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The quantitation of biomarkers on tissue microarrays
(TMAs) provides numerous technical challenges for
the development of automated systems capable of
reading microarrays and translating image informa-
tion into useable data. Unlike DNA/RNA expression
arrays, each spot (or histospot) on a TMA represents
a miniature histologic section of tissue that contains
complex spatial information that can dramatically
affect the quantitative analysis of biomarkers [1–3].
The location and expression level of biomarkers on
TMAs is generally determined using target-specific
antibodies tagged with fluorescent dyes or enzymes
that deposit chromogenic and/or fluorescent sub-
strates. In some cases a given biomarker may only be
represented in a subset of cells within a TMA spot (e.g.
tumor vs. stromal cells) or may be found differentially

expressed in different sub-cellular compartments
within cells (e.g. membrane vs. cytoplasm vs.
nucleus). In some cases, the cell of interest may only
represent a small percentage of the analyzed area,
such that an analysis of biomarker intensity within
the entire area is meaningless. Accurate quantifica-
tion, therefore, requires accurate measurement of
both biomarker expression and location. Indeed, the
importance of preserving the spatial information has
proven to be an essential component of automated
TMA analysis and is incorporated, in some degree,
into most systems currently available for automated
TMA analysis.

Quantitative visual analysis of tissue
microarrays

The simplest method of biomarker quantitation relies
on manual (visual) inspection, usually by a pathologist
or someone trained in basic histology, to determine
accurate expression levels in histologically complex
tissues. In general, expression of biomarkers is scored
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on an ordinal (0, 1�, 2�, 3�) scale, which in some
cases is combined with a scored interpretation of the
markers’ overall distribution [4,5]. Manual scoring has
been successfully used in hundreds of manuscripts on
TMAs with a variety of tissue types. Of course, there
are limitations to visual inspection of microarrays. At
best, manual inspection is only semi-quantitative,
reducing biomarker expression – which generally
occurs in nature as a continuous, normal distribution –
to an ordinal scale. Visual inspection can also be con-
founded by the inherently subjective nature of human
observation, affected by context (e.g. the amount of
tumor present, background staining, stromal staining,
and even the order in which histospots are observed)
[6]. These issues can lead to low inter- and intra-
observer variability [7,8]. In some cases, they can pre-
clude the discovery of subtle sub-populations that
cannot be identified using manual analysis [9,10].

Current methods of automated tissue
microarray analysis

The potential benefits of automated analysis were
realized early on as a way to promote TMAs as a
method for high-throughput biomarker discovery [11].
Indeed, perhaps the greatest argument against man-
ual scoring, aside from its inherent subjectivity, is the
time consuming and tedious burden of repetitively
scoring hundreds to thousands of histospots. More
recently, systems for the automated reading and
image archiving have eliminated some of the most
tedious aspects of TMA analysis and permit simulta-
neous, web based, visual inspection of individual
histospots at multiple institutions [12–15]. Several
researchers have developed TMA analysis systems
out of existing technologies and software [16–19].

These systems dovetail into the recent development
of commercially available, dedicated TMA readers
and software packages (Table 1), which provide auto-
mated quantitation of biomarkers in addition to image
acquisition [1]. Unfortunately, the cost of these sys-
tems (usually greater than $200 000) is prohibitive for
many researchers. Most of these systems utilize 
chromogenic (i.e. ‘brown-stain’) substrates to quantify
biomarkers. Localization of biomarkers is achieved by
counterstaining the TMA with traditional histochemical
dyes (e.g. hematoxylin, eosin). Automated systems
then use morphometric analyses based on size, shape,
and color to distinguish tumor from stroma, nuclei
from cytoplasm, etc. This technology has achieved
higher accuracy than manual scoring for a number of
biomarkers including Her-2/neu, ER, and p21 [20–24];
although its use in tissue microarrays per se is in its
infancy [25,26]. However, since chromogenic sub-
strates rely on opacity (i.e. optical density) to assess
intensity, there is a finite limit to detection (namely
100% opacity) as governed by Beer’s law [27]. As
optical density is a logarithmic rather than linear rep-
resentation of the amount of light absorbed by a chro-
mophore, large changes in protein concentration can
affect only small changes in optical density. This is
particularly true in the range of optical densities used
in immunohistochemistry (OD: 0.5–2.0) [28], thus
complicating quantitation using chromophores.

An alternative approach has been the development
of systems for immunofluorescence-based antigen
detection [10,29]. In theory, such systems should 
provide quantitation that is more sensitive, easier to
localize, and with a broader dynamic range. Unlike
chromogenic dyes, immunofluorescence is epifluores-
cent rather than transmitted, so there is no theoretical
limit to detection. Fluorophores come in a wide array

Table 1. Commercially available tissue microarray analyzers.

