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Abstract. We compute the spherical albedo for a Lommel-Seeliger scattering ellipsoidal asteroid
with a realistic disk-integrated phase function. The spherical (or Bond) albedo gives the ratio of
the fluxes incident on and scattered by an asteroid. Thus, it plays a key role in the determination
of the flux absorbed and afterwards thermally emitted by the asteroid at longer wavelengths.
We provide extensive computations for the spherical albedo of low-albedo and moderate-albedo
asteroids by utilizing the analytical disk-integrated brightness of a Lommel-Seeliger ellipsoid.
In doing so, we utilize realistic triaxial models of known asteroids as well as idealistic prolate
or oblate models of substantial elongation or flatness, respectively. We show that the spherical
albedos can vary significantly as a function of the rotational pole orientation, rotational phase,
and the triaxial ellipsoidal shape: variations of the order of 5-10% are realistic, with a tendency
to grow with increasing elongation or flatness of the shape.
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1. Introduction
The ellipsoid captures an asteroid’s shape in three dimensions with only two parame-

ters, that is, the axial ratios b/a and c/a, where a, b, and c denote the semiaxes of the
ellipsoid. The ellipsoid is thus an appealing overall model for an asteroid’s shape, a state-
ment supported by the scientific preparation for the Gaia space mission (Cellino et al.
2009, Carbognani et al. 2012, Cellino et al. 2015, Muinonen & Lumme 2015, Muinonen
et al. 2015) and earlier work in shape and rotational pole determination (Drummond
et al. 1988, Magnusson et al. 1989).

The disk-integrated brightness of an ellipsoidal asteroid is analytically available for a
Lommel-Seeliger surface scattering model, that is, in the case of dark, particulate surfaces
typical for, e.g., primitive asteroids (Muinonen & Lumme 2015). The Lommel-Seeliger
model follows from the radiative-transfer theory in the case of small single-scattering
albedo, allowing us to omit the orders of scattering higher than the first (Chandrasekhar
1960). The analytical disk-integrated brightness has given rise to novel initial methods
for asteroid lightcurve inversion (Cellino et al. 2015, Muinonen et al. 2015) in the case
of sparse photometric data.

In Section 2, we review the photometric properties of the triaxial Lommel-Seeliger
ellipsoid, including the disk-integrated brightness, geometric albedo, and the spherical
albedo (or Bond albedo). In Section 3, we describe extensive computations for the spher-
ical albedo as a function of rotational pole orientation, rotational phase, as well as the
ellipsoid axial ratios. Finally, in Section 4, we provide the conclusions of the study.
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2. Photometry with a Lommel-Seeliger Ellipsoid
We begin with the reflection coefficient R of a surface element that relates the incident

flux density πF0 and the emergent intensity I:

I(μ, φ;μ0 , φ0) = μ0R(μ, φ;μ0 , φ0)F0 ,

μ0 = cos ι, μ = cos ε, (2.1)

where ι and ε are the incidence and emergence angles as measured from the outward
normal vector, and φ0 and φ are the corresponding azimuths. We can measure φ so
that the backscattering direction (or light-source direction) is with φ = 0◦. Thus, with
the typical additional assumption of a geometrically isotropic surface, specifying φ0 is
unnecessary.

The Lommel-Seeliger reflection coefficient (subscript LS) is (e.g., Lumme and Bowell
1981),

RLS(μ, μ0 , φ) =
1
4
ω̃P (α)

1
μ + μ0

, (2.2)

where ω̃ and P are the single-scattering albedo and phase function, respectively, and α is
the phase angle, the angle between the Sun and the observer as seen from the object. The
Lommel-Seeliger reflection coefficient is the first-order multiple-scattering approximation
from the radiative-transfer theory (e.g., Chandrasekhar 1960). In scalar radiative transfer
omitting polarization effects, the phase function P provides the angular distribution of
scattered light in an individual interaction and is normalized so that∫

(4π )

dΩ
4π

P (α) = 1. (2.3)

The disk-integrated brightness L equals the surface integral

L(α) =
∫

A+

dA μI(μ, μ0 , α) =
∫

A+

dA μμ0R(μ, μ0 , α)F0 , (2.4)

where A+ stands for the part of the surface that is both illuminated by the Sun and visible
to the observer. For a nonspherical asteroid, L can depend strongly on the orientation of
the asteroid with respect to the scattering plane, where L is measured.

