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Abstract

In the present paper we prove that every finite dimensional non-atomic measure v is open
and monotone (viz. v~' preserves connected sets) relative to the usual Frechet-Nikodym
topology on its domain and the relative topology on its range. An arbitrary finite dimensional
measure is found on the other hand to be biquotient.

Given a vector measure v, we further investigate the properties of its integral map
T,: <t> —» / <$>dv defined on the set of functions <f> in /..(l^l) for which <£(s)€[0,1] |i/|-almost
everywhere. When v is finite dimensional, T, is found to be always open. In general, when T» is
open, the set of extreme points of the closed convex hull of the range of v is proved to be closed,
and when v and TL are both open, the range of v in itself is closed.

1. Introduction

We assume throughout the paper v to be a measure defined on a
cr-algebra si of subsets of some set S with values in a real Frechet space X.
As X is metrizable, according to Hoffman-Jorgensen (1971) there exists a
finite positive measure A on si such that v = A ; such a measure A is said to be
a control measure of v. Unless otherwise stated, we denote by A a control
measure of v.

The quotient cr-algebra of si modulo the cr-ideal of A-null sets is
denoted by si in itself. On this new si the Frechet-Nikodym metric induced
by A is defined by p(A, B)= A(AAB), A, B G si, where AAB denotes the
symmetric difference of A and B. The topology T induced by p on si is
independent of the choice of A, and v. si—* X is continuous relative to this
topology.

The spaces L,(A) and L«(A) are denoted briefly by L, and L* respec-
tively. As X is a Frechet space, each </> G L« has an integral / <j>dv G X in the
sense of Bartle, Dunford and Schwartz (1955). Following Lindenstrauss (1966)
we denote by T the integral map <t> —> / 4>dv from L into X. It follows from
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454 R. Anantharman and K. M. Garg [2]

the Radon-Nikodym theorem that T is continuous relative to the weak*-
topology cr(L^,L,) on L« and the weak topology <r(X, X') on X, where X'
denotes the continuous dual of X. The set of </> G L« for which OS <t>{s)fk 1
for A -almost every s G S is denoted by P. Since A is a finite measure, we have
L.CLi, and unless otherwise stated, P is assumed to have the topology of L,.
The subset of P consisting of characteristic functions \A of sets A in si is
denoted by P(>. The set P is convex and it is compact relative to the
weak*-topology (see Kingman and Robertson (1968)). The restriction of T to
P will be denoted by T,, and the closed convex hull of the range v{s4) of v by
K. Then K is weakly compact and T,,(P) = K (see e.g. Anantharaman (1973)
or Kluvanek and Knowles (1974), Theorem IV.6.1).

For every a G v{si) it is easy to see that every characteristic function in
Tl\a) is an extreme point of this set. A measure v is said to have property (*)
(Anantharaman and Garg) if for every a £ v(M) each extreme point of
T^(a) is a characteristic function. The measure is further called semi-convex
(Halmos (1948)) if for every A G d there exists B G si, B CA, such that

As we see in (Anantharaman and Garg), every semi-convex measure has
property (*), whereas the converse is false; there further exist non-atomic
/2-valued measures that do not have property (*).

If E and F are two topological spaces, a continuous onto map f:E—*F
is said to be open if /(U) is open for every open subset U of E, and / is called
biquotient (Michael (1968)) if for every y G F and for each open cover °U of
P\y) there exists a neighborhood of y that is covered by finitely many f(U),
U G aU. In case / is not onto, it is said to be open or biquotient if it is so with
respect to the relative topology of f(X). The map / is further called monotone
(Kuratowski (1968)) if /"' preserves connected sets, and weakly monotone
(Whyburn (1970); Garg (1977)) if f\y) is connected for each y G F. These
properties of v and Tv are defined in terms of the T- and L,(A)-topologies on
si and P respectively.

