Journal of Glaciology, Vol. 17, No., 75, 1976

RADIO-ECHO SOUNDING OF TEMPERATE GLACIERS:
ICE PROPERTIES AND SOUNDER DESIGN CRITERIA*

By Raymonp D. Warrs and ANTHONY W. ENGLAND
(U.S. Geological Survey, Denver, Colorado 80225, U.S.A.)

Apstracr. This is the first paper in a two-part series which describes the design, operation, and testing
of a successful 5 MHz radio-echo sounder for temperate glaciers. This part deals with the electromagnetic
characteristics of temperate glaciers at radio frequencies. Earlier workers® problems in sounding through
temperate ice are explained in terms of electromagnetic scattering by water-filled voids. The frequency
dependence of the scattering indicates that returns from scatterers diminish rapidly at frequencies below
about 10 MHz. A system with the following characteristics is recommended: a transmitted pulse with a
center frequency of about 5 MHz, duration of about 1 cycle, and a receiver which is untuned and which
measures field intensity rather than power. Spectral methods for studying the size distribution of scatterers
are presented. An actual instrument and field trials will be described in a forthcoming publication by R. S.
Vickers and R. Bollen.

ResumE. Sondages par écho-radio dans les glaciers lempérés: propriétés de la glace et eritéres pour la construction des
appareils de sondage. Ceci est la premiére partie d’une série en deux articles qui décrit I'appareillage, la mise
en oeuvre et le contréle d’un appareil efficace 4 5 MHz de sondage par radio-écho pour des glaciers tempérés.
Cette partie traite des caractéristiques électromagnétiques des glaciers tempérés aux fréquences radio.
Les problémes rencontrés par les précédents chercheurs pour les sondages dans la glace tempérée s’expliquent
par la dispersion électromagnétique dans les cavités remplies d’eau. L'influence de la fréquence sur la
dispersion indique que le rayonnement renvoyé par les disperseurs diminue rapidement aux fréquences
inférieures a environ 10 MHz. On recommande un appareillage ayant les caractéristiques suivantes: une
imipulsion transmise avec une fréquence centrale d’environ 5 MHz pendant environ un cycle, avec un
récepteur qui cst désaccordé et mesure Uintensité du champ, plutét que la puissance. On présente des
méthodes spectrométriques pour étudier la distribution en dimension des disperseurs.  Un instrument
réellement construit et des essais sur le terrain seront déerits en deuxiéme partie par R. S. Vickers et R, Bollen.

ZUSAMMENFASSUNG.  Radar-FEcholotung temperierter Gletscher: Eiseigenschafien und Rriterien fur den Bau des
Lotgerdtes. Es handelt sich hier um den ersten Teil einer zweiteiligen Versffentlichungsfolge, die den Bau,
den Einsatz und die Erprobung eines brauchbaren 5 MHz-Radar-Echolotes fiir temperierte Gletscher
beschreibt.  Dieser Teil behandelt die elektromagnetischen Charakteristiken temperierten Eises im Radio-
wellenbereich.  Die Schwicrigkeiten, mit denen frithere Forscher bei der Auslotung temperierten Eises zu
kimplen hatten, werden durch die elektromagnetische Streuung an wassergefiillten Hohlrdumen erklart.
Dic Frequenzabhangigkeit der Streuung lisst erwarten, dass Echos von Streuern rasch bei Frequenzen unter
etwa 10 MHz abnehmen. Es wird ein System mit folgenden Kenngrossen empfolhen: Sendepulse mit
einer Zentralfrequenz von etwa 5 MHz, Dauer etwa 1 Umlauf, Empfinger nicht abgestimmt, cher die
Intensitit als die Stirke des Feldes messend. Spektrale Methoden zum Studium der Grossenverteilung von
Streuern werden angegeben. Ein ausgefihrtes Geriit und Feldarbeiten werden in Teil 11 von R. S, Vickers
und R. Bollen beschrieben werden.

INTRODUCTION

Of all the Earth’s geological materials, the most favorable to probing by electromagnetic
methods is glacier ice. Electrically, it is extremely resistive and comparatively homogeneous.
Electromagnetic fields propagate through ice as waves, rather than by diffusion as in rocks,
The utility of these properties has been spectacularly demonstrated by the soundings of the
polar ice sheets through several kilometres of ice.

