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GENERALIZED RADON TRANSFORM AND LEVY'S

BROWNIAN MOTION, 11*)

AKIO NODA

§ 1. Introduction

As a continuation of the author's paper [19], we shall investigate the
null spaces of a dual Radon transform i?*, in connection with a Levy's
Brownian motion X with parameter space (Rn, d). We shall follow the
notation used in (I), [19].

We begin with a brief review of the general framework behind the
representation of Chentsov type:

(1) X(x)={ W(dh)=W(Bx),

with Bx\ = {heH; xeh}. It consists of the following:
( i ) A Levy's Brownian motion X = {X(x); x e M] with mean 0 and

variance d(x, y) = E[(X(x) — X(y))2], where d(x, y) is an IZ-embeddable
(semi-)metric on M;

(ii) A Gaussian random measure W — {W(dh) heH} based on a
measure space (H, v) such that H C 2M and v is a positive measure on H
satisfying v(Bx) < oo and

( 2) d(x, y) = v(Bx A By) = ί πh(x, y)v(dh) for all x, y e M,
JH

where

πh(x9y): = \Xh(x) ~ Uy)\ - MA) -

As a bridge connecting the metric space (M, d) and the measure space
(H, v), the equation (2) guarantees the existence of a representation of the
form (1) for a Levy's Brownian motion X with parameter space (M, d).

The representation (1) of Chentsov type played in (I) (and will play
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90 AKIO NODA

also in the present (II)) an important role, and led us to introduce a pair

of integral transformations; one is the generalized Radon transform,

( 3) (Rf)(h): = f f(x)m(dx), fe L\M9 m),

and the other is the dual Radon transform

( 4) (R*gXx): = ί g{h)v(dh\ g e L\H, v).
JBX

DEFINITION 1. For each subset A c M, we define

( 5 ) NXA): = fe e L2(tf, >); (fi*g)(x) = 0 on A} = [χΛχ(Λ); x e A ] 1 .

This closed subspace of L2(H, v) is called the null space of R* relative to

the subset A.

The study of such null spaces N^A) is of great importance for the

following reason. For each Levy's Brownian motion X with parameter

space (M, d), we have a representation of the form (1). Consider an in-

creasing family of closed linear spans [X(x); xeAp] corresponding to each

increasing family of subsets Ap with U0<̂ <oo Ap — M. Just as in the well-

known theory of canonical representations of Gaussian processes, we wish

to give a description of these [X(x); x e Ap] in terms of a Gaussian random

measure W; they are all contained in the big closed subspace

of L\Ω, P). Since one can easily see that

; xeA] = ^ j(h)W(dh); g e N

for every A c M, our problem is to determine completely the null space

of the dual Radon transform R*.

So the main purpose of this paper is to investigate the null spaces

for a certain increasing family of closed subsets Ap of M, such as

Ap = Vp in the case M = Rn, where Vp denotes the closed ball of radius

p about the origin O, 0 < p < oo. Examples of ZΛembeddable metrics d

on Rn in which we have succeeded in finding a complete description of

N^Vp) as well as of [X(x);xe Vp] will be explained below.

Sections 3 and 4 concern rotation-invariant distances d on M — Rn

which are derived, via the equation (2), from the following choice of H:
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BROWNIAN MOTION, II 91

H = {ht tβ; ί > 0, ω € S71"1} is the set of all half-spaces

hUω\ = {xeRn; (x, ω) > ί} not containing the origin O.

The Euclidean distance \x — y\ is a familiar example of such a distance.

The generalized Radon transform (Rf)(htj(0) is then given by the inte-

gral of / over the half-space ht,ω and hence closely related to the classical

Radon transform. This observation leads us to apply the fruitful theory

of the classical Radon transform (see, for example, [9], [12] and [16]) and

solve the problem concerning the null spaces of iϊ*. In fact, by using

the theorem of Ludwig [16] (cf. [20] and [21]), we are able to find a com-

plete description of Ni(Vp) (Theorem 7) as well as that of [X(x); xe Vp]

(Theorem 8).

