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1. Introduction. Let {a,b} designate the Pythagorean ratio (a2- b2)/2ab between
the sides of a rational right angled triangle. This paper studies the circumstances in which
Pythagorean ratios can occupy consecutive places in an arithmetic progression. Part I
deals with sets of three such ratios, while Part II discusses sets of four ratios.

The principal result of Part I is that {a, b) is the arithmetic mean of two other
Pythagorean ratios, and hence is the middle term of a three term arithmetic progression,
if and only if alb is the geometric mean of two Pythagorean ratios. If these last
Pythagorean ratios are both equal to a/b, this corresponds to the trivial solution with
{p2 — q2,2pq} the arithmetic mean of {p,q} and {p — q,p + q}. Non-trivial cases are
comprehended in the following extended form of the result, which is what will actually
be proved.

MAIN THEOREM. Suppose we have a2/b2 = {p,q}{r,s} and c2/d2 = {p,q}/{r,s},
with a2/b2¥= 1 i=-c2ld2. Then there are four Pythagorean ratios {<*,, /$,} such that

2{a, b} = {«„ fa} - {a2, fa} = {a3, fa} - {a4, fa},
2{c, d) = {a-,, fa} - {a3, fa} = {a2, fa} - {a4, fa}.

The trivial case corresponds to one of {a,b}, {c,d} being zero and the two
expressions for the other coinciding. The converse of this theorem will be proved in the
following form.

CONVERSE THEOREM. Suppose we have 2{a, b} = {a,, fa} - {a2, fa}- Then either we
have the trivial case with 2{p2 — q2, 2pq} = {p, q} — {p + q,p — q}, or we have the entire
hypothesis and conclusion of the main theorem.

Mostly we shall ignore the trivial case without explicit mention. We need not dis-
tinguish between expressibility as the sum or difference of two Pythagorean ratios, since
— {a, b} = {b, a}; similarly with products and quotients, since l/{a, b} = {a + b,a — b}.

It will sometimes be convenient to write {a, b} as I f , and {a + b,a -b) as {a ±b},
Ib)

in places where a and b are replaced by more elaborate expressions.

2. Background: rational distance sets. The problem of placing points in a plane so
that all pairs are at exact integer or rational distances has been the subject of several
papers (for references see [3, Problem D20]). The integer points on a line are at integer
distances, and it is also easy to find infinite sets of points on a circle with rational distances
between all pairs, for example the points (cos40,, sin40,), where tan 0, ranges over
rational numbers. Our interest therefore lies in sets of points which do not all lie on one
line or circle. In particular we may seek sets which maximize N, the number such that,
whatever line or circle we choose, it omits at least N of the points.

For infinite sets the largest known value of N is 4. This can be achieved by taking two

tThe author died on 28 September, 1992.
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perpendicular lines, with points on one of them at distances ±x, ±y from their
intersection. Provided that x/y has at least one expression as the product of two unequal
Pythagorean ratios, then it has an infinity of such expressions, to each of which there
correspond points on the second line at rational distances from the first four points (and
also from the intersection of the lines and from one another). In this and other
configurations which include an infinity of points on a line, this line will be called the axis
of the configuration.

Although these configurations give the largest known value of N for infinite sets, they
are not the only ones to achieve this value. Others can be constructed by inversion. If we
have any set of points whose distances are all rational, then we can construct another set
by taking a circle centred at a point of the set and with unit or other rational radius (in
fact only the square of the radius has to be rational), and inverting the configuration in
this circle. It is clear that the inverse points are at rational distances from the centre of
inversion. To see that they are at rational distances from one another, we notice that,
given any triangle with all its sides rational, if we invert two of its vertices in a circle of
rational radius centred at the third vertex, then their inverses form with the centre of
inversion a similar triangle changed by a rational scale factor. If we invert our infinite
configuration in a circle centred at one of the points on its axis, then the inverse
configuration comprises an infinite set of points on an axis together with two pairs of
points which are mirror images in the axis but which do not all lie on a line perpendicular
to it.

