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A NOTE ON DORMANT OPERS OF RANK p− 1 IN
CHARACTERISTIC p

YUICHIRO HOSHI

Abstract. In this paper, we prove that the set of equivalence classes of

dormant opers of rank p− 1 over a projective smooth curve of genus > 2 over

an algebraically closed field of characteristic p > 0 is of cardinality one.

Introduction

In this paper, we study dormant opers of rank p− 1 over projective

smooth curves of characteristic p > 0. In particular, we prove that the

set of equivalence classes of dormant opers of rank p− 1 over a curve of

characteristic p > 0 is of cardinality one.

The notion of oper was introduced in [1] (cf. also [2]). Let k be an

algebraically closed field, and let X be a projective smooth curve of genus

> 2 over k. Let us recall that an oper over X/k is a suitable triple consisting

of a locally free coherent OX -module, a connection on the module relative

to X/k, and a filtration of the module. The study of opers in positive

characteristic was initiated in, for instance, [4, 5, 9, 10]. Suppose that we are

in the situation in which k is of characteristic p > 0. Then, we shall say that

a given oper is dormant if the p-curvature of the connection of the oper

is zero. We refer to Definition 1.1 (cf. also Definition 1.2) concerning the

precise definition of the notion of “dormant oper” discussed in the present

paper. It should be noted that a dormant oper of rank two is essentially the

same as a dormant indigenous bundle studied in p-adic Teichmüller theory

(cf. [7]).

The main result of the present paper, which is a generalization of

the first portion of [3], Theorem A (cf. Remark 2.1.1), is as follows

(cf. Proposition 1.4, Theorem 2.1).
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Theorem A. Let k be an algebraically closed field of characteristic

p > 0, and let X be a projective smooth curve of genus > 2 over k. Then,

the set of equivalence classes of dormant opers of rank p− 1 over X/k is of

cardinality one.

It should be noted that the fact that the set discussed in Theorem A is

nonempty was already known (cf. Remark 1.4.2).

In [4], Joshi posed a conjecture concerning the number of equivalence

classes of dormant opers of rank r over a projective smooth curve of

genus g > 2 over an algebraically closed field of characteristic p > 0 for

p > C(r, g)
def
= r(r − 1)(r − 2)(g − 1) (cf. [4, Conjecture 8.1]). Moreover,

Wakabayashi proved this conjecture for a sufficiently general curve (cf. [10,

Theorem 8.7.1]). It should be noted that the triple (r, g, p)
def
= (p− 1, g, p)

(i.e., the triple in the case discussed in Theorem A) does not satisfy the

condition p > C(r, g) unless p ∈ {2, 3}.

§1. Construction of dormant opers of rank p− 1

In this section, let p be a prime number, let g > 2 be an integer, let

k be an algebraically closed field of characteristic p, and let X be a

projective smooth curve over k (i.e., a scheme that is projective, smooth,

geometrically connected, and of relative dimension one over k) of genus g.

Write X(1) for the projective smooth curve over k obtained by base-changing

X via the absolute Frobenius morphism of k, F : X →X(1) for the relative

Frobenius morphism over k, I ⊆ OX×kX for the ideal of OX×kX which

defines the diagonal morphism with respect to X/k, and X(n) ⊆X ×k X
for the closed subscheme of X ×k X defined by the ideal In+1 ⊆OX×kX

(where n is a nonnegative integer). In particular, it follows that I/I2 = ωX/k
(resp., HomOX

(I/I2,OX) = τX/k), where we use the notation ω (resp., τ)

to denote the cotangent (resp., tangent) sheaf. Finally, write d : OX → ωX/k
for the exterior differentiation operator.

Let us define the notion of dormant oper, as well as the notion of

equivalence of dormant opers, discussed in the present paper as follows (cf.,

e.g., [4, §3]; also [5, Definitions 3.1.1, 3.1.2 and (1)–(5) of pp. 51–52]).

