊥, a new set is obtained, called
the Steiner symmetral of A with direction u, denoted by SuA (see Figure 1). The mapping Su
defined on Kd is called Steiner symmetrization with direction u.

It follows from Definition 2.1 that Steiner symmetrization preserves the volume: for any
A ∈ Kd and u ∈ S

d−1,
vol(SuA) = vol(A), (2.1)

where vol(A) denotes the d-dimensional Lebesgue measure λd of the measurable set A.
Let us denote by πu the orthogonal reflection operator with respect to the hyperplane u⊥:

for all x ∈ R
d ,

πu(x) = x − 2〈x, u〉u.
Here 〈·, ·〉 is the scalar product in R

d .

Definition 2.2. Let A ∈ Kd and u ∈ S
d−1. The Minkowski symmetral of A with direction u,

denoted by BuA, is defined by

BuA = 1
2 (A+ πu(A)),

where ‘+’ denotes the Minkowski sum of sets A and B. The mapping Bu defined on Kd is
called Minkowski symmetrization with direction u.

A

Figure 1: Steiner symmetrization with direction u. The dashed lines represent the sliding of orthogonal
segments along u.
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The support function fA of a convex body A ∈ Kd is defined by

fA(θ) = sup
x∈A

〈x, θ〉 for any θ ∈ Sd−1.

The support functions are a useful tool in convex geometry. In particular, any convex body
is characterized by its support function (see Theorem 4.3 of [6, p. 57]). Let σ be the Haar
probability measure on S

d−1. The value

L(A) =
∫

Sd−1
fA dσ

is called the mean radius of A.
Minkowski symmetrization presents an advantage over Steiner symmetrization. Classical

properties of support functions (see Proposition 6.2 of [6, p. 81]) allows us to express fBuA as
the arithmetic mean of fA and fπuA:

fBuA = 1
2 (fA + fπu(A)). (2.2)

As a consequence of (2.2), Minkowski symmetrization preserves the mean radius: for any
A ∈ Kd and u ∈ S

d−1,
L(BuA) = L(A). (2.3)

Let B(x, r) be the Euclidean closed ball with center x and radius r . Let D = B(0, 1) be
the unit ball, and let vd be its volume. We refer the reader to [6] for details about the following
properties.

Lemma 2.1. Let A ∈ Kd and u ∈ S
d−1.

(i) SuA and BuA are convex bodies, symmetric with respect to u⊥.

(ii) LetA′ ∈ Kd and containA. Then SuA ⊂ SuA
′ andBuA ⊂ BuA

′. In particular, ifR(A)
denotes the circumradius of A, i.e.

R(A) = inf{R > 0, A ⊂ B(0, R)},
then SuA and BuA are included in the centered ball R(A)D.

(iii) SuA is included in BuA.

The inclusion SuA ⊂ BuA can be understood as follows. Let � be one of the orthogonal
segments tou⊥ which composeSuA, i.e.� is obtained by translation of a segment�′ composing
A (see Definition 2.1). Then

� = 1
2 (�

′ + πu(�
′)) ⊂ 1

2 (A+ πu(A)) = BuA

and Lemma 2.1(iii) follows.
We deduce immediately from (2.1), (2.3), and Lemma 2.1(iii) that Steiner symmetrization

decreases the mean radius whereas Minkowski symmetrization increases the volume:

L(SuA) ≤ L(A) and vol(BuA) ≥ vol(A). (2.4)

Two classical metrics on the set Kd are involved in our proofs: the Hausdorff distance

dH(A,B) = max{inf{ε > 0 | A ⊂ B + B(0, ε)}, inf{ε > 0 | B ⊂ A+ B(0, ε)}}
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and the Nikodým distance

dN(A,B) = λd(A�B) = λd(A \ B)+ λd(B \ A).
These distances generate the same topology on Kd . Hence, all the convergences stated in
the sequel correspond to this topology. Inequalities that hold for the Hausdorff and Nikodým
distances used in our proofs are given in Appendix A.

3. Theorem of equivalence

Let (un)n≥1 be a sequence of elements of S
d−1. For integers n ≥ k ≥ 1, we denote by Sk,n

the sequence of n− k + 1 consecutive Steiner symmetrizations from uk to un, i.e.

Sk,nA = Sun(· · · Suk+1(SukA) · · · ),
whereA is a convex body. When k = 1, S1,nA is denoted by SnA. For Minkowski symmetriza-
tions, the notation Bk,nA and BnA are as defined above.

Let r(A) be the real number such that the ball r(A)D has the same volume as A. Recall
that the set Kd of convex bodies is endowed with the Hausdorff distance. A sequence (un)n≥1
S-rounds the set A ∈ Kd if

SnA → r(A)D

and M-rounds A if
BnA → L(A)D

as n tends to ∞. A sequence (un)n≥1 strongly S-rounds the convex body A if, for any k,

Sk,nA → r(A)D

asn tends to ∞. The same terminology holds for Minkowski symmetrizations: (un)n≥1 strongly
M-rounds A if, for any k,

Bk,nA → L(A)D

as n tends to ∞. Finally, (un)n≥1 is said to be S-universal (or M-universal) if it strongly
S-rounds or, respectively, strongly M-rounds any A of Kd .

The next result shows that the notions ofS- andM-universality coincide. As such, a sequence
will be merely called universal.