3. Connection with the present problem. The present problem is encountered when
we consider configurations which include four points lying on two lines parallel to the axis
and symmetrically disposed about it. Examples of these can be constructed in the
following way. Suppose we have a configuration which includes points on a perpendicular
line at distances x,y from the axis which are such that a circle through them touching the
axis does so at a point whose distances from these points are rational. For this we must
have x/y = {t, u}2 as well as the infinite set of representations x/y = {p, q}{r,s}. If we
now invert this configuration in a circle centred at this point of contact, then the former
circle inverts into a line parallel to the axis, and we obtain a configuration with points on
lines parallel to the axis as described. (This configuration is studied further in Section 10.)

These, however, are not the most general configurations of infinite sets with four
points on lines parallel to the axis. It will be shown that there are such configurations
corresponding to any pairs of Pythagorean ratios whose product is square, not necessarily
the square of another Pythagorean ratio. These configurations are thus related to certain
of those with points on a line perpendicular to the axis, namely where x/y is square, but
the relationship does not correspond to the geometrical operation of inversion.

Suppose we have a configuration comprising an infinite set of points on an axis, two
points on a line parallel to the axis, and their reflections in the axis, with all distances
rational. Let v be the distance between the axis and each of the parallel lines, and let w
be the distance between the two points on one of the side lines. Since each of these points
is at a rational distance from the reflection of the other, we require w/2v to be a
Pythagorean ratio. Now consider one of the infinite set of points on the axis. Since its
distance from each of the off-axis points is to be rational, we require a pair of
Pythagorean ratios whose sum (or difference) is w/v. We thus require pairs of
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Pythagorean ratios whose sum (or difference) is twice a Pythagorean ratio, that is, triads
of Pythagorean ratios in arithmetic progression, the main topic of Part I of this paper.

4. Two lemmas. These form part of a convenient line of proof of our main
theorem.

LEMMA 1. Suppose we have a2/b2= {p,q}{r,s} and c2/d2 = {p,q}/{r,s}. Then
a,b,c,d satisfy relations

{

where e,f,g,h are integers to be determined.

Proof. We have {p,q} =ac/bd and {r,s} = ad/bc, so a2c2 + b2d2, a2d2 + b2c2 are
both squares. Their product is therefore a square also, namely

(a2c2 + b2d2)(a2d2 + b2c2) = (a2cd ± b2dc)2 + (abc2 T bad2)2

= c2d\a2 ± b2)2 + a2b2(c2 =F d2)2

lab I \ led

Thus the two ratios ((a2 ± b2)/2ab)/((c2 T d2)/lcd) are Pythagorean, that is

^f{c,d}{ej}, ^f{
lab led

as required.

We can go further and obtain explicit expressions for {e,f}, {g, h}. We have

a2 + b2 led a2/b2+l c/d
lab c2-d2~ alb ' c2/d2 - 1

{p,q}{r,s} + l 1

{r,s} ' {p,q}/{r,s}-\

{p,q}{r,s} + l

{p,q}-{r,s}

(P
2-q2)(r2-s2) + 4pqrs

Irs(p2-q2)-2pq(r2-s2)

(Pr + (Is)2 ~ (Ps - Vf
l(pr + qs)(ps - qr)

= {pr + qs,ps-qr}.

Similarly we find

a2 - b2 led
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We thus have

-={c,d}{pr + qs,ps-qr}
lab

and

led
-={a,b}{(pr-qs)±(ps

In fact we have the result that {pr + qs,ps — qr}, {a,b}, {c, d ) , {{pr — qs) ±

(ps + qr)} are four members of a cycle of five ratios {#,,/3,} satisfying '

{<*,-_,, /3,_i}{a-,+i, Pi+l}, with subscripts reduced modulo 5 [5], but we do not need the full
force of this.

a2 + b2

LEMMA 2. Suppose we have ——-— = {c,d}{e,f}. Then products such as
2.ab

( aV + b2f2)(a2c2 + b2d2) are square multiples of a2 + b2.

Proof. The hypothesis may be written as

Acdef{a2 + b2) = 2ab(c2 - d2){e2 -f2),

or as

a2b2(c2 - d2)(e2 -f2) = 2abcdef(a2 + b2).