We first study in Section 2 the openness of the map Tv. It is proved in
Theorem 2.2 to be open whenever the range of v is finite dimensional. If on
the other hand Tv is open, where the range of v may be infinite dimensional,
the extreme points of the closed convex hull of the range of v are proved in
Proposition 2.3 to form a closed set. In Proposition 2.6 we compare the
openness of Tv with its openness relative to the weak*-topology on P and the
weak topology of its range K.

Section 3 deals with the properties of v. Every semi-convex measure is
proved in Theorem 3.1 to be weakly monotone, and then in Theorem 3.5 a
finite dimensional non-atomic measure is proved to be open and monotone.
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These results have already appeared in Anantharaman (1974) and Kluvanek
and Knowles (1974), and the openness part has been obtained independently
by Karafiat (1974) using different methods. An infinite dimensional non-
atomic measure is not generally open even if it is semi-convex (see Remark
3.6). In general, if v and Tv are both open, it is proved in Proposition 3.8 that
the range of v is closed. Finally, in Theorem 3.11, every finite dimensional
measure is proved to be biquotient.

The principal tools employed here are two characterizations of open
maps by Sikorski (1955) and Hajek (1967), two results of Michael (1959, 1968)
on lower semi-continuous set-valued functions and on biquotient maps, and a
theorem of Jerison (1954) on the extreme points of a limit of compact convex
sets.

2. Properties of T»

We first state the two characterizations of open maps due to Sikorski
(1955) and Hajek (1967) that are used repeatedly in the paper.

Let E be any topological space. The space of nonempty closed subsets of
E is denoted by 2E. The superior and inferior limits of a net (Aa) in 2E,
denoted by Ls Aa and Li Aa, are defined to be the set of elements x of E of
which every neighborhood intersects the net frequently or eventually respec-
tively (Kuratowski (1966)).

SIKORSKIS THEOREM. If E and F are metric spaces, then a continuous onto
map f:E—*F is open if and only if for every sequence {yn} of elements of F
converging to some y £ F we have

HAJEK'S THEOREM. // E is a topological space and F is a Hausdorff space,
then a continuous onto map f:E—>F is open if and only if for every net (ya) of
elements of F converging to y £ F we have

Let v, A, P and K be as defined in Section 1. For any net (Aa) in 2P the
limits Ls Aa and Li Aa are defined relative to the L,-norm topology of P. Let
a denote the metric on P induced by the norm of L, and d be the Hausdorff
metric (see Kuratowski (1966)) induced by cr on 2P, viz. if A, B £ 2P, then
d(A, B) is the supremum of cr(4>, B) and <x(i/<, A) for <f> £ A and 4> E. B.

LEMMA 2.1. / / a /inite signed measure v is absolutely continuous with
respect to a finite positive measure A, then for every sequence {xn} of elements of
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K converging to some real number x, the sequence {Tr'(xn)} convergesto Tv\x)
in the Hausdorff metric on 2P.

PROOF. We shall first assume that v = A. Since the metric induced by A
on P is easily verified to be equivalent to the one induced by the variation | v\
of v, in this case we may further assume A = | v\. Let 5*, S denote a Hahn
decomposition of 5 relative to v and let a = v(S), /3 = v(S+). Since

= K = co v{sd) = [a, 0],

it clearly suffices to show that d(T~'(x), 7V(y)) = \x - y | for every
x,yG[a,f3}.

Let us first prove that for every 4> G 7V(x), cr(<t>, 7V(y))S \x - y |, and
for this we need to show that there exists <// G T\y) such that ||t/< - < |̂|, g
\x - y \. When y = x, 4/ may clearly be taken to be $. In case y < x, let

Since a § y < x, tp is then a convex combination of (f> and ̂ s - , whence iA G P,
and we have

T.,(Xs ~4>) = (a-x)=y,

whereas

<f>d v - \

x - a
— a | = -̂ (x — a) = x — y.

x - a ' J

When y > x, we have /3 g y > x, and so putting this time

it follows as above that ip G P, Tl.(i>)=y and ||iA - </>||, = y - x. Thus
cr(<£, 7V(y) )S |x - y | for every <£G7V(x). On interchanging x and y it
follows that cr(ilj,Tl\x))?s\x — y\ for every (/»GT^'(y)i a n d s o w e have
d(T^'(x), T~'(y)) g |x — y |, which proves the lemma in case v = A.

