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Abstract

We give sufficient conditions for order-bounded convex operators to be generically
differentiable (Gateaux or Frechet). When the range space is a countably order-complete
Banach lattice, these conditions are also necessary. In particular, every order-bounded
convex operator from an Asplund space into such a lattice is generically Frechet
differentiable, if and only if the lattice has weakly-compact order intervals, if and only if
the lattice has strongly-exposed order intervals. Applications are given which indicate how
such results relate to optimization theory.

1. Introduction

Convex analysis plays a central role in the study of optimality conditions and in
non-linear analysis. Vector-valued convex operators occur naturally in a variety of
settings. This was illustrated in [1], [2] and we give further examples in Section 4
below. There has also been considerable interest in the differentiability properties
of non-linear operators, both for theoretical and applied reasons. If derivatives
are known to exist sufficiently often (almost everywhere or on a dense Gs subset)
then one can often reduce the problem being studied to a more tractable
differentiable problem. Moreover, convex operators are the most accessible class
of non-linear operators, and as such demand study even if one is more directly
interested in other, say Lipschitz, operators.

In our previous papers [1], [2] we studied the existence of subgradients for
continuous convex operators, and gave various results on the generic differentia-
bility of continuous convex operators. Kirov [4], [5] has continued this study,
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[2 ] Generic differentiability of convex operators 23

primarily by the use of generalized monotone operators. In [5] he observes that
much more can be said if the operators are required to be order-bounded rather
than merely convex. In this paper, we adapt the techniques of [1] and [3] to
establish differentiability results for order-bounded convex operators between
ordered Banach spaces. We also show that when the range space is an order-com-
plete Banach lattice, our conditions are both necessary and sufficient. These
results considerably extend various theorems given in [5].

We commence by recalling necessary facts and notations. The reader is directed
to [1] and [7] for further details. For simplicity we restrict ourselves to Banach
space. Let X be a Banach space and let Y be a (partially) ordered Banach space
with closed normal positive cone S. We denote the induced order by < or < s.
(Recall that S is normal if and only if there is an equivalent renorming with
0 < s y < s x implying ||.y|| < ||x||.) As elsewhere we adjoin an abstract "oo" to Y
and S and consider mappings / between X and 7 U {oo}, written Y. Then
/ : X -* Y is (S-) convex if for 0 < t < 1 and xv x2 in d o m / : = ( x G l : f(x) e
Y} one has

f(txx +(1 - 0*2) < , ' /(*i) +(1 - t)f{x2). (1.1)
We will say that / is order-bounded at x in dom/ if one can find a

neighbourhood N of zero and some y e Y such that
x + N <z{xe=X:f(x) ^sy). (1.2)

Obviously such an x lies in int(dom/). Moreover, when / is convex and
order-bounded at some 3c, it is actually order-bounded throughout int(dom/).
We will call such a mapping (locally) order-bounded. Since the cone is normal,
order-bounded convex maps are continuous; but the converse obtains only when
int(S) is non-empty. In general, even such nice convex mappings as the absolute
value on a Banach lattice are not order-bounded.

Let us also recall that the cone S is Daniell if every positive decreasing net
converges. When Y is a Banach lattice this is equivalent to the norm being
order-continuous, [7, Theorem 5.11]. We make one new definition. We will say
that an order interval [0,x]:= {y e Y: 0 ^ sy ^ s x) is strongly exposed (by <j>
in [0,x]+ : = { g £ Y*: g(y) > 0 for y e [0,JC]}) if, for all e > 0 there exists
8 > 0 such that

0<sy^sx3ind4>(y)^ S implies ||^|| < e. (1.3)

If we may only assert that

0 ^sy < j x and <}>(y) = 0 implies y = 0 (1.4)

we say that the interval is exposed (by </>).
Finally, a Banach space X is an Asplund space, respectively a weak Asplund

space, if every extended real-valued convex function on X is generically Frechet,
respectively Gateaux, differentiable throughout the interior of its domain. (A set
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is generic if it contains a dense Gs.) Asplund spaces include reflexive spaces and
separable dual spaces; weak Asplund spaces include all weakly compact gener-
ated spaces and so all separable spaces. (See [1] and references therein.)

