FUNCTORIAL RADICALS AND NON-ABELIAN TORSION, II

by SHALOM FEIGELSTOCK and AARON KLEIN

(Received 15th January 1981)

The object of this paper is to complete and continue some matters in [1].

In [1], Section 2, the torsion and torsion-free functors, whose operation on the category of abelian groups are well known, were extended to the category of all groups as follows. For a group A, put $t_0(A)=0$ and $t_1(A)=$ the subgroup of A generated by the torsion elements of A. Inductively define $t_{n+1}(A)/t_n(A)=t_1(A/t_n(A))$, for every positive integer n. Then $T(A)=\bigcup_n t_n(A)$ is the smallest subgroup H of A such that A/H is torsion-free, [1], Th. 2.2. A group A satisfying T(A)=A was called a pre-torsion group. In [1], 2.12 an example was constructed of a group A satisfying $t_1(A) \neq t_2(A) = A$. The question was posed whether for every positive integer n there exist groups A, satisfying $t_{n-1}(A) \neq t_n(A) = A$. Here we give an affirmative answer. In fact, such groups will be constructed, as well as pre-torsion groups A with $t_k(A) \neq A$ for every positive integer k, see Section 1.

In [1], Section 4, results concerning radicals and pre-radicals on the category (Λ, Σ) mod of modules over a near-ring Λ distributively generated by a monoid Σ , were briefly presented. In Section 2 of this paper, proofs are supplied, as promised in [1], and some more results are given.

1.

We denote by A * B the free product of groups A, B. For groups A < B we denote by [A] the normal closure of A in B.

Lemma 1.1. For groups A, B and for $n \in \mathbb{N}$, $t_n(A * B) = [t_n(A) * t_n(B)]$.

Proof. The only periodic elements in A * B are conjugates of periodic elements in A or in B. Hence $t_1(A * B)$ is indeed the normal closure of $t_1(A) * t_1(B)$ in A * B. In proceeding from n to n+1, it suffices to show that

$$t_1(A * B/[t_n(A) * t_n(B)]) = [t_{n+1}(A) * t_{n+1}(B)]/[t_n(A) * t_n(B)].$$

Now

$$A * B/[t_n(A) * t_n(B)] \cong A/t_n(A) * B/t_n(B)$$

1

(see [3], p. 194), hence

$$t_1(A * B/[t_n(A) * t_n(B)]) \cong [t_1(A/t_n(A)) * t_1(B/t_n(B))] = [t_{n+1}(A)/t_n(A) * t_{n+1}(B)/t_n(B)];$$

here the normal closure is taken in $A/t_n(A) * B/t_n(B)$. But

$$t_{n+1}(A)/t_n(A) * t_{n+1}(B)/t_n(B) \cong t_{n+1}(A) * t_{n+1}(B)/[t_n(A) * t_n(B)]$$

hence the normal closure of this group is isomorphic to

$$[t_{n+1}(A) * t_{n+1}(B)]/[t_n(A) * t_n(B)]$$

and our claim is established for n+1.

Definition 1.2. A group A will be called *n*-torsion-generated (n a positive integer) if

$$t_n(A) = A \neq t_{n-1}(A) \tag{1}$$

In [1] a 1-torsion-generated group was said to be torsion-generated.

1.3. We construct inductively groups A_n which are *n*-torsion-generated. Clearly, any non-trivial torsion-generated group (for instance any non-trivial periodic group) may serve as A_1 . Suppose A_n has been constructed which is *n*-torsion-generated. Take two copies of A_n , say B_n^1 , B_n^2 and put $H_n = B_n^1 * B_n^2$. It follows (by 1.1 and by [1], 2.16) that H_n is *n*-torsion-generated. By assumption there exist $b_i \in B_n^i \setminus t_{n-1}(B_n^i)$, i=1,2. Then $(b_1b_2)^m \notin t_{n-1}(H_n)$ for every positive integer *m*. Add a free generator to H_n , namely consider $H_n * \langle v_{n+1} \rangle$ and define A_{n+1} to be the quotient group of H_n modulo $v_{n+1}^2 = b_1b_2$. Clearly $t_{n+1}(A_{n+1}) = A_{n+1}$ but $t_n(A_{n+1}) \neq A_{n+1}$ since $v_{n+1} \notin t_n(A_{n+1})$.