For a spherical asteroid with diameter D, we obtain the disk-integrated brightness

LLS(α) =
1
32

πF0D
2 ω̃P (α)ΦLS(α),

ΦLS(α) = 1 − sin
1
2
α tan

1
2
α ln

(
cot

1
4
α

)
, (2.5)

where we have also given the phase function ΦLS(α) normalized to unity at α = 0◦.
For an ellipsoidal asteroid with the semiaxes a, b, and c, and C = diag(a−2 , b−2 , c−2),

the disk-integrated brightness is also available in a closed form. Let e� and e⊕ be the
unit vectors in the directions of the Sun and the observer, respectively, as seen in the
principal-axes reference frame of the ellipsoid. Following Muinonen & Lumme (2015),
for the computation of the disk-integrated brightness, we define three sets of auxiliary
quantities. First, the solar phase angle follows from

cos α = e� · e⊕. (2.6)

Second, we define two vector-matrix products S� and S⊕ as well as an angle α′ so that

S� =
√

eT
�Ce�, S⊕ =

√
eT
⊕Ce⊕,
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cos α′ =
eT
�Ce⊕
S�S⊕

, sinα′ =
√

1 − cos2 α′. (2.7)

Third, we define an amplitude S and an angle λ′ so that

S =
√

S2
� + S2

⊕ + 2S�S⊕ cos α′,

cos λ′ =
S� + S⊕ cos α′

S
, sin λ′ =

S⊕ sin α′

S
. (2.8)

The disk-integrated brightness of a Lommel-Seeliger ellipsoid is then given by

L(α) = 1
8 πF0 ω̃P (α) abcS�S⊕

S ·{
cos(λ′ − α′) + cos λ′ + sinλ′ sin(λ′ − α′) ln

[
cot 1

2 λ′ cot 1
2 (α′ − λ′)

]}
. (2.9)

The geometric albedo p is the disk-integrated brightness at opposition divided by that
of a normally illuminated, perfectly Lambertian disk with the same surface area:

p =
L(0◦)

πabcS�F0
=

1
8
ω̃P (0◦). (2.10)

Notice that, for a Lommel-Seeliger ellipsoid, p is constant and independent of the rota-
tional pole orientation, rotational phase, and axial ratios.

Consider next ω̃ and P (α). Asteroid phase curves suggest that the disk-integrated
brightness phase function should be close to the H,G1 ,G2 phase function ΦH G1 G2 (Muino-
nen et al. 2010). It is now reasonable to assume that the model

1
8
ω̃P (α) = p

ΦH G1 G2 (α)
ΦLS(α)

(2.11)

can serve well in asteroid phase-curve analyses (Muinonen et al. 2015). Alternatively, as
in the present context, we may utilize the H,G12 phase function ΦH G1 2 (Muinonen et al.
2010):

1
8
ω̃P (α) = p

ΦH G1 2 (α)
ΦLS(α)

. (2.12)

Finally, the spherical albedo A is obtained by integrating the disk-integrated brightness
over the full solid angle (corresponding to the integration over the observing directions)
and by dividing with the total power incident on the cross-sectional area of the object:

A =
1

πF0 πabc S�

∫
(4π )

dΩ⊕ L(α) =
∫

(4π )
dΩ⊕

1
8

ω̃P (α)
S⊕
S

·
{

cos(λ′ − α′) + cos λ′ + sin λ′ sin(λ′ − α′) ln
[
cot

1
2
λ′ cot

1
2
(α′ − λ′)

]}

=
p

π

∫
(4π )

dΩ⊕
ΦH G1 G2 (α)

ΦLS(α)
S⊕
S

·
{

cos(λ′ − α′) + cos λ′ + sin λ′ sin(λ′ − α′) ln
[
cot

1
2
λ′ cot

1
2
(α′ − λ′)

]}
, (2.13)

where, when deemed appropriate, the phase function ΦH G1 G2 can be replaced with the
phase function ΦH G1 2 .
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Figure 1. The pattern of average spherical albedo over one rotation as a function of the pole
orientation in one sky hemisphere. The size of the dot is scaled for the [Amin , Amax ] range. The
Sun is located in the 0◦ longitude direction. The pattern is symmetric in both hemispheres. It
is also practically the same for all ellipsoids, only the scaling varies. Black points indicate the
range, where the albedo is larger than the mean albedo.