2. Sufficient conditions for generic differentiablity

Our central result is:

THEOREM 2.1. Let X be a Banach space, let Y be an ordered Banach space whose
cone S is closed and normal, and let f: X -» Y be order-bounded and S-convex.
Suppose S is Daniell.

a] / / X is an Asplund space and order intervals in Y are strongly exposed, then f is
generically Frechet differentiable throughout the interior of its domain.

b] / / X is a weak Asplund space and order intervals in Y are exposed, then f is
generically Gateaux differentiable throughout the interior of its domain.

PROOF. Let x in int(dom/) be given. Select y in Y and a ball N around zero
such that (1.2) holds.

Let x e x + N. Then, as / is convex,
y-/(x)>f(x + x)-f(x)>f(x) -f{x - x)>f(x)-y,

and f(x + N) lies in an order interval, [a, b]. Again by convexity, for x in
x + ^N and h in \N we have

f{x) - / { x _ h)
I S

for 0 < / < s < 1. Since f(x)-f(x - h) > a - b, and as S is Daniell, the
directional minorant

t

exists for x in x + jN and h in X. Moreover, V/(*; •) is convex and finite and,
again since S is Daniell,

Vf(x;h)= h m ^ / J v ' . (2.1)
t io t

a] Now, let <j> strongly expose [0, b - a]. Since / is S-convex with f(x + N)<z
[a, b] while <j> e [0, b — a]+, <j>f is convex on x + N. Since X is Asplund, there is
a dense Gs subset, G, in x + N such that </>/ is Frechet differentiable at points of
G. We show (much as in [1]) that / is actually Frechet differentiable on G. Let x
lie in G. First observe that, for 0 < t < 1

0 < / ( j C + ^ - / ( x ) - Vf{x; h) < 2f> - a), (2.2)
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I41 Generic differentiability of convex operators 25

for x e x + \N and h e \N. Also V<t>f(x; h) = <t>Vf(x; h) and, as V <£/(*; •) is
linear, we have

0^Vf(x;h) + vf(x;-h)^2(b-a) (2.3)
and

<t>(vf(x;h) + vf(x;-h)) = O. (2.4)
Since <f> exposes [0, ft - a], (2.3) and (2.4) show that V/(x; •) is linear, being both
sublinear and homogeneous. This, in conjunction with (2.1), shows that / is
linearly Gateaux differentiable at x. To complete the argument let e > 0 be given
and choose S > 0 to satisfy (1.3) with x := 2(b - a). Then, as <j>f is Frechet at x,
we may find y > 0 so that when h lies in \N

for 0 < t < y. Since (2.2) holds, we have

if 0 < t < y and h e \N. As V/(x; •) is linear and continuous we are done.
b] This follows as in the first part of the previous proof.
Conditions for a cone to be Daniell were discussed in detail in [1]. Conditions

for exposed intervals are as follows:

PROPOSITION 2.1. Let Y be a Banach space partially ordered by a normal closed
cone S.

a] Order intervals in Y are exposed if
(i) S has separable order intervals; or (ii) S has a base; or (iii) Y has an

equivalent strictly convex renorm which is S-monotone (0 < y < x implies \\y\\ <
IWD-

b] Order intervals in Y are strongly exposed if
(i) S has norm compact intervals; or (ii) S has a bounded base; or
(iii) Y has equivalent locally uniformly convex renorm which is S-monotone.