Observe that the construction may begin with any non-trivial group which is generated by its periodic elements. For example take $A_1 = \langle x; x^2 = 1 \rangle$ a group of order 2. Then, by the construction $H_2 = \langle x, y; x^2 = y^2 = 1 \rangle$ and $A_2 = \langle x, y, v; x^2 = y^2 = 1$, $v^2 = xy \rangle$. This is precisely the group A of [1], 2.12, namely $\langle x_1, x_2; x_1^2 = 1, (x_1x_2^2)^2 = 1 \rangle$, via the mapping $x_1 \mapsto x, x_2 \mapsto v$ (so $x_1x_2^2 \mapsto y$).

Observation. A_2 is 2-solvable since $A_2/[v]$ is clearly a group of order 2. Hence the fact $T(A) = t_1(A)$, which is true for nilpotent groups ([1], 2.11), is not true for solvable groups.

1.4. The construction in 1.3 exhibits a multitude of *n*-torsion-generated groups (which may be constructed to be finitely presented). It may be generalised in the following sense. Consider a set of groups $\mathscr{S}, |\mathscr{S}| \ge 2$, with $t_n(H) = H$ for all $H \in \mathscr{S}$ and with $t_{n-1}(H_0) \ne H_0$ for at least one H_0 in \mathscr{S} . Take a free product $G = \begin{pmatrix} * \\ H \in \mathscr{S} \end{pmatrix} \ast F$ with F free and consider any $1 \ne f \in F$, $1 \ne h_j \in H_j \in \mathscr{S}$ (for j = 1, ..., r), $h_0 \in H_0 \setminus t_{n-1}(H_0)$, $k \ge 2$. Then G modulo $f^k = h_0 h_1 \dots h_r$ is (n+1)-torsion-generated.

2

1.5. Every *n*-torsion-generated group is evidently pre-torsion, T(A) = A. We construct a group A_{ω} with

$$T(A_{\omega}) = A_{\omega} \neq t_n(A) \quad \text{for all} \quad n \in \mathbb{N}.$$
⁽²⁾

3

In 1.3 consider $A_n = B_n^1 \rightarrow H_n \rightarrow A_{n+1}$. This is clearly an embedding, so we take the limit $A_{\omega} = \bigcup_{n \in \mathbb{N}} A_n$. Then, by [1] 2.16, A_{ω} satisfies (2). (Clearly, A_{ω} may be constructed to be countably presented.) The following is established.

Theorem 1.6. Every n-torsion-generated group may be embedded into a (n+1)-torsion-generated group. Every n-torsion-generated group may be embedded into a pre-torsion group which is not k-torsion-generated for every $k \in \mathbb{N}$.

2.

We consider the collection Rad of *radicals* on (Λ, Σ) -mod, namely functors on (Λ, Σ) mod which are normal subfunctors of the identity and satisfy R(X/R(X))=0 for all X. We assume the condition (a) of [1], hence the word "normal" may be omitted. Each radical R determines the class \mathscr{B}_R of radical objects, which are the (Λ, Σ) -modules X satisfying R(X)=X, and the class \mathscr{C}_R of semisimple objects, i.e., X such that R(X)=0, see [1].

For radicals R, S the composed functor RS is a radical, as shown in the next proposition. Is there any relationship between the classes of semisimple objects $\mathscr{C}_R, \mathscr{C}_S$ and \mathscr{C}_{RS} ? Employing a common construction in varieties [3], we define $\mathscr{C}_R \circ \mathscr{C}_S =$ the collection of (Λ, Σ) -modules X such that there is a normal submodule X' in X with $X' \in \mathscr{C}_R$ and $X/X' \in \mathscr{C}_S$. It turns out that \mathscr{C}_{RS} is precisely $\mathscr{C}_R \circ \mathscr{C}_S$. Moreover, the class $\mathbb{C} = \{\mathscr{C}_R | R \in \text{Rad}\}$ with the operation just defined turns into a monoid which is an epimorphic image of Rad, as shown by

Proposition 2.1. (i) Rad is a monoid with respect to composition of functors

(ii) \mathbb{C} is a monoid with respect to the operation \circ defined above;

(iii) The map $R \mapsto \mathscr{C}_R$ is an epimorphism of Rad onto \mathbb{C} .