Definition 1.1. Let r be a positive integer. Then, we shall say that a

collection of data

(E , ∇E , {0}= Er ⊆ Er−1 ⊆ · · · ⊆ E1 ⊆ E0 = E)
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consisting of a locally free coherent OX -module E , a connection ∇E on E
relative to X/k, and a filtration {0}= Er ⊆ Er−1 ⊆ · · · ⊆ E1 ⊆ E0 = E by OX -

submodules of E is a dormant oper of rank r over X/k if the following five

conditions are satisfied.

(1) For every i ∈ {1, . . . , r}, the subquotient Ei−1/Ei is an invertible sheaf

on X.

(2) For every i ∈ {1, . . . , r}, it holds that ∇E(Ei)⊆ Ei−1 ⊗OX
ωX/k.

(3) For every i ∈ {1, . . . , r − 1}, the homomorphism of OX -modules

obtained by forming the composite

Ei
∇E→ Ei−1 ⊗OX

ωX/k � (Ei−1/Ei)⊗OX
ωX/k

(cf. (2)) determines an isomorphism Ei/Ei+1
∼→ (Ei−1/Ei)⊗OX

ωX/k of

invertible sheaves on X (cf. (1)).

(4) The p-curvature of ∇E is zero.

(5) There exists an isomorphism (det E , det∇E)
∼→ (OX , d).

Definition 1.2. Let r be a positive integer, and let

E
def
= (E , ∇E , {0}= Er ⊆ Er−1 ⊆ · · · ⊆ E1 ⊆ E0 = E),

F
def
= (F , ∇F , {0}= Fr ⊆Fr−1 ⊆ · · · ⊆ F1 ⊆F0 = F)

be dormant opers of rank r over X/k. Then, we shall say that E is equivalent

to F if the following condition is satisfied. There exists a triple (L,∇L, φ)

consisting of an invertible sheaf L on X, a connection ∇L on L relative to

X/k, and a horizontal isomorphism φ of (E ,∇E) with (F ,∇F )⊗OX
(L,∇L)

such that φ maps, for each i ∈ {0, . . . , r}, the subsheaf Ei ⊆ E isomorphically

onto the subsheaf Fi ⊗OX
L ⊆ F ⊗OX

L.

Remark 1.2.1. It should be noted that the notion of the “equivalence

class of a dormant oper of rank r” of the present paper coincides with

the notion of the “isomorphism class of a dormant PGL(r)-oper” in the

terminology given in [4, §3].

Remark 1.2.2. It follows immediately from the various definitions

involved that the notion of dormant oper of rank two is essentially the same

as the notion of dormant indigenous bundle studied in [7].

In the remainder of the present section, let us construct a dormant oper

of rank p− 1 over X/k. We shall write

B1
def
= Coker(OX(1) → F∗OX)
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for the OX(1)-module obtained by forming the cokernel of the natural

homomorphism OX(1) → F∗OX . It should be noted that since F is finite flat

of degree p, the OX(1)-module B1, and hence also the OX -module F ∗B1, is

locally free of rank p− 1.

Lemma 1.3. The following hold.

(i) The natural homomorphism OX(1) → F∗OX and the homomorphism

F ∗F∗OX →OX determined by multiplication of the ring OX determine

an isomorphism of OX-modules

F ∗F∗OX
∼−→ OX ⊕ F ∗B1.

(ii) The natural morphism X ×X(1) X →X ×k X over k determines an

isomorphism over k

X ×X(1) X
∼−→ X(p−1).

(iii) The closed immersion X(1) ↪→X ×k X factors through the closed

subscheme X ×X(1) X ⊆X ×k X:

X(1) ↪→ X ×X(1) X ↪→ X ×k X.

(iv) The isomorphism X ×X(1) X
∼→X(p−1) of (ii), together with the Carte-

sian diagram

X ×X(1) X
pr2−−−−→ X

pr1

y yF
X −−−−→

F
X(1),

determines isomorphisms of OX-modules

F ∗F∗OX
∼−→ pr1∗OX×X(1)X

∼←− pr1∗OX(p−1)
,

which are compatible with the respective natural surjections onto OX
(arising from the diagonal morphism with respect to X/X(1)) from each

of these three modules.