Theorem 3.1. A sequence (un)n≥1 of S
d−1 is S-universal if and only if it is M-universal.

Proof. We focus only on the sufficient condition because the necessary condition is proved
similarly. Let A be a convex body. Since Minkowski symmetrization increases the volume,
the sequence (vol(BnA))n≥1 is nondecreasing. It is also bounded from above since BnA ⊂
R(A)D. Let V be its limit. The sets BnA for n ≥ 1 are all included in the compact set
{K ∈ Kd , K ⊂ R(A)D} of (Kd , dH) (see Theorem 1.8.4 of [12, p. 49] for details). So,
(BnA)n≥1 admits a convergent subsequence (BnkA)k≥1. Let E be its limit. Since the volume
is a continuous function on (Kd , dH), the volume of E equals V .

For any m > k, Lemma 2.1(iii) implies that

Snk+1,nm(BnkA) ⊂ Bnk+1,nm(BnkA) = BnmA.

By S-universality, the left-hand side of the above inclusion converges to the ball r(BnkA)D,
whereas the right-hand side converges to E. Hence, the set E contains r(BnkA)D, whose
volume tends to V as k tends to ∞. This forces E to be the ball of volume V .
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As a result, any convergent subsequence of (BnA)n≥1 has the same limit as r(V )D. By
compactness, this also holds for the sequence (BnA)n≥1 itself. Thus, we use Lemma A.1 to
relate r(V ) to L(A): as n → ∞,

L(A) =
∫

Sd−1
fBnA dσ →

∫
Sd−1

fr(V )D dσ = r(V ).

Finally, for any k, applying the same strategy to the S-universal sequence (uk+n)n≥1, Bk+1,nA

tends to L(A)D. The M-universal character of (un)n≥1 follows.

In what follows, Theorem 3.1 is applied in two different contexts: random (Propositions
3.1 and 3.2) and deterministic (Propositions 3.3 and 3.4). In the next three results, a sufficient
condition for the sequence of directions is given that ensures its universal character. The fourth
result focuses on dimension 2: there exists a uniformly distributed sequence on S

1 which is not
universal.

Proposition 3.1. Let (Un)n≥1 be a stationary sequence of random variables of S
d−1, i.e. for

any k, the sequences (Un)n≥1 and (Uk+n)n≥1 are identically distributed. Assume that, for
any convex body A, (Un)n≥1 almost surely (a.s.) S-rounds A. Then (Un)n≥1 is a.s. universal.
The same conclusion holds when the S-rounding hypothesis is replaced with the M-rounding
hypothesis.

Proof. We only check the result under the S-rounding hypothesis, as the proof under the
M-rounding hypothesis is similar.

Let (Cj )j≥1 be a countable dense subset of the separable set (Kd , dH). By hypothesis, for
any index j and any positive rational number ε, there exists an event of probability 1 on which
(Un)n≥1 S-rounds Cεj := Cj + B(0, ε). Let �0 be the intersection of these events. We are
going to prove that on �0, (Un)n≥1 S-rounds any convex body.

Let A ∈ Kd . By compactness, let us consider a convergent subsequence (SnkA)k≥1 of
(SnA)n≥1 whose limit is denoted byE. Since the volume is a continuous function on (Kd , dH),

vol(E) = lim
k→∞ vol(SnkA) = vol(A). (3.1)

Let ε > 0 be a rational number. There exists an index j = j (ε) such that A is included in Cεj .
Hence, for any k,

SnkA ⊂ Snk (C
ε
j ).

When k tends to ∞ and on �0, the above inclusion becomes E ⊂ r(Cεj )D. Taking ε ↘ 0,
it follows that E ⊂ r(A)D. By (3.1), this is possible only if E = r(A)D. We conclude
by compactness that (Un)n≥1 S-rounds any A ∈ Kd on the event �0 of probability 1. By
stationarity, for any k, this proof applies to (Uk+n)n≥1: there exists an event �k of probability
1 on which the sequence (Uk+n)n≥1 S-rounds any A ∈ Kd . Hence, by Theorem 3.1, (Un)n≥1
is universal on

⋂
k �k .

When the random variables Un, n ≥ 1, are independent, the hypothesis of stationarity on
the sequence (Un)n≥1 can be weakened. The following condition was introduced in [4]: for
any r > 0 and any sequence (vn)n≥1 in S

d−1,

∞∑
n=1

P(Un ∈ B(vn, r)) = ∞. (3.2)
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Thanks to the Borel–Cantelli lemma, condition (3.2) implies that each open ball V of the
sphere S

d−1 with positive radius is a.s. infinitely often visited by the Un. Burchard and
Fortier [4, Corollary 1] stated that a sequence (Un)n≥1 of independent random variables
satisfying (3.2) a.s.S-rounds any convex bodyA. Theorem 3.1 extends their result to Minkowski
symmetrizations.

Proposition 3.2. Let (Un)n≥1 be a sequence of independent random variables in S
d−1 satis-

fying condition (3.2). Then (Un)n≥1 is a.s. universal.

In the case of i.i.d. directions, Theorems 4.1 and 5.1 therein give some rates of convergence.
But their proofs are more complicated.

Bianchi et al. [2] proved that each countable dense subset T ⊂ S
d−1 of directions contains

a (deterministic) sequence (un)n≥1 S-rounding any given convex body A. This result is
strengthened here and, using Theorem 3.1, it is extended to Minkowski symmetrizations.

