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THE GENERALIZED EQUATIONS OF BISYMMETRY 
ASSOCIATIVITY AND TRANSITIVITY ON 

QUASIGROUPS 

BY 

M. A. TAYLOR 

1. Introduction. The generalized equations of bisymmetry, associativity and 
transitivity are, respectively, 

(1) (xly)2(z3u) = (x4z)5(y6u) 

(2) (xly)2z = x3(y4z) 

(3) (xlz)2(y3z) = x4y. 

The numbers 1, 2, 3 , . . . , 6 represent binary operations and x, y, z and u are 
taken freely from certain sets. 

We shall be concerned with the cases in which x, y, z, and u are from the same 
set and each operation is a quasigroup operation. Under these conditions the solu­
tion of all three equations is known [1], [2]; equations (1) and (3) having been 
reduced to the form of (2) and a solution of (2) being given. We wish to present a 
new approach to these equations which we feel has the advantages that the equa­
tions may be resolved independently, the motivation behind the proof is clear, and 
the method lends itself to application on algebraic structures weaker than quasi-
groups. (Details of these generalizations will be given elsewhere.) 

2. The generalized equation of bisymmetry. 

THEOREM 1. If(l) holds for all x, y, z, ue G, and each (G, i)(i= 1, 2 , . . . , 6) is a 
quasigroup, then every (G, /)(/= 1, 2 , . . . , 6) is isotopic to the same abelian group. 

We shall require the following result, a proof of which may be found in [1]; 

THEOREM 0. If the Thomsen condition holds in a quasigroup, then that quasigroup 
is isotopic to an abelian group. 

The Thomsen condition is said to hold in a quasigroup if every array 

*iJ 2 = x2yl9 

xiy3 — x3yi 9 

implies that 
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Proof of Theorem 1. We shall show that the Thomsen condition holds in (G, 1). 
Let us suppose that 

(4) xx 1 y2 = *2 1 yu xl9 x29 yl9 y2eG 

(5) x1ly3 = x3l yl9 x39 y3 e G. 

Substituting the expressions of (4) into (1) and equating the right-hand sides of 
that equation we find, 

(6) (*! 4 z) 5 (y2 6 u) = (x2 4 z) 5 (yx 6 u). 

(G, 4), (G, 6) are quasigroups so we can choose ul9 u2, zl9 z2eG such that, 

xx4zi = x34z2 = v (say) 

y16u1= y36u2 = w (say) 

and using these relationships in (6) we have, by first putting z = zl9 u=ul9 

(x3 4 z2) 5 (y2 6 wx) = (x2 4 zx) 5 ( j 3 6 w2). 

This is equivalent to 

(7) (x3 1 j 2 ) 2 (z2 3 Mi) = (x2 1 ^3) 2 (zx 3 w2). 

However, 

y5w = (x 3 4z 2 )5 ( yx 6 w^ = (xx 4 zx) 5 ( j 3 6 w2), 

and this is equivalent to 

(*8 1 j i ) 2 (z2 3 wx) = fo 1 y3) 2 (zx 3 w2). 

(G, 2) is cancellative and 

*3 1 yi = *i 1 J3 

so 

z2 3 wx = z2 3 u2. 

Consequently from (7) we obtain, 

* 3 1 ^ 2 = * 2 1 ^ 3 -

Thus we have shown that the Thomsen condition holds in (G, 1), so by Theorem 
0, (G, 1) is isotopic to an abelian group. 

The isotopies between the (G, /) (/= 1, 2 , . . . , 6) are established as follows. 
We fix x=a, y = b in (1), which becomes, 

(a 1 b) 2 (z 3 u) = {a 4 z) 5 (b 6 w). 

Left or right translation by a fixed element under a quasigroup operation is a 
bijection, so (G, 3), (G, 5) are isotopic. 
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Similarly, the symmetry of equation (1) gives us that the pairs, (G, 2) and (G, 4), 
(G, 2), and (G, 6), (G, 1), and (G, 5) are isotopic. 

We now complete the proof by showing (G, 1) and (G, 4) are isotopic. 
Define bijections/and g by 

y6u = cou= f(y), ceG 

z3u = co z = g(u) 

which is possible as (G, 3), (G, 6) are quasigroups. 
Choose u9 zeG such that 

y 6 u = c 

z3u = c. 

This gives 

(xly)2c = (x4g(f(y)))5c 

which establishes that (G, 1) and (G, 4) are indeed isotopic. 