We thus have

(flV + b2f2)(a2c2 + b2d2)

= ((a2 + b2)e2 - (e2 -f2)b2)((a2 + b2)d2 + (c2 - d2)a2)

= (a2 + b2)((a2 + b2)d2e2 + e2a\c2 - d2) - b2d\e2 -f2))

-a2b\c2-d2){e2-f2)

= (a2 + b2)((a2 + b2)d2e2 + e2a\c2 - d2) - b2d\e2 -f2))

- 2abcdef(a2 + b2)

= {a2 + b2)(a2d2e2 + b2d2e2 + eW - e2a2d2 - b2d2e2

+ b2d2f2 - labedef)

= (a2 + b2)(a2c2e2 + b2d2f2 - labedef)

= (a2 + b2)(ace - bdff

as required. Similar results follow if we replace a2e2 + b2f2 by a2f2 + b2e2, or a2c2 + b2d2

by ad2 + b2c2, or if we make both replacements.

5. Proof of main theorem. We are now ready to prove our main theorem, which
we now restate.

MAIN THEOREM. Suppose we have a2/b2= {p,q}{r,s} and c2/d2 = {p,q}/{r,s},
with a2/b2i=l i=c2/d2. Then there are four Pythagorean ratios {ah /3,} such that

2{a, b) = {or,, j8,} - {a2, &} = {a3, &} - {a4, jS4},

2{c, d) = {au 0,} - {a2, &} = {a2, j82} - {*4, j84}.
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Proof. Define x,y by the relations

xy = c2d2(a2 + b 2 ) 2 , x-y= 2ab(c2 - d 2 ) .

From Lemma 1 we have

and so

(x + y)2 = 4c2d2(a2 •

that is

e2 + f2

from which we obtain

y = cd(a2x c d ( a + b ) , y = c d ( a + b ) .
e-f e+f

We shall now show that the four sums

(x ± cd(a2 - b2))2 + {labcdf,

(y ± cd(a2 - b2))2 + {labcdf

are all squares. These expressions are

(cd(a2 + b2) S-^-± cd(a2 - b2)) + (labcd)2,
\ e — j I

(cd^d1 + b2) ^~± cd(a2 - b2)) + {labcdf,
\ e +f I

which are all perfect squares if and only if so in turn are all the expressions in each braced
group below:

((a2 + b2)(e + / ) ± {a2 - b2)(e -f))2 + (2ab(e -
((a2 + b2)(e - / ) ± (a2 - b2)(e +f))2 + (2ab(e

(a.ae ± b.bf)2 + (b.ae T a.bf)2
•bfY]
af)2y(b.be ± a.af)2 + (a.be T b.afj

{a2 + b2)(a2e2 + b2f2)\
(a2 + b2){b2e2 + a2f2)V

Since we have fl2c2 + b2d2 square, the two expressions in the last brace are both squares
by Lemma 2, and so therefore are the preceding expressions.
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We may thus write

Since we have

X

X

'-'

, y

A y

x-y

+ cd(a2 - b

labcd

- cd(a2 - b

labcd

+ cd(a2 - b

labcd

- cd(a2 - b

labcd

lab(c2-,

2)

2)

2)

2)

labcd

x

labcd

y
labcd'

y
labcd

= 2{c,d},

- { « , * > } .

labcd labcd

we obtain the required results

l{a, b) = {*„ j8,} - {a2, & } = {a3, /33} - {a4, /34},

2{c, d) = {or,, /5,} - { a , , /33} = {a 2 , & } - {ar4, j84}.

Although our definitions of x,y involve the ratios {a,b},{c,d} in an asymmetric
way, it is not difficult to verify that the corresponding calculation with {a,b},{c,d}

interchanged leads to the same representations of 2{a, b},l{c, d) as differences

6. Geometrical configurations. Before going on to prove the converse of the main
theorem, I describe the geometry of the associated configurations of points at rational
distances. Figure 1 shows points on two perpendicular lines, with four rational right

2cda2

labcd

labc2

2ab{c2-d2)

Figure 1.
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2cd(a2 - b2)
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d2)

cd(a2 + fa2)

2afo(c2-d2)
Figure 2.

angled triangles, two corresponding to each of {p,q}=ac/bd, {r,s} = ad/bc. The
oblique joins are the hypotenuses of these triangles and so are all rational. The pairs of
points are mutually inverse in the circle shown.