Our result on the structure of [X(x) xe Vp] can be restated in terms

of mutually independent Gaussian processes Mmίk(i) introduced by McKean

[17]:

( 7 ) Mn,t(ί): = f X(tω)Sm>k(ω)σ(dω), t > 0,
J Sn i

where σ denotes the uniform probability measure on the unit sphere Sn~ι

and {Smik(ω); (m, k) e J}, Δ\ — {(m, k); m > 0 and 1 < k < h(m)}, is taken

to be a CONS in U(Sn~\ σ) consisting of spherical harmonics. The basic

representation (1) of X yields

( 8 ) AfTOffc(ί) = Γ λm(ult)dBm,k(u),
Jo

where the kernel λm(t) is expressed in terms of the Gegenbauer polynomial

Cl(u) of degree m with q: = (n - 2)/2:

χm(t) = (const.) Γ c ^ » ( l - u2)q~mdu .

It turns out that the representation (8) of Mmtk(t) is canonical only

for m < 2 (Theorem 10). Moreover, for m > 3, we determine the dimension

of [Bmyk(t); t<p]θ[Mmyk(t); t < p] (orthogonal complement in D(Ω, P))

which can be regarded as the degree of non-canonicality of (8). In this,

way, our Theorems 8 and 10 might be viewed as a development (or refine-

ment) of the result in [17] proved for a Brownian motion with 7i-dimensional

parameter.

In Section 2 we shall give various kinds of IΛembeddable metrics d

on Rn. Some of them should be mentioned here.
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The first kind of d depends on the choice of a bounded subset K C Rn

such that \K\ > 0 and OeK. Take the following measure space (HK9 vκ):

Hκ: = {hatP: = {x e Rn; a(x -p)eK} = α " 1 ^ + p ; or 6 SO(ή)/Σκ,pe Rn)

and

dvκ(ha,p) = cdadp , c > 0 ,

where 2^: = {α e SO(n) αif = if} and d<x denotes the normalized Haar

measure on SO{n)jΣκ. Then, the equation (2) gives us an ZZ-embeddable

metric dκ invariant under every rigid motion on Rn:

\(cΓιK+x - y)Aa~ίK\da
S0(n)/ΣK

= c\ \(K+a(x-y))AK\da = rκ{\x-y\).

The typical choice of K = Vp allows us to compute the explicit form

of rv and get a large class of invariant distances by forming a super-

position of the family {dVp; 0 < p < oo} (cf. Section 2, 2-1). This idea of

superposition is due to Takenaka [24] who gave a nice account of re-

presentations of self-similar Gaussian random fields.

It deserves mention that the generalized Radon transform

(Rf) (ΛβtP) = f f(orιx + p)dx , hatP 6 Hκ,

was discussed in connection with the Pompeiu problem (cf. [26]).

The next kind of d is of the form \\x — y\\, where \\x\\ is a norm of

negative type ([6] and [8]). Such a norm is characterized as the support

function of a special convex body in Rn called a zonoid ([5])? and therefore

admits of the following expression in terms of a bounded symmetric posi-

tive measure τ on S71"1:

( 9 ) | | s | | = f \(x, ω)\τ(dω) .

With the help of this well-known expression, the measure space (H, v)

combined with \\x — y\\ via (2) is naturally taken to be

v(dhtjω) = dtτ(dω) on the set H of half-spaces /ιί>ω.

Note that rotation-invariance of τ yields the Euclidean distance \x — y\

up to a constant multiple.
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It is worthwhile to remark that every Levy's Brownian motion X with
parameter space (Rn, \\x — y||) possesses a notable property: For each line
L in Rn, restrict the whole parameter space Rn to the one-dimensional set
L; then the Gaussian process X]L = {X(x)l xe L} coincides with a standard
Brownian motion. In order to get at his definition of Brownian motion
with ra-dimensional parameter, Levy [15] added one more simple condition
that the probability law of X(x) — X(O) is invariant under every rotation
€ SO(n). The class of Levy's Brownian motions corresponding to norms
of negative type is thus thought of as a nice extension of Levy's original
one.

