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5Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Astronomy, University
of Cape Town, Private Bag X3, Rondebosch 7701, South Africa

6SKA South Africa, 3rd Floor, The Park, Park Road, Pinelands, 7405, South Africa
7Centre for Space Research, North-West University, Potchefstroom 2520, South Africa

8Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown, 6140,
South Africa

9Department of Physics & Astronomy, University of the Western Cape, Private Bag X17,
Bellville 7535, South Africa

Abstract. Radio interferometers suffer from the problem of missing information in their data,
due to the gaps between the antennae. This results in artifacts, such as bright rings around
sources, in the images obtained. Multiple deconvolution algorithms have been proposed to solve
this problem and produce cleaner radio images. However, these algorithms are unable to cor-
rectly estimate uncertainties in derived scientific parameters or to always include the effects of
instrumental errors. We propose an alternative technique called Bayesian Inference for Radio
Observations (BIRO) which uses a Bayesian statistical framework to determine the scientific
parameters and instrumental errors simultaneously directly from the raw data, without making
an image. We use a simple simulation of Westerbork Synthesis Radio Telescope data including
pointing errors and beam parameters as instrumental effects, to demonstrate the use of BIRO.
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1. Introduction
The problem of extracting scientific parameters from dirty (dominated by artifacts)

interferometric radio images has resulted in many deconvolution algorithms being de-
veloped. However, none of these solve the problem of incorporating instrumental errors
as a source of uncertainty when making measurements from radio data. Deconvolution
algorithms can only produce one image, which the scientist must then assume is cor-
rect before extracting any science (for example, a catalogue of source fluxes) from it.
Algorithms such as CLEAN (Högbom 1974), the most popular algorithm in use, can-
not reliably produce any uncertainties (Junklewitz et al. 2013), making it impossible to
propagate the uncertainties from instrumental errors to the scientific parameters. Fur-
ther, if these parameters are correlated, as they likely are, even correcting the data
for instrumental errors may lead to biased scientific results, as the measurement of the
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Figure 1. Mock dataset. Left panel: The simulated sky model. Right panel: The “dirty
image”, which is how this field appears when convolved with the telescope beam.

instrumental error may be wrong. These instrumental effects will become more important
as more sensitive telescopes such as the Square Kilometre Array† come online.

2. BIRO
We propose, in Lochner et al. 2015, a completely different approach, whereby we model

the sky and all known sources of instrumental error simultaneously using the radio in-
terferometry measurement equation (RIME) (Hamaker 1996). The RIME can be written
as (Smirnov 2011):

Vpq = Jpn (. . . (Jp2(Jp1BJH
q1)J

H
q2) . . .)JH

qm , (2.1)

where Vpq is the visibility matrix (the radio data), Jpi is the i’th Jones matrix for
antenna p (containing instrumental effects) and B is the brightness matrix (containing
the sky model, and hence all scientific parameters). We use the software package MeqTrees
(Noordam & Smirnov 2010), which implements the RIME, to model our radio field and
any known instrumental effects. We can then estimate the parameters of this model,
both scientific and instrumental, in a Bayesian context using a sampling method such
as MCMC (Metropolis et al. 1953, Hastings 1970). We assume uncorrelated Gaussian
noise on the visibilities which leads to a simple Gaussian likelihood for Vpq . With this
approach, we are able to determine the full posterior for the problem, obtaining not only
the best fits for all parameters, but also their uncertainties and correlations.

3. Applying BIRO
Fig. 1 shows the mock WSRT (Westerbork Synthesis Radio Telescope)‡ field which we

tested BIRO on. This field, simulated using MeqTrees and based on a real field, consists
of 17 point sources. We also applied pointing errors to each antenna as an example of a
source of instrumental error, which WSRT (and many other radio telescopes) have had
to deal with in the past (Smirnov & de Bruyn 2011). A mispointed antenna will observe
a point source through the edge rather than the centre of its beam. Thus, in general, we
would expect pointing errors and fluxes to be correlated and we apply our method to
determine these correlations, as well as the parameters themselves.

The instrumental parameters for this simulated data consist of the pointing errors (one
for each direction for each antenna), the width of the primary beam and the noise on the
visibilities, which we assume to be Gaussian, as is widely considered a good approxima-
tion. We allow the pointing errors to vary in time as second order polynomial functions,

† Square Kilometre Array, http://www.skatelescope.org
‡ WSRT, https://www.astron.nl/radio-observatory/astronomers/wsrt-astronomers
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Figure 2. Comparison between BIRO and the fluxes obtained from CLEAN, combined with a
source extraction algorithm (CLEAN+SE). While the BIRO results are unbiased, CLEAN+SE
misestimates the fluxes by up to 44σ, due to the strong correlations between pointing error and
flux.

resulting in 84 pointing error parameters (3 for each direction for each antenna). Our
scientific parameters are the flux for each source.

We compared BIRO with the standard, commonly used CLEAN algorithm combined
with a source extraction algorithm on the CLEANed image (we call this CLEAN+SE)
for this dataset. Fig. 2 illustrates this comparison for the estimated fluxes from BIRO and
CLEAN+SE. With no knowledge of the time-varying pointing errors, it is no surprise
that CLEAN+SE returns biased fluxes. The danger is that the error bars, estimated using
only the surrounding flux of the point source in this source extraction algorithm, do not
and cannot take into account the additional source of uncertainty from the instrumen-
tal errors. In contrast, the BIRO estimates are unbiased and the error bars are larger,
correctly propagating the instrumental errors. We also found that while CLEAN+SE
identified many of the point sources as extended (and the only extended source as a
point source), BIRO is properly able to determine the type of each source simply by
fitting shape parameters to the sources. BIRO is also able to determine the covariance
matrix between all the parameters (Fig. 3).

4. Conclusions
We have introduced BIRO, a Bayesian approach to the deconvolution problem of radio

interferometry observations. Fig. 3 highlights the importance of fully propagating the
uncertainty on instrumental errors, as they can be highly correlated with the scientific
parameters and hence bias scientific results. Due to the fully Bayesian nature of BIRO,
it allows for very elegant extensions to this simple scenario. For example, the choice of
model for the field can be selected for using the Bayesian evidence (see Lochner et al.
2015). BIRO can be useful in any scenario where reliable statistics are required for the
science extracted and may be essential to fully exploit the sensitivity of the SKA.
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Figure 3. Covariance matrix between a subset of parameters. The parameters are listed on each
axis with the correlations between them represented by a coloured ellipse. Highly correlated
parameters are red with a thin ellipse angled to the right, whereas anti-correlated parameters
have a dark blue ellipse, angled to the left. The diagonal shows the 1D marginalised posterior for
each parameter. The correlations in the fluxes arise due to uncertainty in the flux distribution
from gaps in the uv-plane, while the pointing errors are correlated simply because every pointing
error affects every source. Of particular interest is the complex way in which pointing errors
correlate with the fluxes, which would be very difficult to determine from first principles.
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