3. Results and Discussion
We compute the spherical albedo using Eq. 2.13 with the help of the Gauss-Legendre

integration scheme for the cosine of the phase angle (μα = cos α) and a uniform integra-
tion scheme for the aximuthal angle. It is noteworthy that, in order to arrive at accurate
spherical albedos with four significant decimal places, high-resolution integration schemes
are necessary for both polar and azimuthal integration: we utilize 256 and 720 integra-
tion points in μα and the azimuthal angle, respectively. A typical computation for 649
pole orientations (a 5◦ resolution across half of the full solid angle using triangulation,
cf. Muinonen et al. 2015) and 24 rotational phases for each pole orientation takes about
an hour of computing time using a single core on a modern computer.

We compute the spherical albedo for four different ellipsoids, using two different sets
of G12 and geometric albedo p selected in accordance with the studies by Shevchenko
et al. (2016), Penttilä et al. (2016), Muinonen et al. (2010), and references therein. For
the darker, “C-type” models, we use G12 = 0.80 and p = 0.05. For the brighter, “S-type”
models, the values are G12 = 0.30 and p = 0.20. We compare the spherical albedos of the
ellipsoidal asteroids to those of a spherical asteroid with the same scattering parameters.
For our C-type, the spherical asteroid has the spherical albedo AS = 0.018 and, for
our S-type, AS = 0.086. The ellipsoid axial ratios mimic those obtained for asteroids
(19) Fortuna and (1580) Betulia by Torppa et al. (2008): b/a = 0.86, c/a = 0.82 and
b/a = 0.88, c/a = 0.63, respectively. In addition, we incorporate an oblate spheroid with
b/a = 1.0, c/a = 0.5 and a prolate spheroid with b/a = 0.5, c/a = 0.5.

We find that the spherical albedo depends on the pole orientation and rotational aspect
of an asteroid. Figure 1 shows how the ellipsoid spherical albedo A, averaged over the
rotational phase, varies over different pole orientations. The relationship between A and
the pole orientation is similar for all asteroid models studied, only the relative scaling
between them varies. The highest values are found when the spin axis is perpendicular
to the reference plane. The values become lower towards the plane differently near the
shorter and longer axis.
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Model b/a c/a Am in Am ax Am δA

1C 0.86 0.82 1.84 1.89 1.86 2.2
2C 0.88 0.63 1.81 1.91 1.86 5.1
3C 1.00 0.50 1.79 1.93 1.87 7.5
4C 0.50 0.50 1.83 1.98 1.87 8.2

1S 0.86 0.82 8.53 8.73 8.61 2.4
2S 0.88 0.63 8.37 8.85 8.62 5.5
3S 1.00 0.50 8.24 8.94 8.64 8.1
4S 0.50 0.50 8.44 9.20 8.63 8.9

Table 1. The ellipsoid axial ratios b/a and c/a and the minimum, maximum, and mean spherical
albedos Am in , Am ax , and Am (all in %) of the ellipsoid, respectively, as well as the relative
variation δA (%), for four different shapes (1–4) and the two different spectral types (C and S).
See text.

Figure 2. The range of A for the different models. Grey bars show the range between the
minimum and maximum values around the values for the spherical models (black lines).

Figure 2 and Table 1 show the range of variation of A for each model. These values
represent the maximum variation over all values computed over every pole orientation and
rotational aspect. A is seen to vary around the value for spheres. The relative variation
of the spherical albedo,

δA =
Amax − Amin

AS
, (3.1)

depends mostly on the shape. For a given shape, δA does not change much between the C-
and S-types. The maximum variations of spherical albedo for a single object are almost
9%. Averaging the spherical albedo over one rotation does not change the numbers of
Table 1 within the precision they are given.
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4. Conclusion
We have computed the spherical albedo for ellipsoidal asteroids that scatter light ac-

cording to the Lommel-Seeliger first-order multiple-scattering model with a realistic phase
function. The results show that variations in the spherical albedo of the order of 10%
can be expected.

In the future, we plan to compute reference spherical albedos for ellipsoidal asteroids
as averages over all orientations weighted by the cross-sectional area of each orientation.
We aim toward extending the present analysis further by incorporating the numerical
particulate-medium scattering model by Wilkman et al. (2015), where the surface poros-
ity and roughness are accounted for in detail. Extensive computations of spherical albedo
are made possible by the rapid utilization of the scattering models via interpolation in a
pre-computed grid of porosity and roughness parameter values.
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