However, departures from the nearly homogeneous ice encountered in the polar regions
have, until now, thwarted efforts to radio-sound temperate glaciers. Not only is the ice
warmer in temperate glaciers, and therefore clectromagnetically less transparent, but it is
significantly less homogeneous. It is this latter factor which has kept temperate glacier
soundings from being successful.

‘The importance of inhomogencities (scatterers) within the ice was recognized by Smith
and Evans (1972), who wrote that “the most important requirement [is]: to obtain first of all
an unambiguous bottom echo, however poor in resolution, and to gain an understanding of

* This paper was presented at the Symposium on Remote Sensing in Glaciology, Cambridge, September 1974,
and discussion on it can be found in Journal of Glaciology, Vol. 15, No. 73, 1975, p. 459-61.
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those properties of the medium of propagation which are important in temperate glaciers™.
In discussing their model of ice-lens scatterers in firn, they recognized that returns from
scatterers could obscure bottom returns: ““[there are] two crucial factors in signal to scatter
ratio: radio wavelength and effective [scatterer] radius. This is a new situation in which
increased system performance will do nothing to improve the [signal-to-noise] ratio”. How-
ever, their calculations were not altogether appropriate to scatterers within the bulk of glacier
ice, and their suggestion was to use higher frequencies. We will demonstrate that the way
to obtain an unambiguous bottom echo is to reduce the frequency. The attendant loss of
resolution can be largely circumvented by using very short pulses (one or two cycles of the
center or carrier frequency) and an untuned receiver which records the received electric
field as a function of time rather than the received power or rectified and smoothed electric
field at a single frequency as a function of time.

Before we discuss the effects of scatterers in detail, let us mention the experimental evidence
of their importance. Smith and Evans (1972, fig. 9) showed two instances where bottom
returns were obscured by scatter returns at depths of 100 to 150 m. More examples are shown
by Davis (unpublished, p. 53-55). These serve as demonstrations that the problem exists
even in polar ice. An indication of the solution to the problem was provided by Strangway
and others (1974). Their experiments on the Athabasca Glacier in Alberta, Canada, were
done using continuous waves transmitted from horizontal electric dipoles on the ice surface.
When their receiver was traversing away from the end of one of their transmitting antennas,
the radial and vertical magnetic fields should have been weak, and the tangential field strong,
if the ice was homogeneous and if the structure was horizontally layered. This expectation
is derived from the symmetry of electromagnetic fields radiated from dipoles lying on layered
structures. They found that the theoretical predictions worked well at 1, 2, and 4 MHz. At
8 MHz, however, the theoretically weak components were nearly as large as the theoretically
strong ones. At 16 and 32 MHz all components were equally strong.

The depolarization of the waves—transferral of energy from predicted strong polariza-
tions to predicted weak ones—can be attributed to (1) departures from layered geometry, and
(2) departures from homogeneity. Departures from layered geometry can occur at the top or
the bottom of the glacier. The effect of the bottom can be ruled out because (a) the effects of
its irregularities should not be strongly frequency dependent, and (b) the depolarization effect
was observed very close to the transmitter, where echo strength from the glacier bottom is
negligible in comparison to the energy of waves traveling through the air and through the
ice just beneath the surface. The effect of the rough glacier surface is not so easy to dismiss.
However, the absence of such strong depolarization in a similar experiment carried out on the
moon (Simmons and others, 1973), where the surface is nearly as rough as that of the Atha-
basca Glacier, indicates that surface roughness probably is not responsible for much of the
depolarization. The only explanation left is inhomogeneities (scatterers) in the ice.

SCATTERING THEORY

In order to test hypotheses concerning the nature of scatterers within the ice, we need a
theory which will predict the effect of scatterers on the radio signals. Smith and Evans (1972)
presented a theory based on formulae for Rayleigh scatterers. Davis (unpublished) gave a
modified theory which handles more general types of scatterers. The derivation given here
follows Davis’s derivation closely.

Smith and Evans’s theory shows that the most serious effect of scatterers is not the attenua-
tion of the signal, but rather the masking of the bottom return by the diffuse return from a
multitude of scatterers. The attenuation problem can be attacked by increasing transmitter
power and receiver sensitivity (system performance); the scatter-return problem can be
solved only by varying frequency, pulse duration, or antenna gain.
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Fig. 1. Diagram showing relative positions of transmiller, imaginary image transmitter, and ice—-air and ice—bedrock interfaces.
The image transmiller is a concept used in caleulating the power reflected from the rock surface.