Proposition 3.3. Every countable dense subset T ⊂ S
d−1 contains a universal sequence.

Proof. Let R > 0. The set Kd(R) of convex bodies having the same volume as the unit
ball D and whose circumradius is smaller than R is compact in (Kd , dH). Given ε > 0, we
consider a finite ε-net of Kd(R), say A1, . . . , Am withm = m(ε,R). The result of [2] applied
to A1 ensures the existence of directions u1, . . . , un1 of T such that

(1 − ε)D ⊂ Sn1A1 ⊂ (1 + ε)D. (3.3)

Applied to Sn1A2, it provides directions un1+1, . . . , un2 of T such that

(1 − ε)D ⊂ Sn1+1,n2(Sn1A2) = Sn2A2 ⊂ (1 + ε)D.

Steiner symmetrization increases the inradius and decreases the circumradius. So (3.3) becomes

(1 − ε)D ⊂ Sn2A1 ⊂ (1 + ε)D.

Hence, we obtain by induction a sequence of n = n(ε, R) directions {u1, . . . , un} of T
satisfying, for i = 1, . . . , m,

(1 − ε)D ⊂ SnAi ⊂ (1 + ε)D. (3.4)

LetA be a convex body belonging to Kd(R). LetAi0 be an element of the ε-net of Kd(R) such
that dH(A,Ai0) < ε. Recall that on Kd the Nikodým distance dN generates the same topology
as dH (see Appendix A). Inclusions (3.4) and Lemmas A.2 and A.3 imply that

dN(SnA,D) ≤ dN(SnA, SnAi0)+ dN(SnAi0 ,D)

≤ dN(A,Ai0)+ CdH(SnAi0 ,D)

≤ Cε, (3.5)

where C = C(d,R) is a positive constant. Now, given a decreasing sequence (εk)k≥1 tending
to 0, we apply the previous strategy to each term εk in order to obtain some directions, say
unk+1, . . . , unk+1 , satisfying

dN(Snk+1,nk+1A,D) ≤ Cεk.
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Note that this inequality holds for any A ∈ Kd(R) and that the above constant C is the same
as in (3.5). Concatenating the blocks {unk+1, . . . , unk+1}, k ≥ 1, we build a sequence (un)n≥1
strongly S-rounding any convex bodies with the same volume as D, i.e.

dN(Sl,mA,D) ≤ dN(Snk+1,nk+1(Sl,nkA),D) ≤ C(d,R(A))εk

whenever l ≥ nk and m ≥ nk+1. Finally, we can affirm that (un)n≥1 is universal thanks to the
identity Su(rA) = rSuA and Theorem 3.1.

A sequence (un)n≥1 of S
1 is said to be uniformly distributed on S

1 if, for any arc I of the
unit disc,

lim
m→∞

1

m
card{n ≤ m, un ∈ I } = σ(I),

where σ denotes the Haar probability measure on S
1. In [1], a uniformly distributed sequence

(un)n≥1 on S
1 was given (see Section 5) which does not S-round a certain convex body (see

Example 2.1). By Theorem 3.1, this sequence is not universal.

Proposition 3.4. There exists a uniformly distributed sequence (un)n≥1 on S
1 and a convex

body A such that (un)n≥1 does not M-round A.

4. Random Minkowski symmetrizations

LetA be a convex compact set in R
d . The goal of this section is to give the rate of convergence

of
BnA = BUn(· · ·BU2(BU1A) · · · )

to L(A)D when the random directions Uk ∈ S
d−1, k ≥ 1, are independent.

4.1. Rate of convergence

Let σ be the Haar probability measure on S
d−1.

Theorem 4.1. Assume that, for any k ≥ 1, the distribution νk of Uk is absolutely continuous
with respect to σ , and that its density satisfies

dνk
dσ

(u) ≤ α <
d

d − 1
(4.1)

for some α > 0 and σ -almost every u ∈ S
d−1. Then there exists a constant c > 0 such that,

with probability 1, there exists an n0(ω) for all n ≥ n0 such that

dH(BnA,L(A)D) ≤ e−cn. (4.2)

Furthermore, the first random integer n0 from which the above inequality holds admits expo-
nential moments.

Remark 4.1. Let us compare our result with Klartag’s [8] result. Theorem 1.3 of [8] states
that, for any n, there exists n Minkowski symmetrizations transforming any convex body A
into a convex body An whose distance to L(A)D is smaller than e−δn (where δ is a positive
constant). Theorem 4.1 offers an advantage over Klartag’s result: whereas only one (implicit)
sequence of n directions satisfies Theorem 1.3 of [8], almost every realization of (U1, . . . , Un)

satisfies (4.2).
The exponential decay holds for any n in Theorem 1.3 of [8] and for only a random integer

in Theorem 4.1. However, this latter condition admits exponential moments.
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Remark 4.2. It is worth pointing out here that any real number c such that

0 < c < − 1

2d
log

α(d − 1)

d

satisfies (4.2). See the proof of Theorem 4.1 below for details.

Remark 4.3. We note that Theorem 4.1 still holds when the volume of A is null.

Let hA be the centered support function of A:

hA = fA − L(A).

Proposition 4.1 below is the basis of the proof of Theorem 4.1. It essentially states that hBUA
is a contraction when the random direction U is uniformly distributed on S

d−1. The proof of
Proposition 4.1 is rather technical and is given in Section 4.2.