(v) The isomorphisms F ∗F∗OX
∼→ pr1∗OX×X(1)X

∼← pr1∗OX(p−1)
of (iv)

restrict, relative to the isomorphism F ∗F∗OX
∼→OX ⊕ F ∗B1 of (i), to

isomorphisms of OX-submodules

F ∗B1
∼−→ Ker(pr1∗OX×X(1)X � OX)

∼←− pr1∗(I/Ip).
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(vi) The OX-module pr1∗(I/Ip) admits a filtration

{0} = pr1∗(Ip/Ip) ⊆ pr1∗(Ip−1/Ip) ⊆ · · · ⊆ pr1∗(I2/Ip)

⊆ pr1∗(I/Ip).

(vii) The OX-module F ∗ detB1 = det(F ∗B1) is isomorphic to ω
⊗p(p−1)/2
X/k .

(viii) It holds that deg B1 = (p− 1)(g − 1).

(ix) There exists an invertible sheaf L◦ on X(1) such that det(L◦ ⊗O
X(1)

B1)

(= (L◦)⊗p−1 ⊗O
X(1)

detB1) is isomorphic to OX(1).

Proof. Assertions (i) and (ii) follow immediately from local explicit

calculations. Assertions (iii) and (iv) follow from assertion (ii). Assertion

(v) follows from assertion (iv). Assertion (vi) is immediate. Assertion (vii)

follows from assertion (vi). Assertion (viii) follows from assertion (vii).

Assertion (ix) follows from assertion (viii). This completes the proof of

Lemma 1.3.

Let L◦ be as in Lemma 1.3(ix) (cf. Remark 1.4.1 below). We shall write

E◦ def
= F ∗(L◦ ⊗O

X(1)
B1).

Then, it follows immediately from the definition of a connection that the

factorization of Lemma 1.3(iii) determines a connection on the OX -module

E◦ relative to X/k. We shall write

∇can
E◦

for this connection on E◦. Moreover, the isomorphism F ∗B1
∼→ pr1∗(I/Ip) of

Lemma 1.3(v) and the filtration of pr1∗(I/Ip) of Lemma 1.3(vi) determine

a filtration of E◦

{0} = E◦p−1 ⊆ E◦p−2 ⊆ · · · ⊆ E◦1 ⊆ E◦0 = E◦.

(Thus, it follows immediately from the definition of the filtration that

E◦/E◦1 ∼= F ∗L◦ ⊗OX
pr1∗(I/I2) = F ∗L◦ ⊗OX

ωX/k.)

Proposition 1.4. The collection of data

E◦
def
= (E◦, ∇can

E◦ , {0}= E◦p−1 ⊆ E◦p−2 ⊆ · · · ⊆ E◦1 ⊆ E◦0 = E◦)

forms a dormant oper of rank p− 1 over X/k.
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Proof. The assertion that E◦ satisfies condition (1) of Definition 1.1 fol-

lows from the definition of the OX -submodules E◦i ⊆ E◦. The assertion that

E◦ satisfies conditions (2) and (3) of Definition 1.1 follows immediately

from a local explicit calculation (cf. also [5, Theorem 3.1.6]). The assertion

that E◦ satisfies condition (4) of Definition 1.1 follows from the definition

of the connection ∇can
E◦ . The assertion that E◦ satisfies condition (5) of

Definition 1.1 follows from the fact that det(L◦ ⊗O
X(1)

B1) is isomorphic

to OX(1) (cf. Lemma 1.3(ix)), together with the definition of the connection

∇can
E◦ . This completes the proof of Proposition 1.4.

Remark 1.4.1. Let us observe that the choice of L◦ as in Lemma 1.3(ix)

is not unique. More precisely, if we write (PicX)[p− 1]⊆ PicX for the

subgroup of PicX obtained by forming the kernel of the endomorphism

of PicX given by multiplication by p− 1, then the set consisting of

isomorphism classes of possible L◦s forms a (PicX)[p− 1]-torsor. On the

other hand, it is immediate from the various definitions involved that the

adoption of another possible L◦ does not affect the equivalence class of the

dormant oper of Proposition 1.4.