Figure 2 shows points on two parallel lines. The oblique joins are all rational, being
the hypotenuses of rational right angled triangles corresponding to the Pythagorean ratios
related as in Section 5. The pairs of points are mutually inverse in the circles shown. It is
remarkable that the intervals between the points, shown by the thick lines in Figures 1, 2,
are the same in the two Figures, though there is no evident relationship between their
relative positions in the Figures.

In Figure 1, the existence of a representation a2/b2 = {p, q{r,s}, for fixed a/b,
implies an infinity of such representations, and so an infinity of corresponding ratios
c2/d2 = {p,q}/{r,s}. Thus in Figure 2 we can also fix a/b and obtain an infinity of ratios
c/d. We therefore have a configuration comprising an infinity of points on an axis and two
pairs of points on lines parallel to and equidistant from the axis, being mutual reflections
in the axis, with rational distances between all pairs of points of the configuration. (It is
convenient for this purpose to rescale the Figures by dividing all dimensions by labed.
We can then vary eld while keeping fixed the dimensions depending only on alb.)

7. Proof of the converse theorem. We now proceed to the proof of the converse of
our main theorem, in the following form.

CONVERSE THEOREM. Suppose we have 2{a, b) = {a-,, /?,} - {cr2, /32}- Then either we
have the trivial case with 2{p2 - q2, 2pq} = {p, q] - {p + q,p - q}, or a/b is the
geometric mean of two distinct Pythagorean ratios and we have the entire hypothesis and
conclusion of the main theorem.

Proof. We show first that from 2{a, b\ = {<*,, /?,} - {a2, |32} we can construct the
whole of Figure 2, and thus we obtain the whole conclusion of the direct theorem as
obtained in Section 5. Set l/k = {a,b}, so k2 +12 is square. The hypothesis of the
converse theorem is that there is an m such that k2 + (m + I)2 and k2 + (m - I)2 are both
squares, so (m +l)/k = {a-,, /3,} and (m - l)/k = {a2, P2}- (Even if kj are integers, m
may be only rational, and rescaling may be needed to make all quantities integers. This
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remark also applies to n below.) Some subsidiary results are developed to establish the
identification with Figure 2.

To locate a circle of inversion, define n by the relation

so

and

(n - l)(n + I) = k2 + (n- mf,

n
2 -12 = k2 + n2 - 2nm + m2

2mn = k2 + l2 + m2;

thus n is rational. In the trivial case we have k2 + l2 = m2 and m=n. We suppose
hereafter that this is not the case.

Since k2 + (m +1)2 and k2 + (m — I)2 are both squares, so also is their product,
namely

(A:2 + (m + l)2)(k2 + (m - I)2) = (k2 + I2 + m2)2 - (2/m)2

= {2mnf - (2lm)2

= Am\n2 -12)

= 4m2(k2 + (n-m)2).

Thus {n-m)lk is a Pythagorean ratio, say {c,d} = (c2 - d2)/2cd. We have also
m(2n — m) = 2mn — m2 = k2 + I2, identifying the other circle of inversion. Thus the
configuration of Figure 3 can be completely identified with that of Figure 2 by setting
k = 2abcd, I = cd{a2-b2) and n - m = ab(c2 - d2). (Recall that if a triangle has all its
sides rational, and two of its vertices are inverted in a circle centred at the third vertex,
then the inverse points form with the centre of inversion a similar triangle. This shows
that the joins in Figure 3 not already accounted for are also rational.)

In addition to (n - m)2 + k2 and k2 +12 being squares, we have (n - m)2 + k2 +12 =

n- m
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n2-l2 + l2 = n2. Thus, setting

- m ) 2 + A:2) V((n - mf + k2) k c2 + d2

\g.n,= j = ~k - 7 =

we obtain

in agreement with the conclusions of Lemma 1 and the hypothesis of Lemma 2. Thus by
Lemma 2 we have that products such as (a2e2 + b2f2)(a2c2 + b2d2) are square multiples
of a2 + b2.

