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Abstract

In this paper, the author introduces the notion of fl-Polish spaces (which includes the Polish
spaces and a large class of Banach spaces) and extends Castaing's selection theorem (1966) for
closed-valued measurable thin multifunctions from a measurable space into an fl-Polish space.
He also extends Robertson's theorem (1974) in the same way.

1. Introduction

In the selection problem, we are given a function F from a measurable
space S to the set of all non-empty subsets of a topological space X such that
the values of F are closed and F is measurable in the sense that for every
closed subset A of X, the set {t G S: F(t)n A^0} is measurable. The
problem is to find conditions so that F admits a measurable selector /, i.e. a
measurable function from S to X satisfying f(t)E. F(t) for every t E. S.

Kuratowski and Ryll-Nardzewski (1965) and Castaing (1966) have proved
the existence of a measurable selector for F when X is a Polish space (i.e. a
complete separable metric space). Himmelberg and Van Vleck (1969) proved
this result for the case where X is a Lusin space (i.e. a separable metric space
which is the image of a Polish space under a continuous one-to-one mapping),
and recently, Robertson (1974) went further, proving this result for the case
where X is merely the continuous image of a Polish space.

In this paper we observe that in Castaing's Theorem (1966; Theorem 3)
the condition that X is Polish can be relaxed by supposing that X is coverable
by a collection of Polish pieces provided that each F(t) does not meet too
many of them. This will be shown in Section 3 (Theorem 3). Also in this
section we shall extend Robertson's result in the same way (Lemma 1 and
Theorems 4,5).
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In section 2 the basic notions of il-Polish coverings and il-Polish spaces
are introduced, and we study in particular how a Banach space (or more
generally a linear subspace of a Banach space) can be given a fit ft-Polish
covering (Theorems 1, 2 and Corollaries 1, 2).

Throughout this paper we will assume the continuum hypothesis, and
denote by ft the first uncountable ordinal (see Choquet (1969), page 11).

I should like to express my thanks to Professor A. P. Robertson for many
helpful discussions and suggestions.

2. Il-Polish spaces

DEFINITION 1. Let X be a topological space and if be a family of subsets
of X. We say that if is an il-Polish covering of X iff if has cardinal at most ft,
the members of if are closed in X, are Polish spaces with the induced
topology and their union is X. The pair (X, if) is called an il-Polish space.

The same topological space X may have many ft-Polish coverings.
Indeed, since a Polish space has at most il points, every ft-Polish space has at
most ft points. Thus a TVspace with at most ft points always admits the trivial
ft-Polish covering consisting of ft one-point sets. At the other extreme a
Polish space has a best covering (by one Polish piece).

As we shall see in the next section, selection theorems can be proved for
multifunctions F with the property that each F(t) is closed and meets at most
countably many of the Polish pieces in the ft-Polish covering. Thus the scope
of the theorems in Section 3 is greatest if the Polish pieces are as large as
possible and overlap as little as possible, and if there are plenty of closed sets
meeting at most countably many of these pieces. The extreme case, when
every closed set has this property, is the subject of Definition 4 at the end of
this paper. Meanwhile, in the examples given below of ft-Polish coverings, we
check that there are reasonably-large closed subsets meeting at most count-
ably many Polish pieces. To facilitate this we make the following definition.

DEFINITION 2. An ft-Polish covering if of a topological space X is called
fit iff there is at least one uncountable closed subset of X meeting at most
countably many members of if.

EXAMPLE 1. Let X be the topological sum of ft-many uncountable Polish
spaces. Then clearly X has a fit ft-Polish covering, although it is not Polish.

EXAMPLE 2. Let X = /" be the space of all bounded real sequences
x = (xn) indexed by means of the positive integers, endowed with the
supremum norm:
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|| X || =

We know that /" is a non-separable Banach space. For each bounded
sequence a = (an), where an £ 2"+1Z (Z is the set of all integers), let

Xa = {x £ X: | xn - an | =s 2'" for all n}.