§ 2. ZZ-embeddable metrics on Euclidean space

This section is devoted to the study of the equation (2) connecting a
metric space (Rn, d) with a measure space (H, v). Indeed we describe a
variety of ZΛembeddable metrics d on Rn and corresponding measures v
on H C 2Rn. Among them, we should like to mention the following class
of rotation-invariant distances:

(10) d(x, y) = c\x - y\ + Γ μ(dt) ί |e'<*-> - e^^\σ{dω) ,

where c > 0 and μ is a non-negative measure on (0, oo) such that

Γ teatμ(dt) < oo for any a > 0.
Jo

This class will be further discussed in Sections 3 and 4.

2-1. The first type of an ZΛembeddable metric d on Rn is derived
from the dκ in Section 1 with the choice of K = Vu/2. For each u > 0,
we set

Hu: = {kp: = Vu/2 +p;pe R«] a n d vu(dkp): =

to get the desired distance

du(x,y): = J^ πkp(x, y)vu(dkp) - ru(\x - y\),

where

(11) ru(t) =

Γ (/, )
(1 _ ^(.-D/ίjy > e , = (1, 0, , 0) e i? κ .
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Observe that lim^oo ru(t) = r^t) = t for each t > 0. Hence we put GL(X, y):

= \x-y\.

Having found the family {du; 0 < u < oo}, we now form its super-

position by means of a positive measure G(du) on (0, oo]:

(12) d(x,y):= f du(x, y)G(du).
J (0,oo]

The corresponding measure space (iϊ, v) is obviously taken as follows:

H = {kuy. = Vu/2 + p; 0 < u < oo, p e Rn] U {hty, t>0, ωβ S""1}

(disjoint union) and

4S v(dhtj = G({oo}) ί̂ Lz

Here is a brief comment on the choice of (H, v). Even if v{Bx) — oo

for some x e Rn, the equation (2) still has a meaning under the condition

that v(Bx Δ By) < oo for all x, y e Rn. We therefore impose the condition

min (u, ϊ)G(dύ) < oo on the measure G. In order to get at the stronger
J (0,oo]

conclusion that v(Bx) < oo for all x e Rn, it suffices to change every element

he H containing the origin O for its complement hc, so that Bo is empty

and v(Bx) — v(BxAB0) < oo. This manipulation was explained in (I),

Section 2.

The above distance (12) is invariant under every rigid motion on Rn

and takes the form r(\x — y\) with

(120 r(t) = f ru(t)G(du).
J (0,003

It follows that

\LOJ / \Lj — I ^J- I I Us J \JΓyU/U'} ,
(ί,co]J

In the one-dimensional case, this expression (13) immediately shows

the following

PROPOSITION 1. Suppose r(t) is a continuous function on [0, oo), r(0)

= 0 and has the right derive r+(t) > 0 which is non-increasing on (0, oo)

and satisfies tdr+(t) < oo. Then the distance d(x, y): = r(\x — y\) on R1

Jo
is U-embeddable.
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For n > 2, we devote our attention to the case where G(du) is abso-

lutely continuous on (0, oo) with density g(u) and G({oo}) = 0. The equality

(13) becomes

(130 r'(t) = Γ (1 - t2ju2Yn-^12g{u)du ,

which coincides with the classical Radon transform f(δhhω) applied to the

radial function f(y): = g(\y\)l\Sn+1\\y\n on Rn+2, i.e., the integral of / over

the hyperplane δht>ω: = {yeRn+2; (y,ω) = t} in Rn+2 ([9], p. 103). By appeal

to the inversion formula ([9], p. 120), we get

(14) g(u) = -

with

We consider the functions ψλ(t): = (1 — e~λt)jλ, λ > 0; every ψλ(t) satis-

fies ( - djdt)n+ιψ'it) > 0 for all n > 2. By (14), the L'-embeddable metric

ψx(\x — y\) o n Rn is of the form (12) with the corresponding density

Λoo

σ(τΛ — /i 2n + 1 I p-χt(t2 7j2Yn~1)/2ίif
J u

Thus, the method of superposition gives us the following

PROPOSITION 2 (cf. [2] and [3]). Suppose a function r(i) on [0, oo) is

expressed in the form

(15) r(t) = ct + Γ Ψt(t)ϊ(dX),
Jo

where c > 0 and ϊ is a non-negative measure on (0, oo) such that

I min (1, λ'^ϊfdλ) < oo .
Jo

Then the distance d(x,y): = r(\x — y\) on Rn is U-embeddable.