Proof. For $R, S \in \text{Rad}$, RS is clearly a normal subfunctor of the identity. Under the natural epimorphism $\phi: A/RS(A) \to A/S(A)$, $\phi(S(A/RS(A))) \subset S(A/S(A)) = 0$, and so $S(A/RS(A)) \subset \ker \phi = S(A)/RS(A)$. Therefore $RS(A/RS(A)) \subset R(S(A)/RS(A)) = 0$. Now $A \in \mathscr{C}_{RS}$ if and only if RS(A) = 0, i.e., iff $S(A) \in \mathscr{C}_R$. Since $A/S(A) \in \mathscr{C}_S$, $S(A) \in \mathscr{C}_R$ iff $A \in \mathscr{C}_R \circ \mathscr{C}_S$. Conversely, if $0 \to K \to A \xrightarrow{\pi} A/K \to 0$, with $K \in \mathscr{C}_R$ and $A/K \in \mathscr{C}_S$, then $\eta(S(A)) \subset S(A/K) = 0$, i.e., $S(A) \subset K$, and so $RS(A) \subset R(K) = 0$. Hence $A \in \mathscr{C}_{RS}$.

The operation \circ in \mathbb{C} generalises the composition of varieties in groups. Therefore the collection of varieties is a submonoid of $\langle \mathbb{C}, \circ \rangle$.

Given a set \mathscr{R} of radicals we define the intersection $S = \bigcap_{R \in \mathscr{R}} R$ by $S(X) = \bigcap_{R \in \mathscr{R}} R(X)$.

Proposition 2.2 The intersection $S = \bigcap_{R \in \mathcal{A}} R$ is a radical; $\langle \text{Rad}, \cap \rangle$ is a monoid.

Proof. For $f: X \to Y$, $f(S(X)) \subset \cap f(R(X)) \subset \cap R(Y) = S(Y)$. Now $R(X/S(X)) \subset R(X)/S(X)$ for all $R \in \mathcal{R}$ since $X/S(X) \to X/R(X)$ (epimorphism with kernel R(X)/S(X)) takes R(X/S(X)) into 0. So $S(X/S(X)) \subset \cap (R(X)/S(X)) = 0$.

The intersection was employed in [1] to construct an idempotent radical \overline{R} from a given radical R, such that $\mathscr{B}_{\overline{R}} = \mathscr{B}_{R}$. For ordinals v, denote $R^{v+1} = R \circ R^{v}$ and $R^{v} = \bigcap_{i < v} R^{i}$ for limit ordinals v. Then put $\overline{R} = R^{v}$, v the first ordinal such that $R^{v} = R^{v+1}$.

We denote by p Rad the collection of pre-radicals on (Λ, Σ) -mod, namely normal subfunctors of the identity on (Λ, Σ) -mod. Evidently $\langle p \operatorname{Rad}, \circ \rangle$ is a monoid. With $\mathbb{B} = \{\mathscr{B}_R | R \in p \operatorname{Rad}\}$ we have an obvious isomorphism of monoids $\langle p \operatorname{Rad}, \circ \rangle$ and $\langle \mathbb{B}, \cap \rangle$.

The following additional operation was defined on p Rad, in [1]. For $R, S \in p$ Rad and $A \in (\Lambda, \Sigma)$ -mod, $(R \times S)(A)/S(A) = R(A/S(A))$. This operation was employed to construct a radical \tilde{R} from a pre-radical R as follows. For every ordinal $v, R_{v+1} = R \times R_v$ and $R_v = \bigcup_{i < v} R_i$ for limit ordinals. Then put $\tilde{R} = R_v, v$ the first ordinal for which $R_v = R_{v+1}$. Then \tilde{R} is a radical, and \tilde{R} is idempotent if R is. (The classes $\mathscr{B}_R, \mathscr{C}_R$ are defined identically for pre-radicals, as they were for radicals.)

Proposition 2.3. Let R be an idempotent pre-radical. Then $\mathscr{B}_{R_n} \circ \mathscr{B}_{R_m} \subset \mathscr{B}_{R_{n+m}}$ for all positive integers n, m.

Proof. Let $B \triangleleft A$, $B \in \mathscr{B}_{R_n}$, $A/B \in \mathscr{B}_{R_m}$. Now $B = R_n(B) \subset R_n(A)$, so $R_m(A/R_n(A)) = A/R_n(A)$. Therefore, for m = 1 we obtain $R_{n+1}(A)/R_n(A) = R(A/R_n(A)) = A/R_n(A)$, i.e., $R_{n+1}(A) = A$. For m > 1, put $R_{m-1}(A/R_n(A)) = K/R_n(A)$. Then clearly $R_{m-1}(K/R_n(A)) = K/R_n(A)$, and $R_n(R_n(A)) = R_n(A)$. Therefore we may inductively assume that $R_{n+m-1}(K) = K$. Now

$$A/K \cong (A/R_n(A))/(K/R_n(A)) = R_m(A/R_n(A))/R_{m-1}(A/R_n(A))$$

= $R((A/R_n(A))/R_{m-1}(A/R_n(A))) = R((A/R_n(A))/(K/R_n(A)))$
 $\cong R(A/K).$

Hence R(A/K) = A/K, and $R_{n+m-1}(K) = K$. Therefore $R_{n+m}(A) = A$.

