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Positively Curved Riemannian Locally
Symmetric Spaces are Positively Squared
Distance Curved
Philippe Delanoë and François Rouvière

Abstract. The squared distance curvature is a kind of two-point curvature the sign of which turned out
to be crucial for the smoothness of optimal transportation maps on Riemannian manifolds. Positivity
properties of that new curvature have been established recently for all the simply connected compact
rank one symmetric spaces, except the Cayley plane. Direct proofs were given for the sphere, and an
indirect one (via the Hopf fibrations) for the complex and quaternionic projective spaces. Here, we
present a direct proof of a property implying all the preceding ones, valid on every positively curved
Riemannian locally symmetric space.

1 Introduction

A new notion of curvature was discovered in [27] while investigating the smoothness
of the solution of Monge’s problem posed with smooth data (a problem briefly de-
scribed below, see [30]). The sign of a fourth order expression involving solely the
cost function c of the problem, a two-point function, turned out to be crucial for
the smoothness issue. The curvature nature of that expression (actually, of a push-
forward of it, called cross-curvature) was elucidated in [20]. The expression itself
was called cost-curvature [25,26], c-curvature [11,12], or up to a 3

2 normalization fac-
tor, MTW tensor [16]. On a closed Riemannian manifold M (closed meaning here:
compact connected without boundary), the Brenier–McCann cost function, equal to
(half) the distance d squared, is an emblematic example for which Monge’s problem
with smooth data can be solved [2, 3, 28], in other words, for which one can find a
measurable map F : M → M that pushes a given smooth positive probability measure
dµ to another such one and minimizes the total cost functional

∫
M

1
2 d2(m, F(m)) dµ.

In that case, the optimal map must read F(m) = expm(∇u(m)) for some potential
function u : M → R, and the c-curvature may be defined as follows.

Definition 1.1 Let m ∈ M and V ∈ TmM be such that the geodesic t ∈ [0, 1] →
expm(tV ) contains no cut point of m. For each (X,Y ) ∈ (TmM)2, the c-curvature at
(m,V,X,Y ) is given by

C(m,V )(X,Y ) = − ∂4

∂τ 2 ∂t2
c
(

expm(tX), expm(V + τY )
) ∣∣∣

t=0=τ
, with c =

1

2
d2.
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The smoothness of the optimal map F is analyzed by viewing F as a diffeomor-
phism whose potential function u satisfies the Monge–Ampère equation that arises
as the change of variable (or Jacobian) equation expressing the prescribed measure
transport condition. The authors of [27] were able to derive from that equation an
interior one-sided a priori estimate on the second derivatives of u based on the fol-
lowing condition, which they denoted by (A3): there exists a constant σ > 0 such
that, for each (m,V,X,Y ) as in Definition 1.1, the lower bound C(m,V )(X,Y ) >
σ|X|2|Y |2 holds provided X and Y are orthogonal. Assuming this condition forces
the manifold M to have its curvature bounded below by 3

2σ [25] (see Remark 1.3).
Trudinger conjectured that a closed Riemannian manifold should satisfy (A3) pro-
vided it is positively curved with slowly varying Riemann tensor. The class of Rie-
mannian locally symmetric spaces with positive curvature is thus a privileged one
regarding the smoothness issue in optimal transportation theory. In [26] condition
(A3) was verified on the standard n-sphere, and the desired smoothness result for the
map F followed from [10,13]. In order to deal with more general manifolds, variants
of (A3) subsequently appeared, namely:

(i) the weaker condition (A3W) of [29] obtained by letting σ = 0 in (A3), a con-
dition shown to be necessary for the continuity of the optimal transport map
[25];

and two conditions due to Kim–McCann [21] (see also [12]):

(ii) the non-negatively c-curved (or NNCC) condition, obtained by dropping the
condition X ⊥ Y in (A3W);

(iii) the almost-positively c-curved (or APCC) condition, obtained from (NNCC)
by further requiring that C(m,V )(X,Y ) = 0 if and only if the span of the vectors
(V,X,Y ) has dimension at most 1.