We assume that the bottom of the ice sheet is a plane reflector with normal-incidence
power reflection coefficient R. The reflection from this plane is the same as the transmission
from an upward-directed transmitter at twice the depth of the planar reflector, in ice (Fig. 1).
The power of this image transmitter is a factor of R less than the power of the actual trans-
mitter. Otherwise the two are identical. At the receiver, the wave intensity of the signal [
reflected from the bottom (or coming from the image transmitter) is

_ PiRg,
P 477(2,,)2 ([)
where Pt is the transmitter-radiated power, g, the antenna gain looking down, and r the
ice-sheet thickness.

The receiving antenna is steered toward this reflection, so the power it senses is
APiRg 2

Ppdg I, = —=> .

pA8olp 1672 (2)

where 4 is the monopole capture area, A?/4m.

dl

Fig. 2. Diagram showing an angular element of the spherical shell which generates the scatter returns at time {, v — radio-wave
velocity in ice; | = physical pulse length in ice; dQ = element of solid angle.
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As explained by Smith and Evans, the received power at time ¢ after transmission is
derived from a shell of thickness //2 and radius »t/2, where [ is the pulse length in ice, v is the
wave velocity, and ¢ is the time after transmission. At any particular direction Q (whichis a
composite of azimuth and depression angles), the intensity of illumination I; of the scatterers is

I = Pig(Q) [4m(ut]2)* (3)
The number of scatterers in the volume element (Fig. 2) is
H= (ﬂt) do ()
2 2 '

where m is the number of scatterers per unit volume. Each scatterer has scattering cross-
section 6. The total energy scattered by the inhomogeneities in the volume element is /iNs.
This energy is not scattered isotropically. When the backscatter gain gns and the geometrical
spreading from each scattering center are accounted for, the wave-intensity /g at the receiver,
due to scatterers in one volume element, 1s

L(Q) = LiNogns/4m(vt[2)* (5)
Ag(Q) is the antenna’s capture area for waves from the direction of the volume element
we are considering. The power P; sensed in the receiver due to scatterers in that volume
element is
APtmlcghs
87222

We now compute the entire return by summing over €, the totality of solid angles:

P(Q) = Ag(Q)I5(Q) = ¢(Q) dQ. (6)

APymlsgy )
Py= 'BWTZHS fgz(Q) dQ. (7)

For any antenna, the integral of ¢ over Q must equal 4 for radiated energy to be con-
served. The integral of g2 over (), however, is a measure of antenna directionality. We will
denote the integral on the right side of Equation (7) by 47G. For a monopole, G = 1.

As an example, the gain of an infinitesimal dipole is g() = (#) sin? 0, where 6 is the angle
from the axis of the dipole.

Integration of this over all solid angles gives

j f 3 sin? 6 d¢ sin 6 df = 4. (8)
o o
The directionality factor G is
I g . . 6
G:—f J.—sm‘ 8 do sin 6df = — = 1.2.
- : ¢ e (9)

In order to compare the plane reflection to the scattered reflection, we will let v/2 = r in
Equation (7).

APymlcgps
Pyi= Tt (10)

The signal-to-noise ratio (assuming we want to see the bottom, not the scatterers), is
Py Rg,? (11)
il PO T 11
Py omlogpsG

For our previous example of a dipole antenna, the factor g,?/G is 1.9. More directional
antennas will increase this factor somewhat.
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Smith and Evans (1972, equation (20)) found that the signal-to-noise ratio was propor-
tional to g, rather than our g,?/G. This result was based on the following assumptions: (1) the
effective scattering volume is proportional to 1/g,, (2) the illumination of this effective volume
is proportional to g,, and (3) the receiver sensitivity to reflections from this volume is g,.
"The total result is a scattering effect proportional to g,, while the planar reflection is propor-
tional to g,?, as we have shown. Smith and Evans’s analysis is correct only in cases where the
reduction in antenna beam width is proportional to maximum gain, so that G is proportional
to g,. For best performance, the antenna should be designed so that gmax?/J g2(Q) dQ is
a maximum. This criterion is similar to a maximum directionality criterion for an antenna
which only receives, but g is replaced by g2 because the same (or a similar and approximately
coincident) antenna is used for both transmitting and receiving.