Proposition 4.1. Let U be a random variable in S
d−1 with distribution σ . Then

E‖hBUA‖2
2 ≤ d − 1

d
‖hA‖2

2. (4.3)

Inequality (4.3) is actually an equality when d = 2 and d → ∞. The case d = 2 is treated
at the beginning of Section 4.2. In higher dimensions, a vector U chosen uniformly on S

d−1 is
(almost) orthogonal to a given v with large probability:

πU(v) = v − 2〈v,U〉U
is close to v with a probability tending to 1. We can then check that E‖hBUA‖2

2 is larger than
‖hA‖2

2 − o(1) as d → ∞.
Theorem 4.1 follows from Proposition 4.1 and the Borel–Cantelli lemma.

Proof of Theorem 4.1. Let ρk be the probability density function of νk with respect to σ ,
and let αd = α(d − 1)/d . Hypothesis (4.1) and Proposition 4.1 applied to BU1A and, thus, A
imply that

E‖hB2A‖2
2 =

∫
Sd−1

(∫
Sd−1

‖hBu2 (Bu1A)
‖2

2ρ2(u2) dσ(u2)

)
ρ1(u1) dσ(u1)

≤ αd

∫
Sd−1

‖hBu1A
‖2

2ρ1(u1) dσ(u1)

≤ α2
d‖hA‖2

2.

By induction, it follows that, for any integer n,

E‖hBnA‖2
2 ≤ αnd‖hA‖2

2.

In order to optimize the rate of convergence with respect to dimension d in Theorem 1.3
of [8], Klartag used technical lemmas to go from the L2-norm to the L∞-norm (see Section 4
of [8]). Here, we focus only on the parameter n. So, the following basic result proved at the
end of this subsection will be sufficient.

Lemma 4.1. Recall that R(A) denotes the circumradius of A. Then, for any integer n ≥ 1,

‖hBnA‖d∞ ≤ zd‖hBnA‖2, (4.4)

where zd = (cd)
−12dR(A)d−1.
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Lemma 4.1 allows us to bound the expectation of the L∞-norm of hBnA. Indeed,

E‖hBnA‖d∞ ≤ zdE‖hBnA‖2 ≤ zd

√
E‖hBnA‖2

2 ≤ zdα
n/2
d ‖hA‖2.

Hence,
E‖hBnA‖∞ ≤ (zd‖hA‖2α

n/2
d )1/d . (4.5)

Markov’s inequality and (4.5) give

P(‖hBnA‖∞ > rn) ≤ r−nE‖hBnA‖∞ ≤ (zd‖hA‖2)
1/d(r−1α

1/2d
d )n. (4.6)

The real number r > 0 can be chosen such that α1/2d
d < r < 1 by hypothesis (4.1). Then the

Borel–Cantelli lemma applies and we find that, a.s. for large enough n, ‖hBnA‖∞ is smaller
than rn. Statement (4.2) follows from the identity

dH(BnA,L(A)D) = ‖hBnA‖∞.

Finally, let us denote byn0 the first (random) integer from which the Hausdorff distance between
BnA and L(A)D is smaller than rn. It follows from (4.6) that n0 admits exponential moments:

P(n0 > m) ≤ (zd‖hA‖2)
1/d(r−1α

1/2d
d )m.

Proof of Lemma 4.1. Classical properties of support functions (namely positive homogene-
ity of degree 1 and subadditivity; see [6, p. 57]) imply that fBnA can be extended to a Lipschitz
function defined on the whole space (Rd , ‖ ·‖2). Its Lipschitz constant equals ‖fBnA‖∞, i.e. its
supremum over S

d−1. Since all the BnA are included in R(A)D, the fBnA are R(A)-Lipschitz
functions. So do the functions hBnA, n ≥ 1.

To conclude, it suffices to note that the L1-norm of an R(A)-Lipschitz function can be
compared to its L∞-norm. Let u0 ∈ S

d−1 such that |f (u0)| = ‖f ‖∞, and assume that
f (u0) ≥ 0. Let U ⊂ S

d−1 defined by

U =
{
u ∈ S

d−1, ‖u− u0‖2 ≤ ‖f ‖∞
2R(A)

}
.

On the one hand, there exists a constant cd > 0 such that the Haar probability measure of U
satisfies

σ(U) ≥ cd

( ‖f ‖∞
2R(A)

)d−1

.

On the other hand, for any point u ∈ U, f (u) is larger than 1
2‖f ‖∞. Henceforth,

‖f ‖2 ≥ ‖f ‖1 ≥
∫

U
f (u) dσ ≥ cd‖f ‖d∞

2dR(A)d−1 .

We can treat the case in which f (u0) is negative in the same way.

4.2. Proof of Proposition 4.1

Recall that the support function fBuA can be expressed as the arithmetic mean of fA and
fπuA (see (2.2)). Then, using the invariance of the Haar probability measure σ under the map
v �→ πu(v) for any u ∈ S

d−1, the L2-norm of hBuA satisfies

‖hBuA‖2
2 = 1

2‖hA‖2
2 + 1

2 〈hA, hπuA〉.
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Assume that U is distributed according to σ . By Fubini’s theorem,

E〈hA, hπUA〉 =
∫

Sd−1
hA(v)

(∫
Sd−1

hA(πuv) dσ(u)

)
dσ(v)

(indeed fπuA = fA ◦ πu). Now, when d = 2, the probability measure σ is also invariant under
the map Jv : u �→ πu(v) for any v ∈ S

1. So, the integral
∫

S1
hA(πuv) dσ(u)

is null and so is E〈hA, hπUA〉. To summarize, Proposition 4.1 is easily proved in dimension
d = 2 and

E‖hBUA‖2
2 = 1

2‖hA‖2
2.

