Summer Meeting, 28 June-1 July 2010, Nutrition and health: cell to community

Physicochemical properties of oat beta-glucan influence its LDL cholesterol lowering effect in human subjects

T. M. S. Wolever¹, S. M. Tosh², A. L. Gibbs³, J. Brand-Miller⁴, A. M. Duncan⁵, V. Hart⁶, B. Lamarche⁷, B. Thomson³, R. Duss⁸ and P. J. Wood²

¹Glycemic Index Laboratories Inc., Toronto, ON, Canada, ²Agriculture Agri-Foods Canada, Guelph, ON, Canada, ³Department of Statistics, University of Toronto, Toronto, ON, Canada, ⁴Molecular and Microbial Biosciences, University of Sydney, Sydney, Australia, ⁵Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada, ⁶Reading Scientific Services Ltd, Reading, UK, ⁷INAF, Laval University, Laval, QC, Canada and ⁸CreaNutrition, AG, Zug, Switzerland

Daily consumption of 3g oat β -glucan is considered sufficient to lower serum LDL cholesterol (LDL-C), but not all studies show an effect. The ability of oat β -glucan to reduce LDL-C is thought to depend on viscosity which is controlled by the molecular weight (MW) and the amount of oat β -glucan solubilized in the intestinal lumen (C), but this has not been demonstrated in human subjects.

Therefore, our two primary objectives were to determine if consuming 3 g high-MW oat- β -glucan daily reduced LDL-C, and if LDL-C-lowering was related to log(MW × C) of oat- β -glucan. To address these objectives, we conducted a randomized, controlled, double-blind parallel design clinical trial in two contract-research-organisations and three university nutrition research centres in Canada, Australia and UK. A volunteer sample of healthy subjects with LDL-C ≥ 3.0 and ≤ 5.0 mmol/l (n 786 screened, n 400 ineligible, n 19 refused, n 367 randomized, n 345 completed) were randomly assigned by the computer to receive one of five treatments. Subjects consumed cereal containing wheat fibre (n 87) or a total of 3 g high-MW (n 86), 4 g medium-MW (n 67), 3 g medium-MW (n 64) or 4 g low-MW (n 63) oat β -glucan daily (OatWell[®], divided doses, twice-daily) for 4 weeks. Using an intent-to-treat analysis, serum-LDL-C concentration after 4 weeks was compared between treatments after adjusting for baseline LDL-C.

After 4 weeks, LDL-C on 3 g high-MW oat β -glucan cereal was less than on wheat-fibre cereal by 0.21 mmol/l (95% CI; -0.11, -0.30, P = 0.0023). By analysis of covariance log(MW × C) was a significant determinant of week 4 LDL-C-cholesterol (P = 0.003). The treatment effect was not significantly influenced by age, sex, study centre or baseline LDL-C.

It was concluded that consuming only 3 g high-MW oat β -glucan daily in a ready-to-eat cereal reduced LDL-C by 0.2 mmol/l; efficacy was reduced in cereals containing oat β -glucan with low MW. Thus, the physicochemical properties of oat β -glucan should be considered when assessing the cholesterol-lowering ability of oat-containing products.

The trial was registered at www.clinicaltrials.gov NCT00981981.

Funding was provide by the Swedish Governmental Agency for Innovations Systems and CreaNutrition.