The condition (NNCC) is stable under Riemannian products, unlike (A3W) if one
of the factors does not satisfy (NNCC), and each of the above conditions is stable
under Riemannian submersion [21]. Importantly, the condition (APCC) holds on
Sn [21] (see also [11, 15, 26]). Combining the latter result with the former stability
one, applied to the Hopf fibrations S2k+1 → CPk [1, 22] and S4k+3 → HPk [1, 17, 19],
Kim and McCann inferred that (A3) and (APCC) hold on CPk and HPk [21]. Among
simply connected, compact, rank one symmetric spaces, the sole case of OP2 remains
open [4, 5, 18, 19]. The latter cannot be submersed by S23 with totally geodesic fibres
(see [14] and references therein). In this paper, we fill this gap by giving a direct proof
of the following somewhat stronger result, inspired by [12].

Theorem 1.2 Let M be a closed Riemannian manifold. If M is a positively curved,
Riemannian, locally symmetric space, there exists a constant σ > 0 such that, for each
(m,V ) ∈ M × TmM as in Definition 1.1 and for every couple (X,Y ) of nonzero vectors
of TmM, setting x = X

|X| , y = Y
|Y | , the following inequality holds:

(1.1) C(m,V )(X,Y ) > σA2(m,V, x, y)|X|2|Y |2,

where A2(m,V, x, y) = 1− 〈x, y〉2 + |V |2 − 〈x,V 〉2 + |V |2 − 〈y,V 〉2 is the sum of the
squared areas of the parallelograms of TmM respectively defined by the vector-couples
(x, y), (x,V ), (y,V ).
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By the Cauchy–Schwarz inequality, A2(m,V, x, y) is nonnegative, vanishing if and
only if the span of (V, x, y) has dimension at most 1. Moreover, A2(m,V, x, y) > 1 if
x ⊥ y. So Theorem 1.2 implies that the conditions (A3) and (APCC) hold on every
closed, positively curved, Riemannian, locally symmetric space. For convenience, let
us call a manifold positively c-curved, or PCC, whenever it satisfies the conclusion of
Theorem 1.2.

Remark 1.3 On every closed, positively curved, Riemannian manifold, the inequal-
ity (1.1) is obviously fulfilled along the zero section of TM, that is at V = 0, due to
the identity C(m, 0)(X,Y ) ≡ 2

3 Sm(X,Y,X,Y ), where Sm denotes the sectional curva-
ture tensor of M at the point m [11, 25]. Henceforth, we take V 6= 0 with no loss of
generality.

Theorem 1.2 combined with the smoothness arguments given in [21] yields the
smoothness of the solution of Monge’s problem with smooth data posed on an ar-
bitrary, simply connected, positively curved, Riemannian, locally symmetric space.
Dropping simple connectedness, such a smoothness result still holds by a standard
covering space argument [11, p. 412].

The outline of the paper is as follows. Section 2 contains a direct unified proof of
Theorem 1.2 based on the validity of the latter for constant curvature spheres. The
validity in question is established in Section 3. Finally, in Section 4, we enlarge the
scope of Theorem 1.2 and point out an open question.

2 Reduction of the Proof to the Case of Constant Curvature Spheres

In this section, we prove the following result.

Proposition 2.1 If Theorem 1.2 holds for constant curvature spheres, it holds for any
closed, positively curved, Riemannian, locally symmetric space.

We will proceed by direct intrinsic calculations. Following Loeper’s idea [26], we
will first compute a convenient expression of the Jacobi quadratic form that arises by
taking the two t-derivatives of the cost function c indicated in Definition 1.1. Then
we will be ready to differentiate that expression twice with respect to τ and obtain the
desired c-curvature. Finally, taking it for granted on Sn[1],we will establish the lower
bound (1.1) in the general case. Accordingly, the proof of Proposition 2.1 is split into
three steps.

2.1 Step 1: Jacobi Quadratic Form

On a closed Riemannian manifold M, for each (m,V ) as in Definition 1.1 and X ∈
TmM, the second derivative of the function t 7→ c(expm(tX), expm(V )) at t = 0 is
given by [11, 16, 30]:

(2.1)
∂2

∂t2
c
(

expm(tX), expm(V )
) ∣∣∣

t=0
=
〈
JV (X),X

〉
,

where JV is a symmetric endomorphism of TmM constructed as follows. Given V ∈
TmM such that the geodesic t ∈ [0, 1] → γ(t) = expm(tV ) contains no conjugate
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point, the Jacobi equation along γ (recalled below, see for instance [8, 22]) admits a
unique solution t ∈ [0, 1] → J(t) ∈ Tγ(t)M with given Cauchy data

(
J(0), ∇ J

dt (0)
)

.
Solutions of the Jacobi equation along γ are called Jacobi fields along γ. The Jacobi
endomorphism along γ (or V ) is the linear map X ∈ TmM → ξ = JV (X) ∈ TmM
defined by demanding that the Jacobi field with Cauchy data (X, 0) and the one with
Cauchy data (0, ξ) coincide at t = 1.