However, the above strategy does not hold whenever d > 2, since in this case the image measure
σJ−1

v admits a probability density function with respect to σ which is unbounded in the vicinity
of v. Consequently, in order to prove Proposition 4.1, we follow the ideas of Klartag [8] based
on spherical harmonics.

In the rest of this section we assume that d > 2. A polynomial P defined on R
d is a

homogeneous harmonic of degree k if P is a homogeneous polynomial of degree k and is
harmonic (i.e. �P = 0). Let Sk be the linear space

Sk = {P|Sd−1 , P is a homogeneous harmonic of degree k},
where P|Sd−1 denotes the restriction of the polynomial P to the sphere S

d−1. The elements
of Sk are called spherical harmonics of degree k. We refer the reader to [11] for complete
references about spherical harmonics.

The linear space L2(S
d−1) admits the following orthogonal direct sum decomposition:

L2(S
d−1) =

⊕
k≥0

Sk. (4.7)

Let us write the centered support function hA according to (4.7): hA = ∑
gk . Thus,

hBuA = 1

2
(hA + hA ◦ πu) =

∑
k≥0

Bugk, (4.8)

where
Bugk = 1

2 (gk + gk ◦ πu).
First, it is clear that hA is orthogonal to S0. So g0 is null. Moreover, since gk ∈ Sk , some
elementary computations give gk ◦ πu ∈ Sk . So does Bugk . Hence, (4.8) is the expansion of
hBuA into spherical harmonics, i.e. according to (4.7). Assume that U is distributed according
to the Haar probability measure σ . Then, the result follows from Lemma 4.2 below and
Pythagoras’ theorem. That is,

E‖hBUA‖2
2 =

∑
k≥1

E‖BUgk‖2
2 =

∑
k≥1

d − 2 + k

d − 2 + 2k
‖gk‖2

2 ≤ d − 1

d
‖hA‖2

2

since (d − 2 + k)/(d − 2 + 2k) is smaller than (d − 1)/d for any k ≥ 1.
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Lemma 4.2. Let U be a random variable distributed according to σ . Let k ≥ 1 and g ∈ Sk .
Then

E‖BUg‖2
2 = d − 2 + k

d − 2 + 2k
‖g‖2

2,

where Bug = 1
2 (g + g ◦ πu).

The above identity is given but not proved in [8], and so we devote the rest of this section to
its proof. For any v ∈ R

d , Svk is defined as the set of elements g ∈ Sk symmetric with respect
to the hyperplan v⊥:

Svk = {g ∈ Sk, g ◦ πv = g}.
Let us denote by ProjSvk the orthogonal projection onto Svk . Then the orthogonal projection of
g ∈ Sk is actually equal to Bvg.

Lemma 4.3. For any v ∈ R
d and any g ∈ Sk , Bvg = ProjSvk (g).

Let us consider the two orthonormal bases (e1, . . . , ed) and (v1, . . . , vd) in R
d , and the

isometry ψ mapping ei to vi for any 1 ≤ i ≤ d.

Lemma 4.4. For any g ∈ Sk , ProjSv1k
(g) = ProjSe1k

(g ◦ ψ) ◦ ψ−1.

Let g ∈ Sk . By Lemmas 4.3 and 4.4,

‖Bv1g‖2
2 = ‖ProjSv1k

(g)‖2
2 = ‖ProjSe1k

(g ◦ψ)‖2
2 =

�(k)∑
i=1

(∫
Sd−1

g ◦ψ(x)Si(x) dσ(x)

)2

, (4.9)

where �(k) and (S1, . . . , S�(k)) respectively denote the dimension and an orthonormal basis of
Se1
k .

Furthermore, assume that an orthonormal basis (v1, . . . , vd) is chosen uniformly on the
orthogonal group O(d). Then its first vector v1 is distributed uniformly on the sphere S

d−1,
i.e. according to σ . Specifically, let μ be the Haar probability measure on O(d). Let us denote
by � the map from O(d) to S

d−1 defined by �(ψ) = ψ(e1).

Lemma 4.5. The image measure μ�−1 is equal to σ .

Assume that U is distributed according to σ . By Lemma 4.5,

E‖BUg‖2
2 =

∫
O(d)

‖B�(ψ)g‖2
2 dμ(ψ).

For any element ψ of O(d), set v1 = ψ(e1). Hence, we replace ‖B�(ψ)g‖2
2 with (4.9):

E‖BUg‖2
2 =

�(k)∑
i=1

∫
O(d)

(∫
Sd−1

g ◦ ψ(x)Si(x) dσ(x)

)2

dμ(ψ).