2-2. The second type of d is an extension of the norm \\x — y\\ ad-

mitting of the expression (9).

PROPOSITION 3. Suppose r(t) is a function described in Proposition 1.

Then the distance
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(16) d(x,y):=\ r(\x - y, o>)\τ(dω) on IF

is D-embeddable.

Proof. The proof is carried out by constructing a measure space

(H, v) combined with (16) via the equation (2). Since r(t) is of the form

(17) r(t) = ct + Γ min(ί, u)G(du), c: = G({oo}),
Jo

it is convenient to divide d into two parts:

dι(x,y): = c\ \(x - y,ω)\τ(dω) = c||tf —;y||,

and

G(da) min(\(x - y, ω)|, w)r(dω).

We have already described a measure space (Hu v^ for the first part

dx in Section 1. On the other hand, a measure space (H29 v2) combined

with d2 is easily found; it is

H2: = {kUtttω: = {xeR71; \(x,ω) - t\ < u/2}; 0 < u < oo, ίe l? 1 and ωeS""1}

equipped with v2(dkuaiω): — G(du)dtτ(dω)l2.

The proof is thus completed.

For a given norm ||x| | of negative type, we consider the distance

II* - y\\a, 0 < α < 1. It is known ([8] and [14]) that \\x - y\\a can be ex-

pressed in the form (16) with r(t) = ta. Hence the method of superposition

again shows that the distance d(x, y): = ψ(\\x — y\\) on Rn is L^embeddable

if ψ(t) = tam(da), where m is a bounded positive measure on (0, 1],
J (0,1]

2-3. In connection with the theory of continuous functions φ(x) of

negative type on the semigroup (Rn, + ) ([4]), we proceed to discuss a new

class of ZΛembeddable metrics on Rn.

First recall the known expression of φ ([4], p. 220):

Φ(x) = a + (b,x)-Q(x)+\ ( l - e<*.*> ++
1 + \ξ|

where ae R\ be Rn, Q is a non-negative quadratic form on Rn and Γ is a

non-negative measure on i?"\{0} such that

https://doi.org/10.1017/S0027763000000763 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000000763


BROWNIAN MOTION, II 97

f If ?r(dξ)< co and f e<x<^r(dξ) < oo for all x e Rn.
Jo<ιeι<i J!ίt>i

Set d(x,y): = 2φ(x + y) - φ(2x) - φ(2y), to get

d(χ, y) = Q(χ - y) + ff
Rn\{0]

This form of d gaurantees the existence of a centered Gaussian random

field X = {X(x); x e R71} such that d(x9 y) = JE[(X(*) - Z(j))2].

We are ready to state the following

PROPOSITION 4. Suppose r(t) is a function described in Proposition 1,

and define a distance on Rn by

(18) d(x, y): = f r ( |β^ f ) - e«-*ψ(dξ),

where ϊ is a positive measure on i?n\{0} swc/i ί/iαί

ί r(|f |)r(df) < oo and [ e^ξ)ϊ(dξ) < oo
JO<|£|<1 J \ζ\>l

for all x e Rn. Then d is U-embeddable.

Proof In view of the general form (17) of r, it suffices to treat the

two special cases: (i) r(t) = t and (ii) r(t) — min(t, u), 0 < u < co.

(i) The case r(t) = t. A measure space corresponding to (18) is given

by

v(dhtj = f
J 22*\{0}

on the set H of half-spaces htjQ}, t > 0 and ωe Sn~\ where δa denotes the

Dirac measure at the point ae Sn~\

(ii) The case r(t) — min(t, u). Consider the following subset para-

metrized by (t, ξ)eRί X Rn:

kt,ξ: = {xeRn;\e^^ -t\<u/2}.