In general there exists a set S, G si such that v is equivalent to the
restriction of A to S, and the complement S2 of S, is I'-null. Let

P, = {<£ G P: 0 S 4 S P2 = {<A G P: 0 S 0 S
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[5] Properties of vector measures 457

and let T, be the restriction of T to P,. For every x and y in Ti(Pi) = [a, /3]
we have

T:\x)=TV(x) + P2, T'Ay)= 7V(y)+P2,

from which it follows that

If {xn} is a sequence in [a, /3] converging to x, it follows from the first part of
the proof that d(77'(xn), 7V(x))->-0 as n - • °o, and so d(r: '(xn), TZl(x))^>
as n -» a>. Hence the lemma.

THEOREM 2.2. // (he range o/ i> is finite dimensional, then Tv is open.

PROOF. Let v:M^>Rk and A be a control measure for v, e.g. its
variation. For each i = 1,2, • • •, k, let vt(A) be the i-th coordinate of v(A)tor
every A E. M, and 7](<£) be the i-th coordinate of Tv(4>) for every <f> G P. It
follows that Ti(<l>) = J <t>di>i for every <£ e P and 1 g i g k. The map
Tv'.P—>K is continuous, and to prove its openness it suffices to show by
Hajek's theorem that Ls Tl\ya) = T,'(y) for every net (ya) of elements of K
converging to y G K. Since Rk is a metric space, we may replace the net by a
sequence {yn}, and it further suffices to show that the sequence {Tll(yn)}
converges to Tll(y) in the Hausdorff metric on 2P (see Kuratowski (1966)).

Let, for every n, yn = (y«,i)?=i and y = (yi)?=i- Since the sequence {yn}
converges to y, the sequence {y^J converges to yf for 1 ^ i ̂  k. For each i we
have, by Lemma 2.1, diT'^y^), TjJ(yi))^>0. Since the operation
(A, B)^> A n B, A, B G 2F, is continuous relative to the Hausdorff metric on
2P (see Kuratowski (1966)), we obtain

i.e. d(TZ'(yn), T"'(y))-»0. Hence T,, is open. This completes the proof.

PROPOSITION 2.3. If v is a measure such that Tw is open, then the extreme
points of the closed convex hull of its range form a closed set.

PROOF. Let K = co v(s£), and let {*„} be a sequence of extreme points of
K which converges to some x G X. Since K is closed, x G K. As X is a
Frechet space, K = TV(P) (see Section 1). By Proposition 2 of Anantharaman
(1973) (or see Kluvanek and Knowles (1974), Corollary VI.1.1), a point x of K
is an extreme point of K if and only if T~'(x) is a singleton and a characteristic
function. Thus for each n there exists a unique set En E. si such that
xn = v(En). Since P and K are metrizable and TV:P-+K is open, it follows
from Sikorski's theorem that T~\x) is the superior and inferior limit of
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{7V(xn)}, i.e. of the sequence {{#£„}}, and so T;'(x) must be a singleton in P.
Since XE» G Pu for every n, and Pn is closed in P, we have T;'(JC) E Po, and so x
is an extreme point of K. This completes the proof.

The above proposition yields, with the help of Theorem 2.2,

COROLLARY 2.4. The extreme points of the closed convex hull of the range
of every finite dimensional measure form a closed set.

REMARK 2.5. The above corollary does not hold in infinite dimensions in
general. The following example was suggested by Professor J. L. B. Gamlen.
Let A be the restriction of the Lebesgue measure on R to [— 1,1], si be the
domain of A, and define the measure V. si —> L^O, 1] by

v(E) = XEnfo.tl + A(E n [ - 1,0])A-[O.I,

for each E £ si. It may be verified that

K = co v(si) = {<f> + axl0,n. <P G Li[0,1], 0 =s <£ S 1, 0 S a S 1}

and

extK = {XA:A G si, A C[0,1], OS A(A)< 1} U

{XA + *[„..]: A £ i , A C [ 0 , l ] , A ( A ) > 0}.