Remark 2.2 The linear map, which associates with each vector ξ ∈ TmM the vector
of Tγ(1)M equal to the value at t = 1 of the Jacobi field with Cauchy data (0, ξ), is
nothing but the map d(expm)(V ) : TmM → Tγ(1)M. It is an isomorphism if and
only if the geodesic γ contains no conjugate point, as is well-known [8]. So, the
latter condition on γ (or else, on (m,V )) is exactly the one under which the Jacobi
endomorphism JV may be defined.

Let us compute the expression of JV (X). The Jacobi equation along the geodesic
γ reads

(2.2)
∇2 J

dt2
+ Rγ̇(t)( J) = 0 ,

where γ̇ = dγ
dt and RU (ξ) = Rp(ξ,U )U whenever p ∈ M, (U , ξ) ∈ (TpM)2, setting

Rp for the Riemann tensor at p, here with the sign convention given by: Rp(ξ,U ) =[
∇ξ,∇U

]
−∇[ξ,U ] [8, 22]. For U 6= 0, the endomorphism RU of TpM is symmetric

and maps U⊥ to itself. It is called the curvature operator along the vector U , and
Rγ̇(t), is called the curvature operator along the geodesic γ. From now on, we assume
that the Riemannian manifold M is positively curved and locally symmetric.

Positive curvature implies that the eigenvalues of the curvature operator along any
non zero vector U ∈ TpM, restricted to U⊥, are positive. The square root operator√
RU : TpM → TpM is thus a well-defined symmetric endomorphism. Moreover, by

local symmetry, the curvature operator is parallel along any geodesic, and hence so
is its square root. If M is simply connected, it must be a symmetric space (Cartan’s
theorem, see [8, 18, 23, 24]), and each cut point must be a conjugate point [9, 19].
Furthermore, all the geodesics are simply closed of constant length [6,7,19], a length
that we take to be equal to π with no loss of generality. Now, for each p ∈ M and
non zero vector U ∈ TpM, the eigenvalues of the operator

√
RU , restricted to U⊥,

are equal to |U | or to 2|U | [6, 7, 18, 19]. Setting E1(U ), E2(U ), for the corresponding
eigenspaces and E0(U ) = RU , we have the orthogonal decomposition

(2.3) ∀p ∈ M, ∀U ∈ TpM \ {0}, TpM = E0(U )⊕ E1(U )⊕ E2(U ).

Besides, if n = dim M and d = dim E2(U ), then d + 1 must divide n [6, 7] and be
equal to one of the following values: d = n − 1 when M = Sn[4], or d = 1 when
M = CPk, or d = 3 when M = HPk, or d = 7 when M = OP2 [4, 5, 18, 19].
Here, with our normalization (length of simple closed geodesics equal to π), each of
these spaces is understood to have the appropriate sectional curvature (holomorphic,
quaternionic, or octonionic) equal to 4.
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Finally, if M is not simply connected, the preceding properties hold for its univer-
sal covering space Π : M̃ → M equipped with the pulled-back Riemannian metric.
Since the covering map Π is a local isometry, the spectral properties of the symmet-
ric endomorphism

√
RU : TM → TM and the related eigenspaces decomposition

(2.3) remain valid on M. In other words, the topology of M is inessential for the
calculation of the Jacobi endomorphism, hence for that of the c-curvature as well.

Using the splitting (2.3) with (p,U ) =
(
γ(t), γ̇(t)

)
, for each t ∈ [0, 1], it is

well known [1, p. 82] that the Jacobi field J along the geodesic γ determined by the
Cauchy data (X, ξ) ∈ (TmM)2 has the expression

(2.4) J(t) = X0(t) + tξ0(t) + cos(t|V |) X1(t) +
sin(t|V |)
|V |

ξ1(t)

+ cos(2t|V |) X2(t) +
sin(2t|V |)

2|V |
ξ2(t),

where we have denoted by t 7→ v(t) the parallel vector field along γ equal to v ∈ TmM
at t = 0. Indeed, one readily checks that J(t), given by (2.4), satisfies (2.2) and
that the Cauchy data ( J(0), ∇ J

dt (0)) coincide with (X, ξ). Here, Remark 2.2 and our
assumption on V yield the important bound

(2.5) 2|V | < π.