Proposition 2.4. Let $R \in p$ Rad. Then $\mathscr{C}_{R^n} \circ \mathscr{C}_{R^m} \subset \mathscr{C}_{R^{n+m}}$ for all positive integers, n, m.

Proof. Let $K \lhd A$, with $R^n(K) = R^m(A/K) = 0$. Then $(R^m(A) + K)/K \subset R^m(A/K) = 0$, and so $R^m(A) \subset K$. Therefore $R^{n+m}(A) = R^n(R^m(A)) \subset R^n(K) = 0$.

A well-known example in group theory: Let $K \lhd A$, K a group nilpotent of class $\leq n$, A/K nilpotent of class $\leq m$. Then A is nilpotent of class $\leq n+m$.

The previous example suggests the importance of extending beyond the classes \mathscr{C}_{R^n} , R a pre-radical, or radical, in order to obtain a theory which would include the class of nilpotent groups, and the class of solvable groups. This may be done as follows:

Lemma 2.5. Let $\mathcal{R}, \mathcal{S}, \mathcal{T}$ be subsets of Rad. Put

$${}_{\mathcal{A}}\mathcal{C} = \bigcup_{R \in \mathcal{A}} \mathcal{C}_{R}, \quad {}_{\mathcal{G}}\mathcal{C} = \bigcup_{S \in \mathcal{S}} \mathcal{C}_{S}, \quad {}_{\mathcal{T}}\mathcal{C} = \bigcup_{T \in \mathcal{F}} \mathcal{C}_{T}.$$

Then

$$({}_{g}{\mathscr{C}} \circ {}_{g}{\mathscr{C}}) \circ {}_{g}{\mathscr{C}} = {}_{g}{\mathscr{C}} \circ ({}_{g}{\mathscr{C}} \circ {}_{g}{\mathscr{C}}).$$

Proof. Let $A \in ({}_{\mathscr{R}} \mathscr{C} \circ {}_{\mathscr{F}} \mathscr{C}) \circ {}_{\mathscr{F}} \mathscr{C}$. Then there exists $B \lhd A$ such that $B \in {}_{\mathscr{R}} \mathscr{C} \circ {}_{\mathscr{F}} \mathscr{C}$ and $A/B \in {}_{\mathscr{F}} \mathscr{C}$. Also there exists $C \lhd B$ such that $C \in {}_{\mathscr{R}} \mathscr{C}$ and $B/C \in {}_{\mathscr{F}} \mathscr{C}$. Therefore there exist $R \in \mathscr{R}$, $S \in \mathscr{S}$ and $T \in \mathscr{T}$ such that $C \in \mathscr{C}_R$, $B/C \in \mathscr{C}_S$, and $A/B \in \mathscr{C}_T$. Hence $A \in (\mathscr{C}_R \circ \mathscr{C}_S) \circ \mathscr{C}_T = \mathscr{C}_R \circ (\mathscr{C}_S \circ \mathscr{C}_T)$, Proposition 2.1. Clearly $\mathscr{C}_R \circ (\mathscr{C}_S \circ \mathscr{C}_T) \subset {}_{\mathscr{R}} \mathscr{C} \circ ({}_{\mathscr{F}} \mathscr{C} \circ {}_{\mathscr{F}} \mathscr{C})$. The proof of the opposite inclusion is similar.

Consequence 2.6. Let \mathscr{R} be a subset of Rad, and put $_{\mathscr{R}}\mathscr{C} = \bigcup_{R \in \mathscr{R}} \mathscr{C}_R$. Then for every positive integer n, $(_{\mathscr{R}}\mathscr{C})^n = _{\mathscr{R}} \mathscr{C} \circ _{\mathscr{R}} \mathscr{C} \circ \ldots \circ _{\mathscr{R}} \mathscr{C}$ is independent of parenthesisation.

For example, let \mathcal{N} denote the class of nilpotent groups. Then \mathcal{N}^n is well defined for every positive integer n.