Equation (11) was derived giving no consideration to either dielectric or scattering attenua-
tion. We point out here, as Smith and Evans did, that the path length is the same for the
bottom return and the scatter returns which arrive at the same time. The attenuation factor
enters equally into the numerator and denominator of Equation (11), which is therefore
equally valid for absorbing and non-absorbing media.

It may also be useful to take special note of the time-dependent form of the scatter returns,
as given in Equation (7). Scatter-return power should be proportional to -2, or scatter-return
amplitude to ¢ 1. 'This time dependence is one criterion for testing the theory. Davis (un-
published) shows how an additional factor of exp (—«f) may be present owing to attenuation
and scattering in the ice.

THE SCATTERERS

We herein hypothesize that the scatter returns in temperate glaciers are due to water-filled
voids in the ice, and that this type of scatterer reasonably explains the available observations.

In a hot-point drilling program on the South Cascade Glacier, in north-west Washington
State, S. M. Hodge (personal communication in 1974) has observed sudden drops of the hot-
point drill of distances from a few tens of centimetres to a metre. These sudden drops seem to
indicate a lack of mechanical and thermal resistance which can be explained only by the
presence of voids. Because these voids are approximately uniformly distributed with depth
(maximum depth = 200 m), they must be water-filled to endure the pressure. One void is
encountered approximately every 400 m of drilling (i.e. in roughly half of the holes). These
values are preliminary; there are not yet enough holes to have developed reliable statistical
characterizations of the void encounters. There is no information available on the shape of
the voids other than their vertical extent.

In order to estimate the number of scatterers per unit volume, we need to guess the shape
of the voids. Our shape model will be a sphere—a choice dictated by the theoretical tracta-
bility of spherical or ellipsoidal scattering, and there being no basis for selecting any particular
shape or orientation of ellipsoids.

Asimple probability calculation allows us to determine the scatterer density and the volume
fraction occupied by the scatterers. We assume that the voids are spherical with radius a
and that there are m of them per unit volume. The horizontal cross-section of a scatterer is
ma*. We consider a surface area A on the glacier, and glacier depth D. The volume is AD
and the number of scatterers is mAD. The projections of these scatterers onto the surface of the
glacier cover an area mAD=ma®. Overlapping projections are all counted, for the drill would
penctrate the corresponding voids and they would all thereby be counted during the drilling.
The expected number of voids to be encountered in drilling a hole of depth D is the ratio of
void projection area to surface area, which is mDma?. We therefore have

N(D
= D(mrz (12)

m
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where N(D) is the average number of voids encountered in holes of depth D. Hodge has
observed N(200) = }, so
I

~

= :
400ma?

(13)

If the radius of the sphere is 1.0 m, then m = 0.000 8 scattering centers/m?. The volume
fraction occupied by the scatterers is

chi oo i)
a5 14

Taim =

W |

In our case this is
v & 0.008. (15)
These numbers are all quite approximate.

In studying the effects of these water-filled voids as scatterers, we have assumed that they
are spherical. Thus we have been able to apply Mie scattering theory, as described by
Stratton (1941, p. 563). This is an exact theory based on the expansion of the incident plane
wave (a good approximation to the spherical wave except very near the transmitter) and the
scattered waves in spherical harmonic series. Rayleigh scattering is a special case of Mie
scattering, applicable at frequencies where the scatterer is much smaller than a wavelength.

In Figures 3 and 4 we have plotted the Mie scattering cross-section and the cross-section
multiplied by back-scatter gain, respectively, for water-filled spheres in ice. These are given
in dimensionless terms, but the abscissa is proportional to frequency. Note the generally
greater variability in Figure 4. This is due to the directionality of the scattering outside the
Rayleigh-scattering (low-frequency) region.

Let us first locate ourselves on these plots for 1 m diameter spheres. The appropriate A
is that for ice, which is (168 m MHz)/ f, where fis the frequency. It is clear that scattering
is “efficient” for radii exceeding 0.1}, or (16.8 m MHz)/ f. For this to equal the 1.0 m radius
of our spheres, the frequency is about 17 MHz. All that we have learned so far is that below
17 MHz we should start to see rapidly diminishing effects from scattering. The important
question is how badly obscured the bottom return is at 17 MHz; the answer to that question
will determine how much the frequency needs to be reduced to bring out the desired reflection.
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Fig. 3. Total scallering efficiency (ratio of scattering cross-section to physical cross-section) for spherical Mie scatlerers (Strallon,
1941), as funclion of size or frequency.
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Fig. 4. Back-scatter efficiency as function of size or frequency. This takes the directionalily of the scattering into account.