It now suffices to apply Lemma 2.2 of [8] to ensure that each term of the above sum is equal
to ‖g‖2

2 divided by the dimension of Sk . So,

E‖BUg‖2
2 = �(k)

dim Sk
‖g‖2

2.
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We complete the proof of Proposition 4.1 by applying the following identities. The first identity
is well known while the second identity easily follows from the proof of Lemma 3.1 of [8]:

dim Sk = d − 2 + 2k

d − 2 + k

(
d + k − 2

d − 2

)
and �(k) = dim Se1

k =
(
d + k − 2

d − 2

)
.

Proof of Lemma 4.3. Let v ∈ R
d and g ∈ Sk . Using σπ−1

v = σ and f ∈ Svk , we can write∫
Sd−1

g(πvx)f (x) dσ(x) =
∫

Sd−1
g(πvx)f (πvx) dσ(x) =

∫
Sd−1

g(x)f (x) dσ(x),

from which 〈g − Bvg, f 〉 = 0 follows.

Proof of Lemma 4.4. Previous notation leads to the identity ψ ◦ πe1 ◦ ψ−1 = πv1 . Thus,
Lemma 4.3 gives the result:

ProjSe1k
(g ◦ ψ) ◦ ψ−1(x) = 1

2 (g(x)+ g(ψ ◦ πe1 ◦ ψ−1(x)))

= 1
2 (g(x)+ g(πv1(x)))

= ProjSv1k
(g).

Lemma 4.5 is certainly known, but we have not found it in the literature.

Proof of Lemma 4.5. Let U1 ∈ O(d), and consider the endomorphism Ū1 of the orthogonal
group O(d) defined by Ū1(V ) = U1V . It is then easy to see that U1 ◦� = � ◦ Ū1. Since the
Haar probability measure μ is invariant under Ū1, it follows that the image measure μ�−1 is
invariant under U1. This holds for any U1 ∈ O(d): only the Haar probability measure σ can
do it.

5. Random Steiner symmetrizations

Let A be a convex body in R
d having the same volume as the unit ball D. The main result

of this section gives the rate of convergence of

SnA = SUn(· · · SU2(SU1A) · · · )
to D when the random directions Uk ∈ S

d−1, k ≥ 1, are independent. Recall that σ denotes
the Haar probability measure on S

d−1.

Theorem 5.1. Assume that, for any k ≥ 1, the distribution νk of Uk is absolutely continuous
with respect to σ and that its density satisfies

dνk
dσ

(u) ≤ α <
d

d − 1
(5.1)

for some α > 0 and σ -almost every u ∈ S
d−1. Then there exist two positive constants c and

c′ which depend only on d , A, and α such that, with probability 1, there exists an n0(ω) for all
n ≥ n0 such that

dH(SnA,D) ≤ ce−c′√n. (5.2)

Furthermore, the first random integer n0 from which the above inequality holds satisfies

P(n0 > m) ≤ ce−c′√m. (5.3)

Remark 5.1. The comparison between Theorem 5.1 and Klartag’s [8] result (Theorem 1.5
of [8] states that an implicit sequence of n Steiner symmetrizations transforms A into a new
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convex body a distance smaller than e−δ√n from D) is the same as that between Theorem 4.1
and Theorem 1.3 of [8]. See the first paragraph just after Theorem 4.1.

Remark 5.2. The almost-sure convergence (but without rate of convergence) of SnA toD in the
case νk = σ was first proved in [9]. Volčič [13] recently extended this result to any probability
measure assigning positive mass to any open subset of S

d−1. Theorem 5.1 improves Volčič’s
result in two directions. First, Theorem 5.1 does not require that the random directions are
identically distributed. Second, the positivity hypothesis is relaxed here, since (5.1) allows
the νk to avoid some open subsets of S

d−1. However, let us point out here that Volčič’s result
concerns much more general sets (measurable or compact) than in our case. In the same way,
(5.1) completes Condition (3.2) of [4].

Remark 5.3. We note that the independence hypothesis between random directions can be
slightly weakened. Indeed, Theorem 5.1 still holds when the sequence (Un)n≥1 is a time-
homogeneous Markov chain on S

d−1 whose transition probability kernel P is such that, for
any v ∈ S

d−1, the probability measure P(v, ·) satisfies condition (5.1). The same is true for
Theorem 4.1. See [10] for a general reference on Markov chains with continuous state space.

Remark 5.4. The identity Su(rA) = rSuA for r > 0 allows us to extend Theorem 5.1 to
convex bodies with any positive volume. When the volume of A is null, A lies in a proper
subspace of R

d . In this case, the Steiner symmetrization Su and the orthogonal projection onto
u⊥ coincide. Then it is not difficult to prove that the rate of convergence of SnA to the origin
is exponential.

Remark 5.5. To obtain Theorem 3.4 of [13], Volčič proved that the moment of inertia of SnA,
i.e.

I (SnA) =
∫
SnA

‖z‖2 dλd(z),

converges to the moment of inertia of D (where ‖ · ‖ denotes the Euclidean norm). We have

|I (SnA)− I (D)| ≤ R(A)2dN(SnA,D) ≤ R(A)2e−c7
√
n a.s.,

where we have used the rate of convergence given in (5.7) below.

As recalled in Section 2, the sequence (L(SnA))n is nonincreasing. Hence, the sequence
of corresponding expectations converges. The following proposition gives its limit and rate of
convergence.

Proposition 5.1. There exist two positive constants c1 and c2 which depend only on d, A, and
α such that, for any n,

0 ≤ EL(SnA)− 1 ≤ c1e−c2
√
n. (5.4)

Before proving Proposition 5.1 we first use it to prove Theorem 5.1.