PROOF. Let x in S be fixed with x * 0.
a] (i) The cone generated by the order interval [0, x] is separable and so has a

base, B, [1] and as the space is locally convex we may separate 0 and B to
produce an exposing functional. This also establishes (ii). In case (iii) we argue
that the unique tangent, <f>, to the renormed strictly convex ball # := {y e Y:
\\y\\ < 11*11} exposes x in N and, by monotonicity, exposes x in [0, x]. But then <p
exposes [0, x] as well.

b] (i) Since [0, x] is exposed by a] (i) and compact (every sequence has a
convergent subsequence) it is strongly exposed; indeed, otherwise we have e > 0
and <j>(xn) tending to 0 for ||xn|| > e and 0 «£ xn < x. Since (xn) has a convergent
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26 J. M. Borwein (s]

subsequence in norm, this is impossible, (ii) was established in [1]. (iii) Now <j>
strongly exposes the renormed locally uniformly convex ball at x and so strongly
exposed 0 in [0, x].

If the domain is not Asplund or weakly Asplund, or if the operator is not
order-bounded, the examples given in [1] show that Theorem 2.1 will generally
fail.

We continue by studying the case in which Y is a lattice.

3. Lattice characterizations

We suppose now that Y is a Banach lattice (a complete normed vector lattice
whose norm satisfies \\y\\ < ||x|| whenever \y\ < \x\). The key result is:

PROPOSITION 3.1. Let Y be a Banach lattice. Then the following are equivalent:
i] Y has a lattice equivalent locally uniformly convex Banach lattice renorming.
ii] Order intervals in Y are strongly exposed.
iii] Order intervals in Y are weakly compact.
iv] The lattice cone in Y is Daniell.

PROOF, i] =» ii]. Since strong exposure is preserved by lattice isomorphisms, this
follows from b] (iii) of Proposition 2.1. ii] => iii]. If Y possesses a non-weakly
compact order interval then one can construct a lattice orthogonal norm one
sequence (xn) in Y with 0 < xn < x0 for all n, [7, p. 94]. Now

n n

sn := £ xk = V ^ i ^ *o since xk A x = 0 for k ¥= j .
k-i *=i

Hence, for any positive <f> in Y*, (</>(*„)) is isotone and majorized. Thus <t>(xn)
tends to zero. Since Y is a Banach lattice (xn) is weakly convergent to 0. This
certainly means that [0, x0] is not strongly exposed, as each xn is norm one.
iii] => iv]. This implication holds for any partial order [1]. iv] =» i]. Since Y is a
Daniell Banach lattice, Y is order continuous and we apply the Davis-Ghous-
soub-Lindenstrauss renorming theorem [3] to complete the hard step. (The
theorem guarantees a locally uniformly convex lattice equivalent renorm for an
order continuous Banach lattice.)

As observed in [6, p. 28], it is also equivalent to assume that Y has a
lattice-equivalent Kadec norm. Note also that every a-finite Lx(n, E) has a
lattice-equivalent strictly-convex lattice renorming. Simply let E := U" = 1 En where
/»(£„) < 1, and let || • || be given by | | / | | := \\f\\x + £ » = 1 2 - « | | / | / y 2 .
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[ 61 Generic differentiability of convex operators 27

Also, in Lp(ii), 1 < p < oo, (with the s tandard ordering), it is easy to exhibit
the strongly exposing functional for [0,5c]. We have <j> := xp~l G Lq(\i) (q + p =
pq) and 0 *£ .y < x implies 4>(y) = fxp~lyd\i > \\y\\p.

THEOREM 3.1. Let Y be a countably order-complete Banach lattice. Then the
following are equivalent.

i] Order intervals in Y are strongly exposed.
ii] Order intervals in Y are weakly compact.
iii] Suppose that f:X—>Y is convex and order-bounded while X is an Asplund

space. Then f is generically Frechet differentiable.
iv] Suppose that f:X—>Y is convex and order-bounded while X is a weak

Asplund space. Then f is generically Gateaux differentiable.
v] Suppose that f: R -* Y is convex and order-bounded. Then f is generically

Gateaux differentiable.
vi] Y contains no Banach sub-lattice isomorphic to /M(N).