Then it is easy to verify that the measure

feίfe): = dtϊ(dξ)l2 on Hu: = {ktiξ; teR\ ξe Rn}

yields the desired distance (18) in this second case, which completes the

proof.
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If a rotation-invariant distance of the form (18) is requested, we must

take a rotation-invariant measure ΐ, which is of the form

ϊ(dξ) = dμ(\ξ\)dσ(ξ/\ξ\) with a positive measure μ on (0, oo)
Λoo

such that r(t)eatdμ(t) < oo for all a > 0. It also deserves mention that
Jo

one can derive the distance \\x — y\\a in Section 2-2 as the limit of distances

of the form (18) with r(t) = ta, 0 < a < 1. Indeed, for each p > 0, take the

measure Tp(dξ): = dτ(ξ!p)/pa concentrated on the sphere δVp of radius p;

then one can see that

l i m f | e ( ^ > - e™\*Tp(dξ) = f |(x - y , ω)\*τ(dω) = \\x - y\\«.

2-4. Let X be a centered Gaussian random field with homogeneous

increments ([25]). Then the variance d{x,y): = E[(X(x) - X(y))2] takes the

analogous form

d(x, y) = Q(x-y)+[
J R

|
\{0}

where ϊ is a spectral measure on i2π\{0} satisfying min(|f |2, ΐ)ϊ(dξ) < oo.

On the lines of Proposition 4, we can prove the following

PROPOSITION 5. Suppose r(t) is a function described in [19], Proposition

2. Set

(19) d(x,y): =

dG denotes the geodesic distance on the unit circle Sι = {ze C: \z\ = 1}

and ΐ is a symmetric positive measure on Rn\{0} such that

min(r(|f|),l)r(df)<oo.
Rn\{Q]

Then the distance d on Rn is U-embeddable.

§ 3. Null spaces of dual Radon transforms

In this section we are concerned with every rotation-invariant distance

d on Rn of the form (10). The corresponding measure space is then taken

to be the set H of half-spaces htt(ύ equipped with the rotation-invariant

measure
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(20) v(dhtj = ί c + Γ uetuμ(du)\dtσ(dω) .

Our aim is to determine the null space N^Vp) of the dual Radon trans-
form R* on this L2(H, v) (see (5)). In view of the relation (6) for a Levy's
Brownian motion X with parameter space (Rn,d), our result on N^Vp)
will show a gap between the two closed subspaces [X(x) x e Vp] and
[W(dhtJ; h u ω e H(p)] i n U{Ω, P ) , w h e r e H(p): = {httU eH;0<t<p,ωe S71'1}

is the set of all half-spaces intersecting Vp.

3-1. We shall start with a brief discussion of the restriction XlVp of
the whole parameter space Rn to the closed ball Vp. Since Bx C H(p) for
every xe Vp, the complement of H(p) is of no importance. That is, a
measure space combined with the distance dlVp on Vp via (2) is given by

Hp: = {ht,ω: = httm Π Vp; ht,ωeH(p)} and dv(htj = dv(htj ,

which is isomorphic to the original (H(p), v).
The relevant dual Radon transform Rf is, therefore, considered to be

a Hilbert-Schmidt operator from L2(H(ρ),v) to L2(VP, dx), although both
i?f and JR* take the same form

f g(KMdKX geL\H(p\v).
J Bx

As was shown in (I), Theorem 5, the singular value decomposition of Rf
is expressed by means of λPyί > 0, fPiί(x) and gP,i(hti0)), ίelp:

(Rfg)(x) = Σ *p,i(g, gp^LHH{P)JoM >
ieip

where {fPyί; ielp} (resp. {gp,t; ielp}) forms an ONS in L\V0, dx) (resp.
L\H{p\vj).