3. The generalized equation of associativity 

THEOREM 2. If (2) holds for all x, y, zeG and the (G, i)(i = 1, 2, 3, 4) are quasi­
groups, then each (G, /)(/= 1, 2, 3, 4) w isotopic to the same group. 

We shall utilize the following result [1]; 

THEOREM 00. If the Reidemeister condition holds in a quasigroup then that quasi-
group is isotopic to a group. 

The Reidemeister condition is said to hold in a quasigroup if every array of the 
form 

^ 3 ^ 2 = -^4^1» 

*2>>3 = * l J > 4 , 

implies that 

Proof of Theorem 2. Let us assume that 

•*1 * y % = %2 1 J lJ ^2 1 ^ 3 = ^ 1 1 ^4? - ^ I J *2> ^3» ^ 4 ^ G 

*3 1 J>2 = *4 1 J>1 J l , J>2, ^ 3 , J 4 G G 

If we substitute these into (2) we get 
(8) *i3(>24z) = x23(y14z) 
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(9) x2 3 (y3 4 z) = xx 3 (j;4 4 z) 

(10) X 3 3 ( J 2 4 Z ) = X 4 3 ( J 1 4 Z ) . 

We now choose zl9 z2eG such that 

(11) J 2 4 z 1 = j 4 4 z 2 , 

and put z=z x in (10) to give, 

*s 3 (y2 4 zi) = x4 3 ( j^ 4 zx) 

i.e. 

(12) x4 3 {y1 4 zx) = x3 3 (>>4 4 z2). 

However z=zx in (8) and z=z 2 in (9) yield 

x 1 3 ( y 2 4 z 1 ) = x23{y14z1) 

x2 3(j>3 4 z2) = X i3 (^ 4 4z 2 ) , 

and as from (11), 

Xi 3 ( j 2 4 z0 = Xx 3 (j>4 4 z2), 

it follows that, 

*2 3 (y3 4 z2) = x2 3 ( j i 4 z0 

and consequently, 

j 3 4 z 2 = J i 4 z x . 

Hence (12) may be written 

x3 3 (y± 4 z2) = x4 3 (y3 4 z2) 

which is equivalent to 

(x3ly±)2z2 = ( x 4 l ^ 3 ) 2 z 2 . 

(G, 2) is cancellative, so, 

Xsly* = *4 I j s . 

This shows that the Reidemeister condition holds in (G, 1) and, therefore, that 
(G, 1) is isotopic to a group follows from Theorem 00. 

The isotopies between the (G, 0 (i = 1, 2, 3, 4) are established in the manner of 
Theorem 1. 

4. The generalized equation of transitivity 

THEOREM 3. If (3) holds for all x, y, zeG and the (G, i) (i = 1, 2, 3, 4) are quasi-
groups then each (G, i) (/= 1, 2, 3, 4) is isotopic to the same group. 
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Proof. The Reidemeister condition is shown to hold in (G, 1). 
Suppose that, 

(13) xx 1 z2 = x2 1 zx 

\I^y X\ 1 Z4
 = X2 1 Z 3 , X^9 X29 XQ9 JV4 G \j 

(15) x3lz2 = xél zu zl9 z2, z3, z4 6 G. 

We will show that 

XQ 1 Z4 = X4. 1 Z 3 . 

Choose >>!, >>2 e G such that 

* i 4 j > i = * 2 4>> 2 . 

We then have 

(*! 1 z2) 2 to 3 z2) = (x2 1 zi) 2 (y2 3 zx) 
= (xx 1 z4) 2 ( ^ 3 z4) = (*2 1 z3) 2 (>>2 3 z3), 

which implies the following set of equations, 

(16) yx 3 z2 = y2 3 Zi 

(17) J>i3z4 = j>23z3. 

From (15) and (16), we see that, 

(x3 1 z2) 2 ( jx 3 z2) = (x4 1 zO 2 (y2 3 z^ 

i.e. 

(18) xa4y1 = xt4y2. 

Now, 

*34j>i = (x3 1 z4) 2 ( ^ 3 z4) 

and 

xé4y2 = (x4 1 z3) 2 0>2 3 z3). 

However, (17) and (18), together with the cancellativity of (G, 2), give, 

XQ \ Z4. — X±l ZQ, 

Hence the Reidemeister condition holds in (G, 1) and, therefore (G, 1) is isotopic 
with a group. 

The isotopies are established as in the manner of the proof of Theorem 1. 
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