Proof of Theorem 5.1. Recall that dN denotes the Nikodým distance. Since S2nA and the
unit ball D have the same volume, we can write

1
2dN(S2nA,D) = λd(S2nA \D)

≤ λd(B2n,n+1(SnA) \D)
≤ dN(B2n,n+1(SnA),D)

≤ dN(B2n,n+1(SnA), L(SnA)D)+ dN(L(SnA)D,D). (5.5)
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Now, let us bound the two terms of the sum in (5.5). If Xn denotes the Hausdorff distance
betweenB2n,n+1(SnA) andL(SnA)D, thenB2n,n+1(SnA) contains the centered ball with radius
L(SnA) − Xn and is contained in the ball with radius L(SnA) + Xn. Hence, the first term of
(5.5) is smaller than

κd((L(SnA)+Xn)
d − (L(SnA)−Xn)

d). (5.6)

The inequalities L(SnA) ≤ L(A) andXn ≤ R(A)+L(A) allow us to bound (5.6) by c3Xn for
a suitable constant c3 = c3(d,A) > 0. The second term of (5.5) is treated in the same way:

dN(L(SnA)D,D) = λd(L(SnA)D \D) = κd(L(SnA)
d − 1) ≤ c4(L(SnA)− 1)

for a suitable constant c4 = c4(d,A) > 0. Combining the previous inequalities with Proposi-
tion 5.1 and (5.8) below we obtain

EdN(S2nA,D) ≤ 2c3a1a
n
2 + 2c4c1e−c2

√
n

(a1 and a2 are two positive constants depending on d, A, and α, and a2 < 1). The same
upper bound holds for the expectation of dN(S2n+1A,D) since the Steiner symmetrization is
a 1-Lipschitz function with respect to the Nikodým distance (see Lemma A.2). To summarize,
there exist c5, c6 > 0 such that, for any n,

EdN(SnA,D) ≤ c5e−c6
√
n.

By Markov’s inequality and the Borel–Cantelli lemma, we deduce that there exists 0 < c7 < c6
such that, with probability 1, for large enough n,

dN(SnA,D) ≤ e−c7
√
n. (5.7)

Finally, the passage from the Nikodým distance to the Hausdorff distance is ensured by
Lemma A.4. With r = (2R(A))−1, the quantity dH (Sn(rA), rD) is smaller than 1

2 for any
integer n. So, Lemma A.4 applies; thus, with probability 1,

dH(SnA,D) = r−1dH(Sn(rA), rD)

≤ Cr−1dN(Sn(rA), rD)
2/(d+1)

≤ Cr2/(d+1)−1e−2c7
√
n/(d+1).

Statement (5.2) follows. To obtain (5.3), we proceed as in the proof of Theorem 4.1.

5.1. Proof of Proposition 5.1

Assume that there exists n such that β := L(SnA) < 1. By Theorem 4.1, conditionally to
SnA,

Bm,n+1(SnA) = BUm(· · ·BUn+1(SnA) · · · )
converges a.s. to βD as m tends to ∞. Combining this with the fact that the Minkowski
symmetrization of a given set increases its volume (recall (2.4)), it follows that

vol(D) > βdvol(D) ≥ vol(Bm,n+1(SnA)) ≥ vol(SnA) = vol(A).

This contradicts the hypothesis that vol(A) = vol(D) and gives the lower bound of (5.4).
The proof of the upper bound of (5.4) requires more work. First, we require the next

lemma, which is a particular case of a result on quermassintegrals due to Bokowski and Heil [3,
Theorem 2].
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Lemma 5.1. (Corollary 6.2 of [8].) Let ε > 0 and K ⊂ (1 + ε)D be a convex body having
the same volume as D. Then

L(K)− 1 ≤ rdε,

where rd = 1 − 1/d2 < 1.

Second, we need to check the expectation of ‖hBn+m,n+1(SnA)‖∞. Since R(SnA) is smaller
than R(A), Lemma 4.1 applies to SnA instead of A, but with the same constant as in (4.4),
denoted by zd . Thus, the following analogue of inequality (4.5) is obtained. For any integers
m, n,

E‖hBn+m,n+1(SnA)‖∞ ≤ a1a
m
2 , (5.8)

where a1 = (zdR(A))
1/d and a2 = (α(d−1)/d)1/2d . This latter quantity being strictly smaller

than 1 thanks to hypothesis (5.1).
Some additional constants have to be introduced. We set

γ = rd + 1

2
< 1, b = log γ

log a2
> 0,

and m ∈ N such that

a1a
m
2 ≤ 1 − rd

2rd
(L(A)− 1).

Thus, by induction, we define a sequence of integers (mk)k≥0 by

m0 = m and mk+1 = �mk + b� + 1 for all k ∈ N

(where �x� denotes the integer part of x), and a sequence of convex bodies (Ak)k≥0 byA0 = A,
A1 = Sm0A, and, for any k ≥ 1,

Ak+1 = Sm̂k,m̂k−1+1Ak, where m̂k =
k∑
i=0

mi.