Remark 1.4.2. It should be noted that the assertion that every X/k

admits a dormant oper of rank p− 1 was already essentially proved. For

instance, it follows immediately, in light of Remark 1.2.2, from [7, Chapter

II, Theorem 2.8] (cf. also the final Remark of [7, Chapter IV, §2.1]), that

every X/k admits a dormant oper of rank two; thus, by considering the

(p− 2)-nd symmetric power of a dormant oper of rank two (cf. also the

discussion concerning Gr(θ) in [5, §3.2]), we conclude that every X/k admits

a dormant oper of rank p− 1.

§2. Uniqueness of dormant opers of rank p− 1

In this section, we maintain the notation of §1. In particular, we have a

projective smooth curve X over k. In this section, we prove the following

theorem.

Theorem 2.1. Every dormant oper of rank p− 1 over X/k is equivalent

(cf. Definition 1.2) to the dormant oper of Proposition 1.4 (cf. also

Remark 1.4.1).

Remark 2.1.1. Theorem 2.1 is a generalization of the first portion of

[3], Theorem A.
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Remark 2.1.2. As discussed in Remark 1.2.1, the notion of “dormant

oper of rank r” of the present paper is essentially the same as the notion of

“dormant PGL(r)-oper” in the terminology given in [4, §3]. On the other

hand, one may find the definition of the notion of G-oper in, for instance,

[1, §3], [2, §1], for a more general algebraic group G. Thus, by imposing

a condition similar to condition (4) of Definition 1.1 on such a G-oper,

one may define the notion of dormant G-oper (as well as the notion of the

isomorphism class of a dormant G-oper).

It should be noted that the proof of Theorem 2.1, that is, the proof of the

main result of the present paper, may give a proof of the assertion that the

set of isomorphism classes of dormant G-opers over X/k is of cardinality

one for a suitable algebraic group G. We leave the routine details of such

generalizations to the interested reader.

To complete the verification of Theorem 2.1, let

E
def
= (E , ∇E , {0}= Ep−1 ⊆ Ep−2 ⊆ · · · ⊆ E1 ⊆ E0 = E)

be a dormant oper of rank p− 1 over X/k. We shall write

Ξ◦
def
= E◦/E◦1 , Ξ

def
= E/E1.

Then, it follows from the definition of a dormant oper that both (Ξ◦)⊗p−1

and Ξ⊗p−1 are isomorphic to τX/k
⊗(p−1)(p−2)/2, which thus implies that δ

def
=

HomOX
(Ξ, Ξ◦) is of order p− 1. In particular, it is immediate that if we

write δF for the invertible sheaf on X(1) obtained by pulling back δ via

the natural morphism X(1)→X, then it holds that F ∗δF ∼= δ. Moreover,

by considering the connection on F ∗δF determined by the factorization of

Lemma 1.3(iii), we conclude that E ⊗OX
F ∗δF determines a dormant oper

that is equivalent to E. Thus, to complete the verification of Theorem 2.1,

we may assume without loss of generality, by replacing E by E ⊗OX
F ∗δF ,

that

Ξ◦ ∼= Ξ.

By means of such an isomorphism, let us identify Ξ◦ with Ξ.

Next, let us observe that since the p-curvature of ∇E is zero, and

(det E , det∇E) is isomorphic to (OX , d), it follows from a theorem of Cartier

(cf., e.g., [6, Theorem 5.1]) that if we write F def
= E∇E for the OX(1)-module

of horizontal sections of E with respect to ∇E , then
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(a) E is naturally isomorphic to F ∗F ;

(b) the connection∇E arises from the isomorphism of (a) (together with the

factorization of Lemma 1.3(iii)); and

(c) det F is isomorphic to OX(1) .

Thus, the isomorphism F ∗F ∼→E of (a) and the surjection E � Ξ = Ξ◦

determine a surjection of OX -modules

F ∗F � Ξ◦,

and hence also a homomorphism of OX(1)-modules

F −→ F∗Ξ
◦.

Lemma 2.2. The above homomorphism F → F∗Ξ
◦ is a locally split

injection.