From (2.4) and (2.5), we infer that the Jacobi endomorphism reads

JV (X) = X0 +
(
|V | cot |V |

)
X1 +

(
2|V | cot 2|V |

)
X2,

for every X ∈ TmM, with Xi ∈ Ei(V ), i = 0, 1, 2. Note that, if X1 = 0 (resp.
X2 = 0), this is formally the expression of the Jacobi endomorphism of Sn[1] (resp.
Sn[4]). Using the identity 2 cot 2r = cot r − tan r (with r = |V |), we can rewrite the
right-hand side of the preceding equation as

JV (X) = X +
(
|V | cot |V | − 1

)
(X − X0)−

(
|V | tan |V |

)
X2.

Taking the scalar product with X, we obtain our first expression of the Jacobi
quadratic form, namely

(2.6)
〈
JV (X),X

〉
= |X|2 +

(
|V | cot |V | − 1

)(
|X|2 − |X0|2

)
−
(
|V | tan |V |

)
|X2|2.

Recalling (2.1) and anticipating the calculation of the c-curvature, we face a difficulty:
if X 6= 0, the factors |Xi |2 appearing on the right-hand side of (2.6) depend on X and
V ; for fixed X 6= 0, how can we differentiate them with respect to V ? The trick is to
reverse the roles of X and V by considering the 2× 2 system

|V |2|X1|2 + |V |2|X2|2 = |V |2|X|2 − |V |2|X0|2,

|V |2|X1|2 + 4|V |2|X2|2 =
∣∣√RV (X)

∣∣ 2
,
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and by observing that the right-hand sides are symmetric with respect to X and
V . Indeed, on the one hand, from the very definition of X0, we derive the equal-
ity |V |2|X0|2 = 〈X,V 〉2. On the other hand, from the symmetries of the Riemann
tensor, we have 〈RV (X),X〉 ≡ 〈RX(V ),V 〉, or else, |

√
RV (X)|2 ≡ |

√
RX(V )|2. In

particular, we infer that
|V |2|X2|2 ≡ |X|2|V2|2,

where V2 ∈ E2(X) is given by the decomposition (2.3) arising from X. Thanks to
Remark 1.3, we can plug in (2.6) the resulting expression of |X2|2, as well as that of
|X0|2 just noted, getting:

(2.7)
〈
JV (X),X

〉
= 〈X,V 〉2

( 1− |V | cot |V |
|V |2

)
+ |X|2|V | cot |V |

− tan |V |
|V |

|X|2|V2|2.

This is the expression of the Jacobi quadratic form that we will work with.

Remark 2.3 If we let V2 = 0 (resp. V1 = 0) in (2.7), we formally obtain the
expression of the Jacobi quadratic form of Sn[1] (resp. Sn[4]). This is straightforward
for V2 = 0 (compare with [26]) while, for V1 = 0, it follows at once from the identity
cot r − tan r = 2 cot 2r (with r = |V |).

2.2 Step 2: c-curvature Calculation

We are ready to calculate C(m,V )(X,Y ). We only have to do it when the length of V
lies in (0, π2 ), since if V = 0, we are done by Remark 1.3, while the bound |V | < π

2
comes from (2.5). Recalling Definition 1.1 and (2.1), we take X 6= 0 with no loss of
generality, replace V by V +τY in (2.7), and differentiate the resulting equation twice
with respect to τ at τ = 0. After changing sign and using Remark 2.3 (with V2 = 0),
we obtain

(2.8) C(m,V )(X,Y ) = CSn[1](m,V )(X,Y )

+ |X|2 ∂
2

∂τ 2

( tan |V + τY |
|V + τY |

|V2 + τY2|2
)
τ=0

,

where CSn[1](m,V )(X,Y ) stands for the formal expression of the c-curvature that
would arise on Sn[1] [11, p. 106]. We defer the proof of (1.1) for constant curvature
spheres to Section 3 and, as in Proposition 2.1, we take it for granted in the sequel of
this section.