Then ext K contains the convergent sequence {x{o,i-i,)} whose limit (̂0.i) is not
in ext K. It also shows, according to Proposition 2.3, that 71 is not open in
general.

In the next proposition we compare the openness of Tv relative to two
topologies on its domain and range. For any net (Aa) in 2P, its superior limit
relative to the weak*-topology on P will be denoted by Ls*v4a.

PROPOSITION 2.6. // the range of v is relatively compact and Tv is open, then
the map Ty:(P,w*)—> (K, w) is open.

Conversely, if v is semi-convex and the map Tv: (P, w *)—»(K, w) is open,
then the range of v is compact and Tv is open.

PROOF. Suppose that v{si) is relatively compact and Tv is open. Then
K - co v(si) is compct. Let (xa) be a net of elements of K converging weakly
to some x E K. Then (xa) converges to x relative to the given topology on X,
and as Tv is open, according to Hajek's theorem we have

Since the weak*-topology of P is coarser than the L,-norm topology, we
obtain
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the last inclusion being a consequence of the continuity of
Tu: (P, w*)—> (K, w). Now it follows from Hajek's theorem that
T,,:(P,w*)^(K,w) is open.

Conversely, suppose that v is semi-convex and T,,: (P, w*)—»(K, w) is
open. According to Kingman and Robertson (1968) we have v(si) = K. The
map v. (si, T)—»(K, w) is clearly continuous, and we claim that it is open.

For let (xa) be a net of elements of K converging weakly to some x G K.
Since K = T»(P) and Tv: (P, w*)—»(Jf, w) is assumed to be open, by Hajek's
theorem we have

According to a theorem of Jerison (1954) we have

Ls* 7V(xa) = co (Ls* ext Tl\xa)).

Since v is semi-convex, it has property (*) and so

ext Tv\xa) = {XE:E^sd, v{E) = xa)

for each a. Hence we obtain

According to Milman's theorem we have

extT:1(x)CLs*{XE-E<Es4,i>(E)= xa},

and as x G v(si) and v has property (*), we get

{*E: E G si, v(E) = x} CLs*{^E: E £ si, v{E) = xa}.

Since the weak*-topology coincides with the Lrnorm topology on the set Po,
we have

{ » : £ £ si, v(E) = X}CLS{XE:E G si, v(E) = xa},

and as (Po, || ||i) can be identified with (si, T), we get

The reverse inclusion follows from the continuity of v, whence
v: (si, T)—*{K, W) is open by Hajek's theorem.

Now K is weakly compact, and to show that it is compact let (xa) be a net
of elements of K converging weakly to some x G K. Since x G v(si),
Lsi^'OO is not empty by above. Hence there exists a subnet (vl(Xf,)) of
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(v\xa)) and, for each /3, a set E0 £ v~\xn) such that (£3) converges to some
E £ v \x). As v is continuous relative to the given topology of K, (xp)
converges to x in the latter topology as well, and so the two topologies on K
coincide. Hence K is compact.

Finally we need to prove that Tv is open. The spaces P and K are
metrizable. Thus let {*„} be a sequence in K( = v{si)) converging to some
x £ K. Then {*„} converges weakly to x, and as v: (si, T)—*(K, W) is open, by
Hajek's theorem we have v~\x)= Ls v"'(xn). Further, for any subsequence
{xm} of {*„} we have v~'(x) = Ls v~l(xm), and so it follows that v\x) =
Li ^"'(Xn) (see Kuratowski (1966)). Hence we obtain

{XE: E £ jtf, v(E) = x} CLi Tl\xH).

As v has the property (*) and x £ v(s£), we have

T;1(X)CM{XE:E £ jtf, v(E) = x),

whence

r;'(x)cLi r;'(xn)cLs r:'(xn),

and so T,, is open by Sikorski's theorem. This completes the proof of the
proposition.