Proof. Let us first observe that it is immediate that, to verify Lemma 2.2,

it suffices to verify that the homomorphism γ : E ∼← F ∗F → G def
= F ∗F∗Ξ

◦ of

OX -modules obtained by pulling back, via F , the homomorphism under

consideration is a split injection. Next, let us observe that it follows

immediately from the various definitions involved that the composite of

γ and the natural homomorphism G = F ∗F∗Ξ
◦→ Ξ◦ coincides with the

natural surjection E � Ξ = Ξ◦.

We write ∇G for the connection on G determined by the factorization

of Lemma 1.3(iii). Thus, it follows immediately from the definitions of

∇E and ∇G that γ is horizontal with respect to ∇E and ∇G . More-

over, for i ∈ {1, . . . , p}, let us define submodules Gi ⊆ G inductively as

follows. We shall write G1
def
= Ker(G = F ∗F∗Ξ

◦� Ξ◦). If i> 2, then we shall

write Gi
def
= Ker

(
Gi−1 ↪→G

∇G→ G ⊗OX
ωX/k� (G/Gi−1)⊗OX

ωX/k
)
. Then, it

follows that the submodule Gi ⊆ G is an OX -submodule, and Gp = {0}.
Moreover, it follows immediately from a local explicit calculation (cf. also

[5, Theorem 3.1.6]) that the collection of data

(G, ∇G , {0}= Gp ⊆ Gp−1 ⊆ · · · ⊆ G1 ⊆ G0
def
= G)

satisfies conditions (1), (2), (3), and (4) of Definition 1.1.

Now, I claim that the following assertion holds.

For each i ∈ {1, . . . , p− 1}, the composite Ei−1 ↪→E
γ→G determines an

isomorphism Ei−1/Ei
∼→Gi−1/Gi of OX -modules.
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Let us verify this claim by induction on i. If i= 1, then the desired

assertion has already been verified (in the first paragraph of this proof). Let

i ∈ {2, . . . , p− 1}. Suppose that γ determines an isomorphism Ei−2/Ei−1
∼→

Gi−2/Gi−1 of OX -modules, which thus implies that γ(Ei−1)⊆ Gi−1. Thus,

since γ is horizontal, the diagram

Ei−1
⊆−−−−→ E ∇E−−−−→ E ⊗OX

ωX/k −−−−→ (E/Ei−1)⊗OX
ωX/ky γ

y γ⊗id
y y

Gi−1
⊆−−−−→ G ∇G−−−−→ G ⊗OX

ωX/k −−−−→ (G/Gi−1)⊗OX
ωX/k

commutes. In particular, it follows immediately from condition (3) of

Definition 1.1, together with the induction hypothesis, that γ determines an

isomorphism Ei−1/Ei
∼→Gi−1/Gi of OX -modules, as desired. This completes

the proof of the above claim.

It follows immediately from the above claim that the composite E γ→
G� G/Gp−1 is an isomorphism of OX -modules. In particular, γ is a split

injection. This completes the proof of Lemma 2.2.

By Lemma 2.2, together with the fact that Ξ◦ is isomorphic to F ∗L◦ ⊗OX

ωX/k (cf. the discussion preceding Proposition 1.4), we have an exact

sequence of locally free OX(1)-modules

0 −→ F −→ L◦ ⊗O
X(1)

F∗ωX/k −→ Q −→ 0.

Lemma 2.3. The above OX(1)-module Q is isomorphic to L◦ ⊗O
X(1)

ωX(1)/k.

Proof. Let us first observe that F is of rank p− 1, and L◦ ⊗O
X(1)

F∗ωX/k

is of rank p, which thus implies thatQ is an invertible sheaf onX(1). Thus, by

the exact sequence of the discussion preceding Lemma 2.3, together with (c)

of the discussion preceding Lemma 2.2, it holds that

Q ∼= (L◦)⊗p ⊗O
X(1)

det F∗ωX/k.