2.3 Step 3: Proof of the Lower Bound (1.1)

Suppose that we can prove the inequality

(2.9)
∂2

∂τ 2

( tan |V + τY |
|V + τY |

|V2 + τY2|2
)
τ=0

> 0.
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If so, the lower bound (1.1) follows from (2.8), since, by assumption, it holds for
CSn[1](m,V )(X,Y ). We are thus left with proving (2.9). Setting, for short, r = |V |
and v = V

r , a tedious calculation yields

∂2

∂τ 2

( tan |V + τY |
|V + τY |

|V2 + τY2|2
)
τ=0

= 2|Y2|2 f (r)

+ 4〈v2,Y2〉〈v,Y 〉 g(r) + |v2|2〈v,Y 〉2 h(r) + |v2|2|Y |2 g(r),

with

f (r) =
tan r

r
, g(r) =

1

cos2 r
− f (r), h(r) =

−3

cos2 r
+ 3 f (r) +

2r tan r

cos2 r
.

The functions f , g, h, are continuous on r ∈ [0, π2 ), respectively equal to 1, 0, 0 at
r = 0, and one can readily check the lower bounds

∀r ∈
[

0,
π

2

)
, f (r) > 1 and g(r) > 0.

The lower bound on g combined with the Cauchy–Schwarz inequality applied to
〈v2,Y2〉, yields:

∂2

∂τ 2

( tan |V + τY |
|V + τY |

|V2 + τY2|2
)
τ=0

> 2|Y2|2 f (r)

− 4|Y2||v2|
∣∣ 〈v,Y 〉∣∣ g(r) + |v2|2〈v,Y 〉2 h(r).

Let us view the right-hand side of that inequality as a quadratic form Q in the two
variables |Y2| and |v2||〈v,Y 〉|. The lower bound on f implies the desired non neg-
ativity of Q, provided we can prove that the reduced discriminant of Q, equal to
D(r) = 4g2(r)− 2 f (r)h(r), satisfies D < 0 on r ∈ (0, π2 ). Calculation yields:

D(r) = − 2E(r)

r2 cos3 r
with E(r) = cos r(sin r)2 + r sin r − 2r2 cos r.

So the proof boils down to checking the inequality E(r) > 0 on (0, π2 ). From a tech-
nical lemma of [21] (used to prove that (APCC) holds on Sn[1]), according to which:
sin2 r+r sin r−r2(1+cos r) > 0 on (0, π), we get E(r) > r2 cos r(1−cos r)( tan r

r −1) for
every r ∈ (0, π2 ). The right-hand side of this inequality is clearly positive on (0, π2 ),
so we are done.

Our proof of Proposition 2.1 implies that the conditions (A3) and (APCC) hold
on any positively curved, Riemannian, locally symmetric space, since they are known
to hold on Sn[1] [11, 15, 21, 26].
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3 The Case of Constant Curvature Spheres

Let us turn to the proof of the following proposition.

Proposition 3.1 Every constant curvature sphere is positively c-curved.

Before giving the proof itself, let us reduce it to the curvature 1 case. For each real
κ > 0, we set Sn[κ], 〈 · , · 〉κ, | · |κ, dκ,Cκ(m,V )(X,Y ), respectively for the sphere of
curvature κ, its Riemannian metric, norm, and distance function, and its c-curvature
at (m,V,X,Y ) with V satisfying

(3.1)
√
κ |V |κ ≡ |V |1 < π .

We further denote by Bκ(m,V,X,Y ) the expression A2(m,V, x, y)|X|2|Y |2 that oc-
curs in the right-hand side of (1.1) when calculated on Sn[κ]. Note that the Levi–
Civita connection of Sn[κ] is independent of the value of κ > 0, and hence, so is
the exponential map. Using this remark combined with the identity d1 ≡

√
κ dκ, we

infer from Definition 1.1 the scaling relation

C1(m,V )(X,Y ) ≡ κCκ(m,V )(X,Y ).

In addition, we readily get the pinching

κp Bκ(m,V,X,Y ) > B1(m,V,X,Y ) > κq Bκ(m,V,X,Y ),

with (p, q) = (3, 2) if κ > 1 (resp. (p, q) = (2, 3) if κ ∈ (0, 1)). Combining the
pinching with the scaling, we conclude that, for each κ 6= 1 :

(i) if (1.1) holds on Sn[1] with the constant σ1, it must hold on Sn[κ] with the
constant κq−1σ1 ;

(ii) if (1.1) holds on Sn[κ] with the constant σκ, it must hold on Sn[1] with the
constant κ1−pσκ,

with (p, q) given as above. So we have, indeed, reduced the proof of Proposition 3.1
to the curvature 1 case.