With the help of Theorem 2.2 we obtain, from the first part of
Proposition 2.6,

COROLLARY 2.7. / / v is finite dimensional, then the map T» :(P,w*)—*K is
open.

3. Properties of v

THEOREM 3.1. Every semi-convex measure is weakly monotone.

PROOF. Let A be a control measure of v. For every pair of sets A, B in si,
let A S B if k(AIB) = 0. Then S is a partial order on si and (si,S) is a
complete lattice (see Halmos (1950), p. 169). It is easy to see that this order is
independent of the choice of A. If ^ is a chain for g , then the order topology
(see Birkhoff (1967)) of C coincides with the one induced by T on c€. Indeed, if
C £ % and (C,, C2) is an open order interval containing C, then on putting

if C = <f>

= 5min{A(C\C,),A(C2\C)} if <f> < C < S

if C = S
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[9] Properties of vector measures 461

we have

B(C,r) = {EE«,A(EAC)<r}C(C,,C2).

On the other hand, for every C G % and r > 0 one may easily find an order
interval (C,, C2) containing C ([C, C2) if C = $ and ( d , S] if C = S) such that
(C,,C2)CB(C,r).

Now assume y to be semi-convex and A, B to be any two distinct
elements of si such that v{A) = v{B). It is sufficient to show that A and B
are members of a connected subset % of v'(p(A)). We have P(A\B) =

v(B\A) = x, say. Since v is semi-convex, one can find, (see Schmets (1966), p.
185), chains <€ = {Ce: 0 G [0,1]} and @={O,:fl£ [0,1]} of subsets of A\B
and B\A respectively with the following properties:

C,, = D0=<A, CS = A\B, D, = B\A,

G, < Cfc if and only if 0, < 02,

D9l < D^ if and only if 0, < 02,

and i>(G) = 0x = v(D<,) for every 0 G [0,1].
Since the maps 0 —» Ce and 0 —» De are order-isomorphisms of the chain

[0,1] onto the chains ^ and ® respectively, they are also homeomorphisms
relative to their chain topologies. Since these chain topologies coincide with
their induced r-topologies, the maps are homeomorphisms relative to the
latter topologies as well. As each of the operations of union, intersection and
complementation is continuous o n i x i relative to the product topology
T* T (see Halmos (1950), p. 168), the map

0 -» Ee = (A \ Ce) U De, 0 G [0,1 ]

is continuous. Hence % = {£„: 0 G [0,1]} is a connected subset of si. Further,
for every 0 G [0,1] we have

v(E,)=v(A)-v{C,)+v{p,)=v{A),

while £o = A, E, = (A\(A\B))U(B\A) = B. Thus A and B belong to the
connected subset % of i>~'(A), which completes the proof.

As a consequence of Theorem 3.1 we obtain the following well-known
result of Halmos (1948):

COROLLARY 3.2 (Halmos). Every finite dimensional non-atomic measure
is semi-convex.

PROOF. It will clearly suffice to prove the following: Let v. A —*X be
semi-convex, and /n be a finite signed measure on si that is absolutely
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continuous with respect to v. Then the measure j i : i ^ X x R denned by
TT(£) = (u(E),fi(E)), E G si is also semi-convex.

Let A be a control measure of i>, A G si, and TT(A) ~ a = (a,, a2). Since
the restriction vA of i> to A is semi-convex, the set % =
{ £ £ ^ : £ C A , HE) = \cixi is nonempty, and is by Theorem 3 A connected w\
(sd, T). AS /X is continuous on jtf, ^(<?) is an interval. For each EE%,
A \ E G « , and so ia2 = J/A(A) = K/*(E)+ M(A\E))G/*(«), i.e. ir^ia) is
nonempty.