It remains to be shown that a2c2 + b2d2 and a2d2 + b2c2 are themselves squares, since
the converse of Lemma 1 is not valid in general. This result follows by reversing the
argument in the proof of the main theorem in Section 5. With x = 2n — m,y = m,v/e now
have that the sums

(x2 ± cd(a2 - b2))2 + (2abcdf,

(y2 ± cd(a2 - b2))2 + (2abcd)2

are all squares. Since we have xy = c2d2(a2 + b2)2 and x — y = 2ab(c2 — d2), as in Section
5, we can deduce that the products (a2 + b2)(a2e2 + b2f2) and (a2 + b2)(b2e2 + a2f2) are
squares. Combining these results with those of Lemma 2, we deduce that a2c2 + b2d2 and
a2d2 + b2c2 are squares. So, setting ac/bd = {p,q} and ad/bc = {r,s}, we obtain the
required results

a2/b2={p,q}{r,s}, c2/d2 = {p,q}/{r,s},

thus completing the proof of the converse theorem.

8. Relations between triads. The sets of four triads of Pythagorean ratios, found in
Section 5, may be set out in an array of the form

{a,,j8,} {a, b} {P2,a2}
{c,d} {d,c}

{/33, tf3} {b,a} {a4, ft},

in which the entries in each row and column form an arithmetic progression. Noticing that
a Pythagorean ratio {a, b) = (a2 — b2)/2ab is of the form cot 20, where tan 0 = b/a, we
examine the angles in Figure 4. Let b/a = tan <j>, d/c = tan i/>, /3,/ar; = tan 0;. Some of
these angles are shown in Figure 4. With these angles as shown, we see that
20, +262 + 2ip = n, 203 +204-2t/ / =0. These, however, should be interpreted with
caution. Since 0, is determined only by cot 20, = {<*,, /?,}, 20, is determined only up to a
multiple of n, and 0, only up to a multiple of n/2 (so 0, might equally be arctan(/3,7ar/) or
arctan(-a-,/j3,)). We should thus write 0, + 02+i/> = O (mod^/2), 03 + 04-i/> = O
(mod n/2).
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cd(a2-b2)

cd(a

Figure 4.

ab(c2 + d2)

With changes in notation, let us write the array of Pythagorean ratios in arithmetic
progression as

cot2^i cot 2$ cot 2^2
cot 2ip cot(—2xp)

cot 2^3 cot(—2<p) cot 2^4-

In terms of these redefined angles, our congruences are all of the form %\ = Xi + V
(mod n/2), and always relate elements in the array whose positions are equivalent to

cot 2%\ * cot 2%2

cot 2xp *
* * *

under symmetry operations on the square array.
From these relations we can express all the Pythagorean ratios in the array in terms

of those on one side of it, namely

{a,, /3,} {a, b} {/32, a2}

{b,a}
\a2a - f52b)

9. Some parametric examples. We have established that {a,b} is the arithmetic
mean of two Pythagorean ratios if and only if alb is the geometric mean of two
Pythagorean ratios, so a2/b2 = {p,q}{r, s}. This latter condition requires the right angled
triangles generated by {p, q} and {r, s} to have equal area (up to a rational scale factor).
Construction of such triangles has a long history [2], going back to Diophantus, who
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found sets of three triangles with equal area. He showed that, if we have a solution of
x2 + xy+y2 = z2 in integers, the the triangles generated by {z,x}, {z,y}, {x+y,z}
have equal areas. To solve x2 + xy + y2 = z2 we take any three integers I, m, n with sum
zero and set x = I2 — m2, y = m2 — n2, which gives z = —(mn + nl + Im). Cyclic permuta-
tion of /, m, n corresponds to cyclic permutation of x, y, — (x + y).