Using the same parameters as Smith and Evans, which are appropriate for the SPRI
Mark II system, we can calculate the signal-to-noise ratio using Equation (11). These are:
R =o01,g=2,1=40m We will assume G > 2. We use m from drilling results, m —
0.000 8. The center frequency is 35 MHz. This is roughly twice the 17 MHz critical scattering
frequency, so 6gps & a2 & m. We now have

— = 0.1 = —10dB. (16)

Equation (16) indicates that the bottom reflection is hopelessly lost in the scatter returns.
If all other parameters could be kept the same, and only the carrier frequency changed,
Figure 4 shows that f would have to be reduced to 15 MHz to achieve a signal-to-noise ratio
of 1, and to 10 MHz to achieve a ratio of 10. In actuality, of course, the pulse length increases
as frequency decreases unless a radically different engineering approach is taken. Pulse
lengthening would make the 10 MHz signal-to-noise ratio about -7 dB instead of 10 dB.

These results seem to be at odds with the experimental results of Strangway and others
(1974). Their continuous-wave experiment indicated that scattering was strong at frequencies
as low as 8 MHz. We will demonstrate that these observations can be explained by assuming
a distribution of scattering sizes rather than a single size. It might be noted that the dis-
crepancy could be explained in terms of differences between the glaciers (South Cascade and
Athabasca), but that a distribution hypothesis explains the observations without resorting to
inter-glacier differences.

Let us initially assume that we have only two sizes of spherical scatterers, with radii
100 cm and 200 ecm. In the Rayleigh region for those scatterers ( f << 8 MHz), the scattering
efficiency is proportional to the fourth power of radius. When this is multiplied by the physical
cross-section ma?, the absolute scattering cross-section for each scatterer is found to be propor-
tional to a®. Thus each 200 cm sphere scatters 64 times as much energy as each 100 cm
sphere: if there are ¢ as many 200 cm spheres as 100 cm spheres, the two populations will
have equal scattering effect.
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In glacier drilling, however, the probability of encountering the 200 cm voids is quite
small. The probability is proportional to the product of number of scatterers times cross-
sectional area, so for our postulated population,

Pr(100)  64(100)2
Pr(200) ~ 1(200)2

6. (17)

The drill would encounter 16 times as many 100 cm voids as 200 cm voids, but the radio-echo
sounder is equally affected by both sizes. We conclude, therefore, that the most common
sizes encountered in drilling might not be the most important to the radio-echo sounder.

We will now develop an expression for total scattering cross-section in the presence of a
distribution of scatterer sizes. If the density of scatterers having sizes (radii) between a and
a-+-da is m(a) da, then the total scattering cross-section is

o«

on(f) = [ mias(af) da. (18)

o

This integral has been computed numerically for back-scatter cross-section (from Fig. 4)
for normal distributions of scatterers. Figure 5a shows back-scatter power as a function of
frequency for scatterer distributions with maxima at 1.0 m and various widths (standard
deviations). Figure 5b shows the same function for distributions centered at 0.5 m.

It is quite clear from Figure 5 that a Gaussian distribution of scatterer radii with a mean
radius of about 1.0 m and a standard deviation of 0.2 to 0.4 m explains the scattering observa-
tions of Strangway and others (1974). Scattering is uniformly strong at frequencies of 16 MHz
and higher, intermediate at 8 MHz, and weak at 4 MHz and below. Our explanation has
been based on a theory which predicts only the relative dependence on frequency. This is
necessary because the continuous-wave nature of Strangway’s experiment would require an
integration of scattering effects over the entire glacier volume—an integration which is of a
complexity beyond the scope of this paper.