Roughly speaking, the passage from Ak to Ak+1 is obtained aftermk Steiner symmetrizations.
This process actually reduces the mean radius L. Specifically, we are going to prove that, for
any k ∈ N,

EL(Ak)− 1 ≤ γ k(L(A)− 1). (5.9)

The case k = 0 is obvious. Assume that (5.9) holds for a given k ∈ N. Let us denote by Xk
the Hausdorff distance between Bm̂k,m̂k−1+1Ak and L(Ak)D. Thanks to (5.8), the expectation
of Xk is bounded by a1a

mk
2 . Furthermore, Ak+1 is included in Bm̂k,m̂k−1+1Ak , itself included

in (Xk + L(Ak))D. So, we can apply Lemma 5.1 to Ak+1 whose volume equals that of D:

L(Ak+1)− 1 ≤ rd(L(Ak)− 1 +Xk).

The induction hypothesis then gives

EL(Ak+1)− 1 ≤ rd(γ
k(L(A)− 1)+ a1a

mk
2 ).

Now the sequence (mk)k≥0 has been built so that

a1a
mk
2 ≤ γ a1a

mk−1
2 ≤ · · · ≤ γ ka1a

m
2 ≤ γ k

1 − rd

2rd
(L(A)− 1),
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which finally provides

EL(Ak+1)− 1 ≤ γ k(L(A)− 1)

(
rd + 1 − rd

2rd

)
= γ k+1(L(A)− 1).

To conclude, it suffices to extend inequality (5.9) from Ak to SnA. So, let n ∈ N be larger than
m. Let us introduce the integer k ≥ 0 satisfying

m̂k ≤ n < m̂k+1.

The choice of k implies, on the one hand, that

EL(SnA)− 1 ≤ EL(Sm̂kA)− 1 = EL(Ak)− 1 ≤ γ k(L(A)− 1)

by (5.9). On the other hand, it allows us to compare k and
√
n. Indeed,

n < m̂k+1 ≤ (k + 2)m+ (k + 2)(k + 1)

2
(b + 1) ≤ c(k + 2)2

for a suitable constant c > 0, depending only onm and b. This proves the upper bound of (5.4)
for any n ≥ m, with c1 = γ−2(L(A) − 1) and c2 = −(log γ )/

√
c. Finally, it suffices to

increase c1 in order to obtain (5.4) for any n.

6. Open questions

The first open question concerns the rate of convergence of the random sequence (SnA)n≥1
to the corresponding ball: how far from optimal is the rate given in Theorem 5.1? However,
no (strict) contraction property for Steiner symmetrization is available—one may expect an
exponential rate.

Corollary 2 and Lemma 3.4 of [4] suggest that the almost-sure convergence of (SnA)n≥1
takes place for i.i.d. directions, provided the support of the common distribution contains a
nonempty open set of the sphere S

d−1. Is this condition sufficient to receive an assessment of
the speed of convergence?

What about the rate of convergence of (SnA)n≥1 and (BnA)n≥1 when A is only assumed to
be a compact set, or a set of finite measures?

Does there exist a stronger theorem of equivalence ensuring some relation between the rates
of convergence of both sequences (SnA)n≥1 and (BnA)n≥1?

The counterexample given in [1] proves that an asymptotically uniformly distributed non-
random sequence (un)n≥1 on S

1 does not always round off any given convex body. It would
be interesting to find a reasonable strengthening of this condition which implies an asymptotic
rounding of any convex body.

Appendix A. Metrics on Kd

The Hausdorff distance provides a bridge between convex bodies and their support functions.
Specifically, the mapping φ : A �→ fA is an isometry from (Kd , dH) onto the subset φ(Kd) of
the space of continuous functions on S

d−1 endowed with the L∞-norm. See [6, p. 84].

Lemma A.1. Let A,B ∈ Kd . Then

dH(A,B) = ‖fA − fB‖∞.
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The reason we use the Nikodým distance in this paper is because the Steiner symmetrization
is 1-Lipschitz with respect to it. See Lemma 2.2 of [13].

Lemma A.2. Let A,B ∈ Kd and u ∈ S
d−1. Then

dN(SuA, SuB) ≤ dN(A,B).

We complete this section by presenting two inequalities that compare the Hausdorff and
Nikodým distances. The first inequality is Theorem (i) of [5], and so we omit its proof.

Lemma A.3. There exists a positive constant C = C(d,R) such that, for all A,B ∈ Kd

included in the ball B(0, R),
dN(A,B) ≤ CdH(A,B).

The following lemma is very similar to Theorem (iii) of [5].

Lemma A.4. LetA be a convex body having the same volume asD and such that dH(A,D) ≤
1
2 . Then there exists a positive constant C = C(d) such that

dH(A,D) ≤ CdN(A,D)
2/(d+1).

Proof. Let r = dH(A,D). There exists a vector a ∈ A such that ‖a‖2 = 1±r . We only treat
the case ‖a‖2 = 1 + r since the case ‖a‖2 = 1 − r is similar. Let us consider the semi-infinite
coneK1 formed by all rays emanating from a and intersecting the ball (1 − r)D, and the outer
half-space K2 which is tangent to D at a/‖a‖2. An elementary calculation shows that the set
K1 ∩ K2 is a right cone with height r over a (d − 1)-dimensional ball with radius larger than√
r/4 (because r ≤ 1

2 ). Hence, the volume of A \ D which contains K1 ∩ K2 is larger than
Cr(d+1)/2, where C = C(d) is a positive constant. To conclude, we use the identity

dN(A,D) = 2λd(A \D)
since A and D have the same volume.
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