PROOF, i] «=» ii] follows from Proposition 3.1. ii] <=> iii]. Since the cone is normal
and Daniell, Theorem 2.1 a] now applies, ii] <=> iv] follows similarly from part b]
of the theorem. Clearly iii] implies v] and iv] implies v]. To complete the circle we
establish that v] implies vi] and vi] implies ii]. v] => vi]. Suppose that Y contains a
lattice copy of 1M(N). There is no loss in assuming Y = lm(N). Then let {/•„:
n G N} be chosen dense in [-1,1]. Let / : R -» /^(N) be defined (as in [4]) by

/(/•):= sup|r-rj.
neN

Clearly, / is convex and order-bounded. Moreover, if \r\ < 1, / is not Gateaux
differentiable at r. Indeed, since [rn: n G N} is dense in [-1,1] we may calculate
that

and so / is nowhere Gateaux differentiable on (-1,1). (Note that, nonetheless, /
has a unique linear subgradient whenever / • ^ { r n : « e N } . )

vi] => ii]. Since Y is countably order-complete this follows from [7, Theorem
5.14].

The equivalences fail if Y is not countably order-complete. Indeed, f(x):= \x\
on X:= Y:= C[0,1] is nowhere Gateaux differentiable on N:= {x e X: \\x -
x\\ < 2} where x(t) := 1 - It for 0 < t < 1, [1]. This is not entirely obvious, but
follows after some routine but tedious calculations.
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Kirov's Corollaries in [5] regarding Frechet differentiability or order-bounded
convex operators (established by entirely different methods) are all special cases
of Theorem 3.1, sometimes with redundant hypotheses. He requires X to be a
reflexive Banach space and Y to be a Banach lattice such that either a) intervals
are norm compact, or b) intervals in Y and Y* are weakly compact, or c) intervals
in y are weakly compact and / has only compact subgradients.

4. Applications

a] We consider the following vector convex program (VCP):

A(w):= vaij{x) subject to g ( x ) < t « . (4.1)

We assume that / : X -* Y is S-convex and that g: X -> U is ^-convex. We
suppose that int K is non-empty and that Slater's condition holds: there exists Jc
in dom/ with g(x) e -iniK. We also suppose that {Y, S) is a Banach lattice
with weakly compact order intervals, and so is order-complete.

Then, as in [1], [2], h defines another .S-convex mapping; which is actually
locally order-bounded as a consequence of Slater's condition. (More general
constraint qualifications ensure continuity but not order-boundedness.) Thus, if
we assume that A(0) is finite, h is order-bounded and convex on a neighbourhood
of zero. In particular, Theorems 2.1 and 3.1 apply to h and give conditions for h
to be generically differentiate. As explained in [1], if h is differentiable at u with
Gateaux derivative T, then -T is the unique Lagrange multiplier for (VCP). In
fact, if h is Fr6chet differentiable at u we may conclude that the subgradient of h
is norm-to-norm upper semi-continuous at «, [1].

b] Suppose now that / := A and g:= B are continuous linear mappings. Then
(VCP) becomes a form of the abstract Farkas lemma. Such inequality systems are
central to the study of positive operators [7].

As outlined in a] the differentiability points of h(u):= \nis{Ax\Bx < k u)
correspond to unique Lagrange multipliers. In this case T = Vh(u) if and only if
T is the unique linear operator solution to

Tv4sh(v), Vv&U (4.2)

and

Tu = h{u). (4.3)

This in turn means that T is the unique solution in L{U, Y) to

TB = A, T(K)cz -S, Tu = h(u). (4.4)
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[ 8 ] Generic differentiability of convex operators 29

c] Let / : X X T e R be convex in x e X and measurable in t e T. Suppose
that X is an Asplund space and that one can find k e Lp(T) (1 < p < oo) such
that

/ ( * , / ) « *(0 (4-5)
if H* — xo|| < e, for some e > 0, x0 e X. We define a convex operator F:
X -» £ p ( r ) by F(x)(0:= / (*, 0- Then (4.5) guarantees that F is locally order-
bounded. Theorem 3.1 applies and we may conclude that generically F is Frechet
differentiable.
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