TMA system Licensed by/website

BLISS slide scanning workstation Bacus Laboratories, Inc., Lombard, IL 
http://www.bacuslabs.com

Automated Cellular Imaging System (ACIS®) Clarient, Inc (formerly ChromaVision, Inc.), San Juan Capistrano, CA 
http://www.chromavision.com

ScanScope® Virtual microscopy solutions Aperio Technologies, Inc., Vista, CA 
http://www.aperio.com/

TissueAnalytics™ Icoria™ Research Triangle Park, NC 
http://www.icoria.com/

GenoMX™ Vision Biogenex San Ramone, CA 
http://www.biogenex.com/

Discovery TM™ Molecular Devices, Corp., Sunnyvale, CA 
http://www.moleculardevices.com/

Automated Quantitative Analysis (AQUA) HistoRx, New Haven, CT 
http://www.historx.com/

Pathological Image Analysis and Management (PATHIAM) Bioimagene, Inc., San Jose, CA 
http://www.bioimagene.com/

Ariol® Pathology Workstation Applied Imaging Corp., San Jose, CA 
http://www.aicorp.com
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of colors, permitting the use of multiple fluorescently
tagged antibodies on a single microarray. Rather than
using morphometric analysis to localize biomarker
signals, fluorescent analysis co-localizes these signals
using specific tags to cells and/or sub-cellular com-
partments of interest. For example, epithelial tumor
cells might be distinguished from surrounding stroma
using a fluorescently labeled anti-cytokeratin antibody.
Nuclei can be distinguished from cytoplasm using
diamidino-2-phenylindole (DAPI). Multiple publications
have demonstrated the utility of fluorescence-based
automated TMA analysis in a variety of tumor types
including breast, colon, melanoma, oropharyngeal,
prostate, and carcinoid [9,10,30–35].

Of course, there are several disadvantages for 
fluorescent-based TMA analysis. First, epifluorescent
microscope equipment is generally higher cost and
more complex than traditional light microscopy.
Second, although some biomarkers can be visualized
with specific antibodies directly conjugated to fluo-
rophores, most require some form of enzymatic ampli-
fication. Similar to chromogenic methods, fluorescent
systems generally use peroxidase-conjugated anti-
bodies to catalyze the deposition of tyramide-contain-
ing fluorescent substrates [36–38]. This enzymatic
process, though capable of dramatic amplification of
low level biomarkers (up to 100-fold [39,40]) is, like all
enzymatic reactions (e.g. polymerase chain reaction
(PCR)), inherently non-linear particularly at high
expression levels. Third, formalin fixed tissues exhibit
strong background autofluorescence in the wave-
lengths of the most common fluorophores (e.g. flure-
sein isothiocyanate (FITC), rhodamine, phycoerythrin).
Fortunately, tissue autofluorescence diminishes
markedly in the far red to infrared spectrum, and the
development of dyes (e.g. Cy5, Cy7, Alexa-647, and
Alexa-750) and digital cameras capable of visualizing
signals into the near-infrared have minimized this
issue. Fluorescence-based systems have the added
potential to multiplex TMA reading (i.e. the simultane-
ous staining and analysis of multiple biomarkers each
tagged with a different fluorophore, on a single TMA).
The flexibility of fluorescence-based systems to co-
localize targets tagged with different fluorophores,
permits the quantification and localization of biomark-
ers in a wide array of fluorescently tagged sub-cellular
compartments (e.g. DAPI-stained nuclei, antibody
tagged membranes, mitochondria, vessicles, or golgi).
This method has proven beneficial in the study of sev-
eral biomarkers (e.g. beta-catenin in colon carcinoma,
AP-2 in melanoma) that exhibit sub-cellular com-
partmentalization [10]. Furthermore, it provides the
potential to develop ‘virtual’ compartments. Thus, a
researcher might define a compartment as a partic-
ular growth factor receptor (e.g. using a receptor-
specific antibody) and then analyze the amount of

phosphorylated receptor within that compartment
(using a phospho-specific antibody).

The future of automated tissue microarray
analysis

The ultimate (and highly demanding) goal of auto-
mated TMA analysis is to provide a standard, repro-
ducible, efficient, sensitive, and specific method of
biomarker quantitation. Such a system would ulti-
mately report biomarker expression as molecules
per-cell or unit-area. However the attainment of this
goal will necessarily include advancements in every
aspect of tissue microarray production, staining,
reading and analysis. New and better methods for
tissue preservation (in contrast to formalin fixation)
may do a better job of preserving antigenicity and
eliminating the need for antigen retrieval [41]. Newer
fluorophores and non-enzymatic amplification pro-
cedures may provide linear signals across an even
broader dynamic range, potentially permitting the
detection of single molecules. In particular, quantum
dots have shown some promise in this regard [42];
although their successful use on TMAs is, as yet,
unproven. The development of fluorophores and
cameras capable of imaging even farther into the
infrared spectrum (outside of tissue autofluores-
cence) may facilitate the study of multiple biomarkers
on a single array. Also important is the development
of quality control standards consisting of specific
analyte molecules at set concentrations. These can
ultimately be incorporated into microarrays as a
series of cell lines or spots containing recombinant
protein to provide a dilution curve from which spe-
cific biomarker concentrations can be determined [1].
Perhaps the most vital component of automated
TMA analysis is the development of databases and
biostatistical tools to rigorously analyze the millions
of biomarker assays likely to come from high-
throughput analysis. Fortunately, dedicated meth-
ods for cutpoint analysis [43] and hierarchical
clustering of TMAs [44–51], akin to those created for
RNA/DNA expression arrays, are currently being
developed.
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