These sets of triangles of equal area lead to triads of Pythagorean ratios in arithmetic
progressions of the form

((m + n)(m2 + mn + n2)} (2(m2 + mn + n2)}

I mn(m-n) ] { m2 - n2 \ { " 'm }

!(m + 2rt)| f«(2/n + rt)|

(2m + n)i \m(m+2n)\

f (m - n)(m2 + mn + n2) I f m2 - n2 1 fm+2n|

\(m + n)(2m + n)(m + 2n)i l2(m2 + mn + n2)) l2/n + n i '

where each row and column of three Pythagorean ratios is an arithmetic progression.
Two other simple expressions for rational right angled triangles of equal area are

given by the generators

p = 2m2 + n2, r = m2 + 2n2, q = s = m2 — n2

and

p = 2m2-n2, r = m2-2n2, q = s = m2 + n2.

The former leads to the following array of Pythagorean ratios in arithmetic progressions:

\m(2m2 + n2)\ r 3mn(m2 - n2)
, 2 „ 2\ f {2(m-n-),3mn} 4 , 2 w , ' .

.n(m2 + 2n2)) l(2m2 + n2)(m2 + 2n2)\

I {2(m2 + n2),3mn} {3mn,2m2-n2}

n(2m2 + n2)
{n,m} {3mn,2(m2-n2)} {3mn,m2 - n2},

and the latter to the array:

m(2m2-n2)
n(m2 + n2)

m(m2-2n2)~\ ( n(2m2 - n2)
n(2m2-n2)) U(m2-2n2)

{ m i ~ + 2 } ^>mn^m2 + n2)) {Imn,m2-2n2}.
It will be seen from the foregoing arrays that a completely general Pythagorean ratio

{n,m} can be the first (or last) member of a three term arithmetic progression in several
ways, in addition to the trivial solution {n,m} + {m + n,m — n} =2{2mn,m2 - n2}.
(The second array gives only this trivial solution in the case m = 2, n = 1.) However, not
all Pythagorean ratios can occupy the middle place in a three term arithmetic progression,
since it is known [1] that not all ratios a2/b2 can be expressed as products {p,q}{r,s}.
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For example, the integers 4 and 9 are not so expressible, so the ratios 3/4 and 4/3 cannot
be the middle term of a three term arithmetic progression.

10. A special case. In the special case that a2 + b2 is square, corresponding to three
Pythagorean ratios in geometric progression, we have that a2c2 + b2d2, a2d2 + b2c2,
a2e2 + b2f2 and a2f2 + b2e2 are all squares, by Lemma 2. We thus see that these geometric
progressions come in pairs with the same middle term alb (see [4]). The common ratios
of these progressions are c/d and elf, which are related by

Thus if one of the progressions is {p, q}, a/b, {r,s}, then the common ratio of the other
progression is (pr + qs)/(ps - qr). This shows the reciprocal relationship between the two
progressions, and affords a simple method of calculating one from the other.

In this special case, we can extend the configuration of Figure 1 to that of Figure 5, in
which all the joins are rational, including those to the point of contact of the circle. So if
we invert this configuration in a circle centred at this point of contact, we obtain a
configuration of the same form as that of Figure 2. However, although each of the pair of
triads of Pythagorean ratios in geometric progression gives rise to configurations of the
forms of Figures 1 and 2 related as in Section 6, inversion takes each of these Figure 1
configurations into the non-corresponding Figure 2 configuration.

The simplest example of this special case has a/b = 15/8, c/d = 26/7 and elf =
190/99. The arithmetic progression {5, 2}, {15, 8}, {4, 3} is the case m = 2, n = 5 of the

2cda2t

2cdb2

2abc2
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progression {n,m}, {n(2m + n), m{m + 2n)}, {m + 2n,2m + n} given in Section 9.
Other examples can be deduced from solutions of {t, u}2 = {p, q}{r, s}, of which infinite
families and numerical examples are given in [4]. Indeed, if we solve (n(2m + n))2 +
(m(m + 2n))2 = square, we obtain the infinite family of solutions of {/, u}2 = {p, q}{r, s}
given in [4] which begins with {t,u} = {4,1}, {52,17}, {3247,1560}, The other
parametric solutions given in Section 9 do not lead to infinite families of solutions of
{t,u}2={p,q}{r,s}.
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