The Gaussian system X]V now admits of the Karhunen-Loeve expansion

x(χ) = Σ ip.tξpJM > ^ y p )
teip

where the system

ξp = ίξ : = f gPti(htJW(dhttm); ielλ
I JH{p) J

is an i.i.d. sequence of standard Gaussian random variables. Moreover
we have
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(22) [X(x); xeVp] = [ξ,,t; i e /,] = if g(htJW(dht,a); geNf] ,

with the null space Np of Rf:

Np: = {geU(H(p), v); (Rfg)(x) = 0 on Vp}.

Note that 2V,(V,) = Nf @ D(H(p)e, v), which implies that (22) coincides with

(6) for A = V,.

3-2. We are now going to determine the null space 2V, of R*, 0 < p

< oo.

For that purpose we need

LEMMA 6. We have an expansion

(23) XBχhtJ = f ^(ί/|xDhΣ Sm,k(x/\x\)Sm,k(ω)

= Σ .̂(</lx|)Λ(ι»)Φϋ.((x, ω)l\x\),
m = 0

where Φq

m{t): = CqJt)ICl(ϊ) with q: = (n - 2)/2,

(24) ;m(ί) = ^ ^ X(Oil](ί) ΓΦi(«χi -

Furthermore we have

(25) λjt) = 1 ^ " 2 1

I o \\n — i;

for m>l and 0 < t < 1.

Proof. Since XBχ(htJ = Zfttf.(x) = X(t/i*i,i3((^, ω)), Λ': = x/|x|, the above

assertions for the variables ω, xr e S71'1 coincide with (I), Lemma 7 stated

in terms of the variables x, y e Sn.

Now, take an arbitrary function g from L2(H(p), v). Such a function

is written in the form

where

£»,*(*): = f g(Km)Smtk(ω)σ(dω), 0 < ί < p .

The density in the expression (20) of v is simply denoted by
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(200 υ(t): = c + Γ ueutμ(du).
Jo

Then all functions gm,k(£) belong to L2((0, p]9 v(t)dt), because

Σ \PglΛt)v(t)dt = \\g\\2

mΣ \glΛt)v(t)dt = \\g\\mH(pM
(ra,fc)6Jjo

Lemma 6 implies that

(R*g) (x) = Σ Sm,fc(*/|x|) H λm(φ\)gUt)v(t)dt.
(m,*)64 JO

We now assume that ge Np. Then we have

(26) fU λm(tlu)gmΛ(t)v(t)dt = 0, 0 < u < p ,
Jo

for every (m, k) e J.

In case m = 0, we make use of (24) to get

(26)0 Γ ( l - t2luψ-z^2GQΛ{t)dt = 0, 0 < u < p,
Jo

where we have put

Jo

As is well known ([12]), p. 14), the integral equation (26)0 yields the unique

solution G0Λ(t) = 0, i.e., gOΛ(t) Ξ O O Π (0, p].

The equation (26) for m > 1 takes a different form: By (25), we have

(26).

= f ^ΓΛίί) (1 - tΎ+lβGm,k(ut)dtl2 = 0 ,

where

C?TO,*(ί) = ̂ m.*(ίM0 for 0 < ί < o and Gm,k(t) = (-ΐ)m-ιgm,k(~-t)v(-t)

for — /> < t < 0. The theorem in Ludwig [16] for the Gegenbauer trans-

form (see also [20] and [21]) now concludes that Gm,fc(ί), t > 0, is a poly-

nomial of the form Σ}Ά~1)m a"m,kjtm~ί'2j with some coefficients aWikJeR\

We have thus proved that g in Np is necessarily of the form

Σ am,*tjPmtkj, where pm,ktJ(httW): = Sntk{ω)tm'ι'23lυ{t)
(m,k,j)eJ
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and J: = {(m, k,j)eZz; m > 3, 1 < k < h(m) and l<j<[(m- l)/2]}.
Conversely, the functions pm,k,j(htiύ)), (m,k,j)eJ, form an orthogonal

system in L\H(p), v) and we can check that every pm,kJ belongs to the null

space Np.

What we have proved is summarized below.

THEOREM 7. Let Rf be the dual Radon transform on L\H{p), v), where

v is a measure of the form (20). Then we have

Np = [pm,kJ(htJ; (m, k,j) e J].