In our formulation using Mie theory, we computed the scattered energy at large distances
from the scatterers. In a continuous-wave experiment like that of Strangway and others
(1974), energy is received continuously from throughout the glacier. The receiver may be
quite close to one or more scatterers. The scattered waves are expandable in spherical
harmonics which correspond to radiation from dipoles, quadrupoles, etc. There are dipole
terms which are proportional to f and f* in addition to the far-field f* terms we have con-
sidered (Stratton, 1941, p. 436). The wave amplitude from these terms diminishes rapidly
with distance, but the receiver in a continuous-wave experiment could be sufficiently close
for them to be important. The roll-off of scattering effects would then be much less sharp
than for the far-field /4 case. Because the curves of Figure 5 qualitatively fit the observations
of Strangway’s group so well, it is tempting to speculate that fand /3 terms were unimportant
and therefore that nearby scatterers were not frequently influencing the observations.

DESIGN CRITERIA FOR A SOUNDER

The foregoing discussion of the frequency dependence of the scatter returns has indicated
that the desirable operating frequency for a temperate-glacier sounder is definitely below
10 MHz, probably about 5 MHz. If a tuned detector is used to look at the bottom reflection,
it will require several cycles of this carrier frequency to generate a response. Each 5 MHz
cycle represents a wave distance traveled of 34 m. Therefore, the resolution of a system using
a tuned detector is likely to be unacceptable, particularly on shallow glaciers.

To obtain efficiency in the transmit and receive antennas at 5 MHz, fairly large antennas
(tens of metres in size) must be used. This requirement does not preclude vehicular or air-
borne operation, but our initial design was based on surface operation. Without vehicular
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Fig. 5. Dependence of scattered power on frequency for various Gaussian distributions of scatlerer sizes: (a) Modal size
a = 100 cm; (b) Modal size a = 50cm. W is the standard deviation of the size distribution.

noise sources, it was found that the radio-frequency noise environment was exceptionally clean
both at South Cascade Glacier, Washington, and at Columbia Glacier, Alaska. In both places
a small motor-generator was in operation in the immediate vicinity of the receiver, but it did
not seem to introduce any significant noise. The only radio-frequency noise problem occurred
at certain times of day when Citizens’ Band (35 MHz) transmitters were operating in direct
line-of-sight to the receiver. This noise source could probably be eliminated with band-pass
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filters. Davis’s (unpublished, p. 91) evaluation of the radio noise problem seems unduly
pessimistic in the light of our experience.

In this low-noise environment, which probably occurs on most glaciers because of their
cultural remoteness, the use of a tuned receiver becomes unnecessary. By looking directly at
the unrectified signal as a function of time, instead of at received power at a certain frequency,
it becomes possible to pick arrival times with an accuracy of a small fraction of a cycle. In
this case, operation at 5 MHz, or even 1 MHz, can result in 10 m resolution.

There are now three requirements: (1) the center frequency should be low enough to
avoid scattering, (2) the signal should be strong enough to be detectable, and (3) the signal
should be strong in comparison to r.f. noise. For a specific mean power level, the best signal-
to-noise ratio for radio-frequencies is obtained by containing the transmitted power in as short
a pulse as possible. In opposition to this short-pulse requirement is the spectral broadening
which occurs as the pulse is made short. Energy is spread into higher frequencies, where it is
significantly more strongly scattered. This increased scattering decreases the ratio of bottom
return to scatter return.

The spectral curves of Figure 5 suggest a means for studying scattering size distributions.
If the waveform of the transmitted pulse is known, its power spectrum is known. The spectrum
of scatter returns is the pulse specrum multiplied by a spectrum such as one in Figure 5.
Thus the scatter return spectrum can be divided by the pulse spectrum to get curves similar
to Figure 5. Various distributions (not necessarily normal distributions) can be tried until the
model fits the observations. Repetition of the procedure with pulses of several different center
frequencies should give reasonable definition of the scattering distribution. (In this procedure,
calculation of the scattering spectrum would have to take into account the exp (—at)/t general
time dependence).

CoNCLUSIONS

The problems that have previously been encountered in sounding temperate glaciers can
be attributed to water-filled voids in the ice. These are about 1 m in size. A sounder that
transmits a pulse with center frequency 5 MHz and duration 1 cycle should give a good
bottom-return/scatter-return ratio. By looking at the unrectified signal as a function of time,
adequate depth resolution can be obtained. Void size distributions can be studied by
examining the scatter return spectrum in comparison to the transmitted pulse spectrum,
This information should be useful for studies in glacial hydrology.

MS. received 7 July 1975 and in revised form g August 1975
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