In particular, since (it follows from our choice of L◦ – cf. Lemma 1.3(ix) –

that) (L◦)⊗p−1 is isomorphic to HomO
X(1)

(detB1,OX(1)), we obtain that

Q ∼= L◦ ⊗O
X(1)
HomO

X(1)
(detB1, det F∗ωX/k).
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Next, let us recall (cf., e.g., [6, Theorem 7.2]) the well-known exact

sequence of OX(1)-modules

0 −→ OX(1) −→ F∗OX
F∗d−→ F∗ωX/k

c−→ ωX(1)/k −→ 0,

where we write c for the Cartier operator. Thus, it follows from the definition

of B1 that

det F∗ωX/k ∼= ωX(1)/k ⊗OX(1)
detB1.

This completes the proof of Lemma 2.3.

By Lemma 2.3, we have an exact sequence of locally free OX(1)-modules

0 −→ F −→ L◦ ⊗O
X(1)

F∗ωX/k −→ L◦ ⊗O
X(1)

ωX(1)/k −→ 0.

On the other hand, we have an exact sequence of locally free OX(1)-modules

0 −→ L◦ ⊗O
X(1)

B1 −→ L◦ ⊗O
X(1)

F∗ωX/k
c−→ L◦ ⊗O

X(1)
ωX(1)/k −→ 0

(cf. the well-known exact sequence that appears in the second paragraph of

the proof of Lemma 2.3).

Let us complete the proof of Theorem 2.1.

Proof of Theorem 2.1. Now, I claim that the following assertion holds.

Every homomorphism F∗ωX/k→ ωX(1)/k of OX(1)-modules is a k-multiple of

the Cartier operator c (cf. the well-known exact sequence that appears in the

second paragraph of the proof of Lemma 2.3).

Indeed, it follows immediately from a local explicit calculation

that the map F∗OX × F∗ωX/k→ ωX(1)/k given by mapping (f, θ) to

c(f · θ) determines an isomorphism F∗OX
∼→HomO

X(1)
(F∗ωX/k, ωX(1)/k)

of OX(1)-modules (cf. also the discussion preceding [8, Théorème

4.1.1]). Thus, the above claim follows from the fact that

Γ(X(1),HomO
X(1)

(F∗ωX/k, ωX(1)/k))
∼= Γ(X(1), F∗OX(1))∼= Γ(X,OX) is

of dimension one. This completes the proof of the above claim.

Let us recall the two exact sequences of OX(1)-modules

0 −→ F −→ L◦ ⊗O
X(1)

F∗ωX/k −→ L◦ ⊗O
X(1)

ωX(1)/k −→ 0,

0 −→ L◦ ⊗O
X(1)

B1 −→ L◦ ⊗O
X(1)

F∗ωX/k
c−→ L◦ ⊗O

X(1)
ωX(1)/k −→ 0

appearing in the discussion following Lemma 2.3. It follows immedi-

ately from the above claim that we have an equality L◦ ⊗O
X(1)

B1 = F
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(in L◦ ⊗O
X(1)

F∗ωX/k). In particular, we have an isomorphism φ : E◦ ∼→
E (i.e., F ∗id). Moreover, it follows immediately from the definition of

∇can
E◦ , together with (b) of the discussion preceding Lemma 2.2, that the

isomorphism φ is horizontal with respect to ∇can
E◦ , ∇E .

Finally, we verify that φ(E◦p−i) = Ep−i for each i ∈ {1, . . . , p− 1} by

induction on i. The equality ({0}=) φ(E◦p−1) = Ep−1 (= {0}) is immediate.

Let i ∈ {2, . . . , p− 1}. Suppose that φ(E◦p−i+1) = Ep−i+1 holds. Then, to

verify that φ(E◦p−i) = Ep−i, it suffices to verify that the induced isomorphism

E◦/E◦p−i+1
∼→E/Ep−i+1 maps E◦p−i/E◦p−i+1 isomorphically onto Ep−i/Ep−i+1.

On the other hand, since (it follows immediately from the definition of a

dormant oper that)

E◦j−1/E◦j ∼= Ej−1/Ej ∼= Ξ◦ ⊗OX
ω⊗j−1X/k

for each j ∈ {1, . . . , p− 1}, the desired assertion follows immediately from

the ampleness of ωX/k. This completes the proof of Theorem 2.1.
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