THE CREATION OF LITHIUM IN GIANT STARS

I.-JULIANA SACKMANN

W. K. Kellogg Radiation Laboratory 106-38 California Institute of Technology, Pasadena, CA 91125, USA

AND

ARNOLD I. BOOTHROYD

Canadian Institute for Theoretical Astrophysics University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada

A time-dependent "convective diffusion" algorithm for convective transport in the mixing-length framework has been coupled for the first time with a self-consistent full evolutionary computation, in order to investigate theoretically the creation of superrich lithium stars on the asymptotic giant branch. For intermediate mass stars in the mass range from 4 to $7 M_{\odot}$ with both Population I and II compositions, hot bottom burning in the convective envelope was found, with maximum temperatures T_{ce} at the base of the convective envelope ranging from 20 to 100 million K, depending on stellar mass and mass loss rates. For $T_{ce} \geq 40$ million K, lithium-rich giants were produced (with log ε ⁽⁷Li) \gtrsim 1, i.e., above the normal observed range in giants). For $T_{ce} \geq 50$ million K, superrich lithium giants were created, with log ε ⁽⁷Li) \gtrsim 3 (i.e., *larger* than the present *cosmic* ⁷Li abundance). Superrich lithium giants were created for stars in the approximate mass range from 4 to 7 M_{\odot} for both Population I and II. Peak ⁷Li abundances were found to lie in the range $4 \lesssim \log \varepsilon$ (⁷Li) $\lesssim 4.6$, relatively *independent* of mass and chemical composition. We predict a narrow luminosity range for superrich lithium stars, namely $-6 \gtrsim M_{\text{hol}} \gtrsim -7.2$, i.e., $4.3 \lesssim \log L \lesssim 4.8$. Both the predicted peak ⁷Li abundances and the predicted luminosity range are in beautiful agreement with the observed values for the Galaxy and the Magellanic Clouds. High ⁷Li abundances persist for 10⁴ to 10⁵ years. Mass loss in AGB stars can strongly affect the ⁷Li production; it affects the peak ⁷Li abundance produced and the mass of lithium-rich material ejected into interstellar space, as well as the *timescale and luminosity range* over which

451

I. Appenzeller (ed.), Highlights of Astronomy, Vol. 10, 451-452.

© 1995 IAU. Printed in the Netherlands.

452

the superrich lithium phenomenon is observable. For a modest mass loss rate (a Reimers' wind with $\eta = 1.4$), superrich lithium stars are produced from 4 to 7 M_{\odot} . For a more *realistic* intermediate mass loss rate ($\eta = 5$), the 4 M_{\odot} star was prevented from becoming a superrich lithium star — it never even became lithium rich; for 5 through 7 M_{\odot} , the peak ⁷Li abundance is unaffected by the increased mass loss, but the mass of lithium-rich material ejected into space is greatly increased, and thus the total mass of lithium ejected from these stars increases by a factor of 3 over our modest mass loss case. For an *extreme* mass loss rate $(\eta = 14)$, even the 5 M_{\odot} star barely reaches superrich lithium abundances (log ε ⁽⁷Li) \approx 3), ejecting only minor amounts of lithium; on the other hand, the peak ⁷Li abundance in 6 and 7 M_{\odot} stars is *unaffected*, and the amount of lithium ejected by these stars is again increased, by a factor of 3 over the intermediate mass loss case. We conclude that intermediate mass AGB stars are major sources of cosmic lithium, able to account for $0.5^{-0.25}_{\pm 0.5}$ of the cosmic abundance with our most realistic mass loss rate $(\eta = 5)$. With the extreme mass loss case ($\eta = 14$), AGB stars can also provide $0.5^{-0.25}_{+0.5}$ of the cosmic lithium, while the modest mass loss rate ($\eta = 1.4$) can provide $0.2^{-0.1}_{\pm 0.2}$ of the cosmic lithium.