In [12], the condition (PCC) was shown to hold on S2[1]; it remains to be proven
only in higher dimension. To do so, let us revisit the proof of the (APCC) condi-
tion proposed for Sn[1] in the last section of [21], focussing on its Step 1, where
the calculation of CSn[1](m,V )(X,Y ) is reduced to the 2-dimensional case. Given
(m,V ) ∈ TSn satisfying (3.1), we assume with no loss of generality that V,X, and Y
do not vanish and set, for short,

x =
X

|X|
, y =

Y

|Y |
, r = |V |, v =

V

r
.

If v is parallel to y, it was shown in [21] that

CSn[1](m,V )(X,Y ) = 2 c3(r)
(

1− 〈x, v〉2
)
|X|2|Y |2,
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where c3(r) = (1− r cot r)/sin2 r is the function so denoted, and shown bounded
below by 1

3 on [0, π), in [15, p. 1701]. In that case, we infer that (1.1) holds for
CSn[1](m,V )(X,Y ) with σ = 2/(3(1 + π2)). If v is not parallel to y, setting p for the
orthogonal projection of TmSn on the 2-plane spanned at m by (v, y), it was shown
in [21] that

CSn[1](m,V )(X,Y ) = CS2[1](m,V )(pX,Y )

+
(

2 c3(r)〈y, v〉2 + c5(r)
(

1− 〈y, v〉2
))
|X − pX|2|Y |2,

where c5(r) = 1/sin2 r − cot r/r is the function so denoted, and shown bounded
below by 2

3 on [0, π), in [15, p. 1701]. Therefore, we obtain

(3.2) CSn[1](m,V )(X,Y ) > CS2[1](m,V )(pX,Y ) +
2

3
|X − pX|2|Y |2.

If pX = 0, we get at once (1.1) with σ = 2/(3(1 + 2π2)). If pX 6= 0, we recall from
[12] the existence of a constant α > 0 such that

CS2[1](m,V )(pX,Y ) > αB1(m,V, pX,Y ),

and note the obvious lower bound

2

3
|X − pX|2|Y |2 > 2

9
|X − pX|2|Y |2 +

2

9π2
|X − pX|2|Y |2|V |2

+
2

9π2
|X − pX|2

(
|Y |2|V |2 − 〈Y,V 〉2

)
.

Plugging these inequalities into (3.2) yields (1.1) with σ = min(α, 2/9π2). Alto-
gether, the lower bound (1.1) thus holds for CSn[1](m,V )(X,Y ) with the latter choice
of σ, uniformly with respect to (m,V,X,Y ) with |V | < π.

4 Conclusion

We would like to conclude this note by giving Theorem 1.2 its full scope. We require
a more general definition of the c-curvature used in [16]. Recalling Remark 2.2, it
can be stated as follows.

Definition 4.1 Let M be a complete Riemannian manifold and (m,V ) ∈ TM such
that the geodesic t ∈ [0, 1] → expm(tV ) ∈ M contains no conjugate point. Set JV

for the corresponding Jacobi endomorphism of TmM. For each (X,Y ) ∈ (TmM)2,
the extended c-curvature at (m,V,X,Y ) is given by

C(m,V )(X,Y ) = − ∂2

∂τ 2

〈
JV +τY (X),X

〉∣∣∣
τ=0

.
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The difference between our two definitions of the c-curvature lies in the assump-
tion made on (m,V ), which is stronger in Definition 1.1. Under the assumption of
Definition 1.1, we know from (2.1) that C(m,V ) ≡ C(m,V ). In particular, back
to M positively curved Riemannian locally symmetric, the two definitions coincide
anytime M is simply connected, because each cut point is a conjugate point [9]. But
Definition 4.1 is more general than Definition 1.1 if M has non trivial topology. In
that case, the proof given in this note shows that the lower bound (1.1) remains valid
for C(m,V )(X,Y ). In other words, Theorem 1.2 holds for the extended c-curvature.

Finally, the result of this paper prompts us toward a stability question in the spirit
of the Trudinger’s conjecture mentioned in the introduction, namely: is every closed,
positively curved, Riemannian manifold, positively c-curved, provided the gradient
of its Riemann tensor is small enough in C1 norm? This is a difficult question, settled
(affirmatively) only on S2 [12].
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