In other words, a function g belongs to Np if and only if g is expressed in

the form

(27) g(K Σ

Let p go to infinity in the above theorem. Then we obtain, as a by-

product of Theorem 7, a complete description of the full null space of JR* :

N»: = {geD(H,v); (R*g)(x) = 0, xeRn}.

THEOREM 7'. If the measure μ in (207) is equal to 0 (in other words, if

d(x,y) = c\x — y\, c> 0), then N^ = {0}, i.e., R* is ίnjectίve on L\H, v).

While, if μ is positive we have N^ = [pm,k,j(hti(0); (m, k,j)eJ].

3-3. We are now in a position to state noteworthy consequences of

the preceding results. By virtue of the relation (22), our conclusion follows

from Theorems 7 and 7'.

THEOREM 8. Let X be a Levy's Brownian motion with parameter space

(Rn, d), where d is of the form (10). Then we have, for 0 < p < oo,

[X(x): xe Vp] = if g(h)W(dh); geL\H(p), v) satisfying

Γr- '- ! 'd ί ί Sm,k(ω)g(ht,Mdω) = 0
JO J5»-i

for all (m, k,j)ej\.

For the case p = oo, we have

xeR"] = \jj(h)W(dh); geΠ(H, v)},

if d(x,y)*=c\x-y\, 0 0,
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and

[X{x);xeRn] = [^g(/ι)W(d/ι); geU(H,v) satisfying

Γ r-ι^dt ί Sm,k{ω)g{htjσ(dω) = 0
JO J Sn-l

for all (m, k,j)eJ> ,

if d is given by (10) with positive μ.

3-4. With a suitable choice of a(x) > 0 satisfying v(Bx)a(x)dx < oo,
i Rn

the Hilbert-Schmidt operator R o Ta from U(Rn, a(x)dx) to L2(H, v) was

discussed in connection with a factorization of the covariance operator of

X ((I), Theorem 3). As a counterpart of the exterior Radon transform (cf.

[21] and [22]), it would be interesting to study the exterior halfspace

transform

(28) (R o TJ)(Kω): - ί f(x)a(x)dx , feU(V% a(x)dx),

where the resultant function R° TJ is considered to be in L\H(ρ)% v).

Under the assumption that a is a radial function, a(x) = α([x|) on V%

we can determine the null space of Ro Ta:

Np(a): - {/€ L\V% a(\x\)dx); (RoTJ) (htj = 0 on H(PY}.

First observe that, for a given / e L2(V£, a(\x\)dx),

(29) (RoTaf)(httU) = (R*fXωlt), t> p and ω e S ^ 1 ,

where f(htj(0): = /(ω/ί) eL\H(p~ι),vc), va being a measure on H(ρ~ι) defined

by

and Rf is the dual Radon transform defined on U(H(ρ~ι), va). On the lines

of Theorem 7, we can prove the following

PROPOSITION 9. For 0 < p < oo, we have

NP(<x) = [/m,*,/*); (w, A5,;) e J(α:)],

where
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and

J(a): = l(m, kj) e J; J°° r2m-n^-\a(t)Y'dt < oo J .

§ 4. The McKean processes

As in Section 3, we shall assume that X= {X(x); xeRn} is a Levy's

Brownian motion with parameter space (Rn, d), where d is a rotation-

invariant distance of the form (10). Since the representations (8) of the

McKean processes Mmt1ύ(t), (m, k) e Δ, follow from the original representation

(1) of X, we can answer, as a byproduct of Theorem 8, the basic question

concerning the canonical property of (8).

We being by applying Lemma 6 to the representation (1) of X; we get

(30) X(x)= Σ Sm,k(xl\x\)\
(m,k)eJ J H(\x\)

= Σ Sm>k(xl\x\)Γ λm(tl\x\)dBm,k(t),
(mtk)eJ JO

where the Gaussian processes jBm>fc(Z), (m, k) e J, are defined by

(31) Bntt(t): = f Smtk(ω)W(dhuJ, ί > 0 .