Then each Xa is a Polish space. In fact, it is closed since

Xa = 0 {jc£

and it is separable since the set of sequences of the form (an + rn), where the
rn's are rational, all but a finite number of them are 0 and | rn | S 2'" for every
n, is dense in Xa.

It is clear that

X= U Xa,
a

where a runs over a subset of U^,02~"Z which has cardinal fl. It can also be
seen that there are plenty of uncountable closed sets meeting only countably
many of the X,'s, e.g. A = {x £ X: | xn | g 2"" ' for all n} meets only one.
Thus the family {Xa} is a fit fl-Polish covering of X.

More generally we have the following theorem.

THEOREM 1. Let X be a Banach space possessing a biorthogonal system
(en,fn) (i.e. {en}CX, {/n}CX* and /i(ey)= 1 /// =;' and zero otherwise) such
that {/„} is total on X (i.e. /„(*) = 0 for all n implies x = 0). Then X has a fit
0,-Polish covering.

PROOF. We may suppose that supn || en || < =° without loss of generality.
Let E be the closed linear subspace spanned by {en}. Clearly E is complete
and separable. Take any sequence of positive real numbers {en} such that

XT en < 30 and let

F = {jc£X:[/B(x) |g£ n for all n}.

Then F is a closed subset of E; hence F is a Polish space. Now let

/ = {x £ X: fn(x)G2enZ for all n},
where Z is the set of all integers. Certainly / contains all the elements
S™., 2knenen, where kn £ Z for every n. Furthermore / has cardinal at most ft,
since the map .x—>{/n(x)} from / into n^=1 enZ, is one-to-one by the totality of
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We now prove that

X = F + I.

In fact, let x G X; then there exists a sequence of integers {kn} such that
\fn(x)-2knen | S £„ for every n. This implies that the series 27|/n(x)-2fcnen |
is convergent; hence the series 1." (fn(x) - 2knen)en converges to some y G E
and fn(y) = fn(x)-2knen, for every n. Thus y G F and fn(x - y) = 2fcnen for
every n, i.e. x - y G I. Therefore x G F + /.

Again, it is easy to see that there are plenty of uncountable closed sets
meeting only countably many F + x with x G / ; e.g. A = {x = Aci:| A | g eJ2}
meets F only. Thus the family {F + x: x G 7} is a fit fl-Polish covering of X.
This completes the proof.

COROLLARY 1. Let X be a Banach space with a basis. Then X* has a fit
il-Polish covering.

Notice that the condition that X has a basis is equivalent to that X* has a
w *-Schauder basis, i.e. a basis such that its associated coefficient functionals
are weak*-continuous (Singer (1970), Theorem 14.1, page 155).

PROOF. Let {en} be a basis of X and let {/„} be its associated coefficient
functionals. Then the functions /„ are continuous, i.e. /„ G X* (Singer (1970),
Theorem 3.1, page 20).

For each n, let </>„ be the image of en by the canonical injection of X into
X**. Then clearly the system (/„,#„) is biorthogonal. Furthermore, the
sequence {(/>„} is total on X*, since if <j>n(g) = 0 for every n, then g(en) = 0 for
every n, and therefore g = 0. Thus Theorem 1 can be applied for X*. This
completes the proof.

The fi-Polish spaces presented above are complete. We may generalize
Theorem 1 to obtain non-complete fl-Polish spaces as follows.

THEOREM 2. Let X be a Banach space that has a biorthogonal system
(en, /„) satisfying the conditions of Theorem 1. Also let {en} be a sequence of
positive real numbers such that 27 sn < °°. Then every linear subspace Y of X,
containing all the elements x such that | / n (x) |Sen for every n, has a fit
il-Polish covering.

Note that the subspace Y is not necessarily closed. For example,
{x GX:2T/n(x)en converges} is a linear subspace of X with the required
property, and it is not necessarily closed.

PROOF. The argument is entirely the same as in the proof of Theorem 1,
except that we put
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J = {xE y:/n(x)G2enZforalln}

and we have

Y = F + J.

The following corollary is an evident consequence of Theorem 2.