REMARK 3.3. Theorem 3.1 does not hold in general for non-atomic
measures in infinite dimensions. For if v is the measure as defined in Remark
2.5, it may be easily verified that P~1{X[O.I\}

 = \X\-i.oi> A>.n}> which is not
connected.

The converse of Theorem 3.1 does not hold even in finite dimensions, as
is evident from any atomic measure with a single atom. In infinite dimensions
there exist non-atomic monotone measures that are not semi-convex. For let
A be the restriction of the Lebesgue measure on R to [0,1], .si be the domain
of A, and define the measure v. si —» L,[0,1] by v{E) = \r for every E G si.
As v = A, it is non-atomic. As |j v{E) - v(F)\\ = A (EAF) for every E, F G si, v
is a homeomorphism, and so it is monotone. However, v is obviously not
semi-convex.

LEMMA 3.4. / / v has property (*) and Tu is open, then v is open.

PROOF. Similar to the second part of Proposition 2.6.

THEOREM 3.5. Every finite dimensional non-atomic measure is open and
monotone.

PROOF. Since a finite dimensional non-atomic measure v is semi-convex
(Corollary 3.2), it has property (*), and so v is open by Theorem 2.2 and
Lemma 3.4. Moreover, since an open map from a Hausdorff space to a locally
compact space is monotone whenever it is weakly monotone (see Whyburn
(1970), p. 558), it follows from Thoerem 3.1 that v is monotone.

REMARK 3.6. The converse of Lemma 3.4 holds for semi-convex meas-
ures. The proof is similar to that of Proposition 2.6. The first conclusion of
Theorem 3.5 does not hold in infinite dimensions in general even for
semi-convex measures. For let v be the measure defined in Remark 2\5.
According to Theorem V.5.1 of Kluvanek and Knowles (1974) there exists a
semi-convex measure /x (defined possibly on a different cr-algebra) whose
range is equal to co i'(^). As we saw in Remark 2.5, extcoi'(^) is not
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norm-closed, whence 7^ is not open by Proposition 2.3. Since ft is semi-
convex, ix is not open either, by Lemma 3.4.

PROBLEM 3.7. To investigate conditions on an infinite dimensional semi-
convex measure v under which v (or equivalently Tv) is open or otherwise
biquotient (see Theorem 3.11).

PROPOSITION 3.8. / / v and Tv are both open, then the range of v is closed.

PROOF. Let us identify d with Po = {xA : A G si}. The maps TlK.K-+ 2P

and v~l: v(s£)^>2p" are then lower semi-continuous. Since K and v{si) have
the relative topology of X, they are metrizable, and so are paracompact. Since
v and T,, are continuous, and their domains are complete metric spaces,
v~\v{A)) and T,,\x) are complete for every A E si and x G K. Hence,
according to a theorem of Michael (1959), there exist two lower semi-
continuous maps / : K—>2P and g: v(stf)^>2p° such that f(x) is a compact
subset of Tl'(x) for every x G K, while g(v(A)) is a compact subset of
v~\v(A)) for every A 6 i Define h : K ->• 2P by

fi(x) = /(j)Ug(x) when i 6

= f(x) when x £ K l i - ( 4

Then /i(x) is compact for each x £ K .
To prove that v(s4) is closed, suppose that there exists a sequence {*„} in

v(s4) that converges to some element x0 £. v{s£). We claim that Lsg(xn) = 4>.
For, if not, then there exists a subsequence {g (xm)} of {g (x,,)} and for each m, a
function ^E>n G g(xm)(Cv'(xm)) such that the sequence {̂ Em} converges to
some element 4> of P. Since Po is closed in P, <f> G F(), say (̂  = ^£ (£ E i ) , and
as T^: P—> K is continuous by Lemma 2 of Anantharaman (1973), we have

xtt = \\mxm = lim T*(xF.m) = T,,{4>) = t>(E),

which contradicts the fact that xn £ v(si). Thus we have (see Kuratowski
(1966), p. 337)

Ls/r(^) = Ls{/(*„) U g(xn)} = Ls/(xn) U Lsg(xn) = Ls/(xn).