Observe that

= ί
j

Λmin ( ί , ί ' )

= Sim,*)Am',*')\ v(ύ)du,
Jo

H(t)ΠH(t')
min (

where v(u) was given by (20;). This shows that the processes Bm,k{t) are

mutually independent Gaussian additive processes with common spectral

density υ(t) = E[{Bmtk(dt)Y\ldt.

In view of the expression (30) of X, we are naturally led to the

following

DEFINITION 2 (cf. [17]). The Gaussian process

( 7 ) MnM)' = ί X(fω)Sntt(ft))σ(dω) , t > 0 ,

is called the McKean process with index (m, k)9 (m9 k) e Δ. In the case

m = 0, MOtl(f) has a more familiar name, the M(t)-process (cf. [15]).

With this definition, the expression (30) is rewritten as follows:
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X(x) = Σ Smtk(xl\x\)Mm,k(\x\),

and

( 8 ) Mm,k(t)= Γ λm(ult)dBm,k(ύ),
Jo

where the kernel λm(t) was computed in Lemma 6.

Now, Theorem 8 is rephrased in terms of these Gaussian processes

Mntk(t) and Bm)k(t), (m, k) e Δ.

THEOREM 10. (i) In the case m < 2, the representation (8) of Mm,k(i)

is canonical, i.e.,

[Mm,k(t); t<p] = [Bm,k(t); t < p] for every p > 0.

(ii) In the case m > 3, the representation (8) of Mmik(t) is not canon-

ical. Furthermore we have

[Bntk(t); t<p]θ[Mm>k(t); t < p]

for every 0 < p < oo, and

; t>0]θ[Mm,k(t); t>0]

({0} if d(x,y) = c\x-y\, c > 0 ,

dB^it); 1 <j < [(m -

Concluding remarks, (i) Our discussions in Sections 3 and 4 can be

extended to the case with other parameter spaces such a s M = S n (λi-sphere)

or Hn (^-dimensional real hyperbolic space). In particular, consider a

familiar Levy's Brownian motion X with parameter space (M, dG), dG

being the usual geodesic distance on M = Sn or Hn (cf. [18] and [23]).

Such an X admits of a nice representation ([23]) analogous to (1) for a

Brownian motion with rc-dimensional parameter. By making use of this

known representation of X, we can show that Theorems 8 and 10 have

respective counterparts in these two cases of (Sn, dG) and (Hn, dG). The

details are omitted.

(ii) In their study of conformal invariance of white noise, Hida, Lee

and Lee [13] introduced a generalized Gaussian random field Y — {Y(x)

xeRn, 0 < \x\ < 1} defined by
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(32) Y(*)= f F(x, htJW(dhtJ,
J Bx

where the kernel F is given by

(33) F(x, htj = a(x)t-n+1/{(x, ω) - t\x\),

and W = {W(dhUω); htt(0 e H(ΐ)} is a Gaussian random measure (white noise)

with variance v{dht^\ = ίn~ιdtσ(dω), v being a measure on the set H(ΐ) of

half-spaces hti<a, 0 < t < 1 and ω e Sn~\

This representation (32) of Y might be thought of as a multi-dimen-

sional version of canonical representations of Gaussian processes, and

takes a more general form than the representation (1) of Chentsov type

(which corresponds to the choice of F(x, htίύ)) = 1). This generality would

cause us many difficulties in investigating the integral transformation i?f

associated with (32):

(34) (R*g)(x):=\ F(x,htJg(htJv(dhtJ,

g being in a suitable class of functions on H(ϊ). But in the persent

situation where the kernel F is specified by (33) with the additional con-

dition that a(x) > 0, we can prove analogous results on the null spaces

NP(F) of R$, 0<p<l:

NP(F): = {g(ht, ω); supp# c H(p) and (#!#) (x) = 0, 0 < |* | < p].

Indeed, similar arguments to Section 3-2 lead us to the following con-

clusion :

NP(F) = [gm,kJ(K«); m>2,l<k< h(m) and 1 < j < [m/2]],

where we put
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