Consequence 2.7. Let $_{\mathscr{R}}\mathscr{C}$ be as in 2.6 and let $0 \neq G \in (\Lambda, \Sigma)$ -mod. If all the factors of the finite subnormal series $0 = G_0 \lhd G_1 \lhd \ldots \lhd G_n = G$ belong to $_{\mathscr{R}}\mathscr{C}$, then G possesses a non-trivial normal submodule belong to $_{\mathscr{R}}\mathscr{C}$.

In view of 2.6, Consequence 2.7 in effect states that if $G \in (\mathscr{AC})^n$, then G possesses a non-trivial, normal submodule belonging to \mathscr{AC} .

For a (Λ, Σ) -module A and a pre-radical R we call a series of (Λ, Σ) -modules $0 \lhd A_1 \lhd \ldots \lhd A_{\alpha} = A$ an ascending R-series if $A_{\beta+1}/A_{\beta} \in \mathscr{B}_R$ for every ordinal β and $A_{\beta} = \bigcup_{\nu < \beta} A_{\nu}$ for every limit ordinal β . A descending R-series is a series $0 = A_{\alpha} \lhd \ldots \lhd A_1 \lhd A$ which satisfies $A_{\beta}/A_{\beta+1} \in \mathscr{C}_R$ for every ordinal β and $A_{\beta} = \bigcap_{\nu < \beta} A_{\nu}$ for every limit ordinal β .

Proposition 2.8. Let R be an idempotent pre-radical. Then $A \in \mathscr{B}_{\tilde{R}}$ iff there exists an ascending R-series for A. In this case the sequence $0 \lhd R(A) \lhd \ldots \lhd \tilde{R}(A) = A$ is the unique upper R-series for A.

Proof. If $A \in \mathscr{B}_{R}$ then clearly $0 \lhd R(A) \lhd \ldots \lhd R_{\alpha}(A) = \tilde{R}(A) = A$ is an ascending *R*-sequence for *A*. Conversely, let $0 \lhd A_{1} \lhd \ldots \lhd A_{\alpha} = A$ be such a sequence. We claim: $A_{\beta} \subset R_{\beta}(A)$ for every index ordinal β . Assume $A_{\nu} \subset R_{\nu}(A)$ for all $\nu < \beta$. First take β not a limit ordinal, say $\beta = \nu + 1$. Since A_{β} and $R_{\nu}(A)$ are normal submodules it follows (since Λ is distributively generated) that $Y = A_{\beta} + R_{\nu}(A)$ is a normal submodule and

$$Y/R_{\nu}(A) \cong A_{\beta}/A_{\beta} \cap R_{\nu}(A) \cong (A_{\beta}/A_{\nu})/((A_{\beta} \cap R_{\nu}(A))/A_{\nu}),$$

and since $A_{\beta}/A_{\nu} \in \mathscr{B}_{R}$ it follows that $Y/R_{\nu}(A) \in \mathscr{B}_{R}$, [1] 4.2. Therefore

$$Y/R_{\nu}(A) = R(Y/R_{\nu}(A)) \subset R(A/R_{\nu}(A)) = R_{\beta}(A)/R_{\nu}(A).$$

Thus $Y \subset R_{\beta}(A)$ and so $A_{\beta} \subset R_{\beta}(A)$. Finally if β is a limit ordinal then

$$A_{\beta} = \bigcup_{\nu < \beta} A_{\nu} \subset \bigcup_{\nu < \beta} R_{\nu}(A) = R_{\beta}(A).$$

Proposition 2.9. Let R be a radical. Then $A \in \mathscr{C}_R$ iff there exists a descending R-series for A. In this case the series $0 = \overline{R}(A) \lhd \ldots \lhd R(A) = A$ is the unique lower R-series for A.

Proof. If $\beta = \nu + 1$ and Y is the submodule generated by $R^{\nu}(A) + A_{\beta}$ then $Y/A_{\beta} \in \mathscr{C}_R$ and under the natural map $Y \to Y/A_{\beta}$ the submodule $R^{\beta}(A)$ goes to 0. So $R^{\beta}(A) \subset A_{\beta}$. The rest is similar to the proof of the preceding proposition.

REFERENCES

1. S. FEIGELSTOCK and A. KLEIN, Functorial radicals and non-abelian torsion, *Proc. Edinburgh Math. Soc.* 23 (1980), 317–329.

2. W. MAGNUS, A. KARRASS and D. SOLITAR, *Combinatorial Group Theory* (Interscience, NY and London, 1966).

3. H. NEUMANN, Varieties of Groups (Springer, NY, 1967).

BAR-ILAN UNIVERSITY RAMAT-GAN, ISRAEL