Since / is lower semi-continuous, according to a theorem of Sikorski (1955)
we have f(xn) = Li/(xn) = Ls/(*„). As h(x») = f(x0), we have

h (xa) = Li f(xn )CLih{xn)CLsh(xn) = Ls f(xn) = f(xn) = h (*„),

so that h(x,,)=L\h(xn)=Lsh(xn).
Thus {h(xn)} is a sequence in 2P converging to h(x0) in the Vietoris

topology (see Kuratowski (1966)), and so the set {h(xn): n g 0} is a compact
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subset of 2P. Since h(xn) is compact for every n, according to a theorem of
Michael (1951) the set C= U{h(xn): n g 0}} is a compact subset of P.
Choosing \E» £ g(xn)(C h(xn)) for every n g l , the sequence {XEJ is con-
tained in C, and so it contains a subsequence {xEm} which converges to some
element <l> of C. It follows as in the above proof of Lsg(xn)= <j> that
xo = T^((/))G ^(.stf), and since JC0 £ K-stf), this is a contradiction. This com-
pletes the proof of the proposition.

With the help of Theorems 2.2 and 3.5 we obtain the following
well-known theorem of Liapounoff (1940):

COROLLARY 3.9 (Liapounoff). The range of every finite dimensional non-
atomic measure is compact.

REMARK 3.10. The range of an infinite dimensional measure v, with v
and Tv both open, is not in general weakly closed. For let v be the measure
defined in Remark 3.3. Then the map TV:P^>K is an isometry. As
v(si) = {\E : E £ si) = Pa, we have K = co Po = P. Since A is non-atomic, it is
clear that Po is weak*-dense in P. Further it may be verified that the
topologies <T(LX, L,) and cr(L,, L*,) coincide on P, and so Pa is weakly dense in
P relative to the latter topology as well. As Po^ P, Po cannot be weakly
closed.

As an extension of the Liapounoff's compactness and convexity theorems
it has been proved by Knowles (1973) (see also Anantharaman (1974)) that the
range of each restriction of every semi-convex measure is convex and weakly
compact. For other equivalent conditions in this direction, see Kingman and
Robertson (1968) and Anantharaman and Garg.

THEOREM 3.11. Every finite dimensional measure is biquotient.

PROOF. Let v be a finite dimensional measure and A be a control
measure of v. Then v and A have the same atoms. Let sda and $tn denote the
atomic and non-atomic parts (see Halmos (1948)) of si respectively, va and vn

be the restrictions of v to sia and sin, and Ra and Rn be the ranges of va and
vn respectively. Further, for every A £ i , let Aa and An denote the atomic
and non-atomic parts of A respectively.

Define the map /: s4 -> da x sda by f(A) = (Aa, An) for every A £ M,
g : i « , x i B ^ R a x R , b y g = c.x Vn, and h : Ra x Rn -» X by h(x, y) = x + y
for x £ Ra, y G Rn. Then v = h ° g °f, and according to a theorem of Michael
(1968) it is sufficient to prove that the maps /, g and h are biquotient.

The product topology on sia x s&n is induced by the metric

(A,B),(C,D)Gsia x s&n,
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and the map / is in fact an isometry relative to the metrics p and IT
respectively. For / is clearly one-to-one, and if A, B G si, we have

Tr(f(A),f(B))=Tr((Aa,An),(Ba,Bn))=\(AaABa) + \(AnABn)

= \((AaABa) U (AnABn)) = A (A AB) = p(A, B).

As va is continuous and s&a is compact (see Halmos (1947)), va is
biquotient. Since vn is open by Thoerem 3.2, it is also biquotient, and it
follows from Thoerem 1.2 of Michael (1968) that the map g = va x vn is
biquotient.

Finally, the set Ra is clearly compact, and since vn is finite dimensional,
Rn is also compact by Liapounoff's theorem (see Cor. 3.9). Thus Ra x Rn is
compact, and since h is continuous on it, it is equally biquotient. Hence the
theorem.
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