COROLLARY 2. LetXbe a Banach space with a basis {en}. Also let {en} be
a sequence of positive real numbers such that 27 en < °°. Then every linear
subspace ofX*, containing all the elements f such that \ f(en)\ ^ sn for every n,
has a fit il-Polish covering.

PROOF. With the notations as in the proof of Corollary 1, we have

{/£ X*: |/(«„)! ̂  em Vn} = {/E X*: | <£„(/) I ^ em Vn}.

Thus Theorem 2 can be applied.

3. Selection theorems

Let S be a measurable space (i.e. a set with a tr-algebra M of subsets)
and let X be a topological space. Also let F be a closed-valued multifunction
from S to X, that is, F assigns to each t £ S a non-empty closed set F(f) C X.
For any subset A of X, let

F"'(A) = -U G S: F(0 n A / 0}.

We say that F is measurable iff F~'(A)G J( for every closed subset A of X.
A point-function / from S to X is called a measurable selector of F iff
f(t)GF(t) for every r G S and f~\A)E.M for each closed set A of X.

Kuratowski and Ryll-Nardzewski (1965) and Castaing (1966) have proved
the following theorem.

THEOREM A. Let S be a measurable space and let X be a Polish space.
Then every closed-valued measurable multifunction from S to X has a
measurable selector.

Now let (X, (X,)) be an H-Polish space (where each Xa is a Polish space
and closed in X). We define a thin multifunction from S to X as follows.

DEFINITION 3. A multifunction F from S to X is called thin iff for any
proper closed subset A of X the set F{F~l(A)) meets at most countably many
members of the family {A n Xa: a <ft}.

Certainly if F(S) = U {F(t): t G S} meets only a countable number of the
X,'s, then F is thin. In the following example, we shall see that F may be thin
and yet F(S) may meet an uncountable number of the Xa's.
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EXAMPLE 3. Let E = {(x,O):OS x g 1}, E' = {(a,0): 1 g a S 2} and for
each a £[1,2], let Ta ={(a,y):0Sy g 1} if a is rational and T,, ={(a,0)}if a
is irrational. Now let

We define a topology for X by setting that a subset G of X is open iff
either G is empty or G satisfies the following conditions:

(i) G fl E is open in E with respect to the usual topology of E,
(ii) for every a, G H Ta is open in Ta with respect to the usual topology

of Ta,

(iii) E'\G is at most countable.

It can be seen that X is not Polish, in fact not separable, since if {qn} is a
sequence of points of X, then G = E'\({qn} U {(a,0): a rational, 1 S= a Si 2}) is
a non-empty open subset of X that does not meet {<?„}.

For every a £ [1,2], let X, = E U Ta. Clearly each Xa is closed in X.
Furthermore, the induced topology of Xa coincides with its usual topology;
hence each Xa is a Polish space. Thus the family {Xa: 1 ^ a S= 2} forms an
ft-Polish covering for X. Now let F be a multifunction from some space S to
X such that F(S) = U {Ta: 1 ^ a =i 2}. Clearly F(S) meets all the Xa's. Let A
be any proper closed subset of X, then X\A is a non-empty open set of X;
hence A n E' is at most countable. Therefore A meets at most a countable
number of the Ta's.

REMARK. In the above example, we adjoined the segment E to avoid the
particular case in which X is a thin fi-Polish space which we shall define later
(Definition 4). Also we adjoined the segments Ta to allow F to have
uncountable set-values.

The following is an extension of Theorem A.

THEOREM 3. Let S be a measurable space and X be an Cl-Polish space.
Then every closed-valued measurable thin multifunction F from S to X has a
measurable selector.

PROOF. Let M be the cr-algebra of subsets of S and let X = U {Xa: a <
fl}, where each Xa is a Polish space and closed in X. For each a < ft, put

Sa =F-1(

Clearly Sa £ M, the 5Q's are pairwise disjoint and their union is S.
Now let Ma = {£ n Sa: E £ M}\ then Ma is a cr-algebra of subsets of Sa

and since Sa £ M, Ma C M. For each a, define the multifunction Fa from Sa to
X, by
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Fa(t) = F(t) nxa, te sa.

Clearly Fa(t) is non-empty and closed; furthermore, Fa is ^-measurable. In
fact, for any closed A in Xa, A is also closed in X and we have

Therefore, by Theorem A, Fa has a measurable selector /„: Sa—*Xa. Let us
define /: S^>X by

/ (0 = /-(0 ittesa.

Certainly / is a selector for F; we shall prove that / is measurable by
considering a proper closed subset A of X. Then

f~\A)= U{/;'(A n X . ) : a < f t } ,

where each fa\A n Xa) e JC C M. We claim that the sets fa\A D Xa) are
empty except a countable number of them. In fact, since F is a thin
multifunction, there exists a0 < fl such that F(F~'(A)) does not meet A (1 Xa

for every a > a0. Now if, for some t, fa(t)£ A D Xo, then F»(f) and so F(t)
would meet A C\ Xa and then F(F"'(A)) (~l A flX. would not be empty. But
this cannot happen for a > a0 and so / ; ' ( A n X , ) = 0 for all a > ato.
Therefore f~\A) is measurable. This completes the proof.

Before going on we introduce the conception of Souslin operation which
can be found in Rogers (1970). Let a = (iu i2, • • •) be an infinite sequence of
positive integers; we shall use the notation cr \ n to indicate the finite sequence
ii, ii, • • •, in- By a Sous\in-Ji set we mean a set A of the form

A = u n A^,

where cr runs over NN, n = 1,2,3, • • • and each Aa\n is a member of M.
We say that the measurable space S (with the <r-algebra M) admits the

Souslin operation iff M contains all Souslin-.^ sets.
The following lemma is an extension of Lemma 1 in Robertson (1974)

and the proof is just a slight modification of his.

LEMMA 1. Let S be a measurable space that admits the Souslin operation
and Y be a regular space, the continuous image of an il-Polish space X by </>.
Also let F be a closed-valued measurable multifunction from S to Y. If the
multifunction <f>~l°F is thin, then F \<j>(A)) is measurable for every closed set
A of X.

THEOREM 4. Let S be a measurable space that admits the Souslin opera-
tion and Y be a regular space, the continuous image of an il-Polish space X by
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<f>. Also let F be a closed-valued measurable multifunction from S to Y such that
4>~X°F is a thin multifunction. Then F has a measurable selector.

PROOF. Let G = <f>~loF. Clearly G is closed-valued and thin; further-
more G is measurable, since, for any closed A of X, G\A) = F'\<f>(A)) is
measurable by Lemma 1. Hence, by Theorem 3, G has a measurable selector
g. It follows that / = <j>°g is a measurable selector for F.

We may also transfer the thinness from the multifunction F to the
ft-Polish space X as in the Definition 4 which follows. However the theorem
obtained, Theorem 5, is certainly weaker than Theorem 4 (cf. Example 3).

DEFINITION 4. An ft-Polish space (X, if) is called thin iff every proper
closed subset A of X meets at most countably many members of if.

Again every Polish space is a thin ft-Polish space. In the Example 3, if we
discarded the segment E, we would have a thin fl-Polish space that is not
Polish.

THEOREM 5. Let S be a measurable space that admits the Souslin opera-
tion and Y be a regular space, the continuous image of a thin il-Polish space X
by $. Then every closed-valued measurable multifunction F from S to Y has a
measurable selector.

PROOF. In this case any multifunction from S to X is thin. Hence
Theorem 4 can be applied.

It should be noted that if F is a point-function, then the arguments in the
proofs of Lemma 1 and Theorem 4 are still valid if we suppose Y to be
Hausdorff instead of being regular. This gives us the following corollary
related to the lifting problem (see McShane and Warfield (1967) for other
cases).

COROLLARY 3. Let S, X, Y and $ be as in Theorem 5, except that Y is
assumed to be Hausdorff. Then every point-valued measurable function f from
Sto Yean be lifted to a measurable function g from S to X (i.e. f = <f>°g).
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