# A CLASS OF SELF-DUAL MAPS

## C. A. B. SMITH AND W. T. TUTTE

A dissection of a rectangle R into a finite number n of 1. Introduction. non-overlapping squares is called a squaring of R of order n. The n squares are called the *elements* of the dissection. If there is more than one element and the elements are all unequal the squaring is called *perfect* and R is a perfect rectangle. (We use R to denote both a rectangle and a particular squaring of it). If a squared (perfect) rectangle is a square we call it a squared (perfect) square.

In the course of an investigation of squared rectangles it was found that the theory reduced to that of certain "flows of electricity" in networks (linear graphs) on the sphere. An account of this work has been given elsewhere ([1]). The connection between squared rectangles and electrical networks is discussed later on in the present paper.

We have observed that the methods for the construction of a perfect square briefly described in [1] depend on the properties of networks of a particular kind. The characteristic property of a network of this kind is that the map on the sphere which it defines is combinatorially equivalent to its dual map. For this reason we have made an investigation into the properties of such "self-dual" maps. We give our results below.

Apart from the connection of self-dual maps with squared squares, some of them give rise to a particularly interesting class of perfect rectangles. These rectangles are discussed at the end of sec. 5.

A detailed discussion of the problem of constructing a perfect square is given in a companion paper by one of us.

Before going on to the study of self-dual maps we collect some results on electrical networks in general which will be useful later.

Let N be a connected network whose vertices are  $P_1, P_2, \ldots, P_n$   $(n \ge 2)$ . The 1-cells are called wires; there may be more than one wire joining two vertices, and there may be wires whose two ends coincide. With each wire is associated a non-zero real number, its conductance. In [1] all conductances are positive. In the present paper also we are only interested in positive conductances; but negative conductances are employed in the companion paper by Tutte. We define a matrix  $\{c_{rs}\}$  as follows.

If  $r \neq s$ .

 $-c_{rs} = \begin{cases} \text{sum of conductances of all wires joining } P_r \text{ to } P_s. \\ 0 \text{ if there are no such wires.} \end{cases}$ 

 $c_{rr}$  = sum of conductances of all wires joining  $P_r$  to other vertices.

Received March 18, 1948.

Thus

(A)

$$c_{rs} = c_{sr}, \qquad \sum_{\bullet} c_{rs} = 0.$$

From (A) we can readily show that all the first cofactors of  $\{c_{rs}\}$  are equal. We call their common value the *complexity* of the network, and denote it by C. It is known that C > 0 when all the conductances are positive. (There is a proof of this result in [1].)

The second cofactor obtained by taking the cofactor of the element  $c_{su}$  in the cofactor of  $c_{rt}$  in  $\{c_{rs}\}$  is denoted by (rs.tu). (If n = 2, (12.12) = 1 = -(21.12).) We put (rr.tu) = 0 = (rs.tt). We call the (rs.tu)'s the transpedances of N.

We also write the transpedance (rs.tu) as  $(P_rP_s.P_tP_u)$ .

Consider a flow of current from  $P_x$  to  $P_y$  (the *poles*). The currents in the wires then satisfy (except at the poles) Kirchhoff's Laws, which we state as follows.

(i) The total current flowing into  $P_i$  is zero.

(ii) The algebraic sum of the EMF's round any circuit is zero.

The EMF in a wire in the direction of the current may be defined as the current in the wire divided by the conductance of the wire. The EMF in the opposite direction is the negative of this. If (ii) is satisfied for all circuits we may associate a *potential*  $v_r$  with each node  $P_r$  so that the EMF in a wire with ends  $P_i$  and  $P_j$  in the direction  $P_i$  to  $P_j$  is  $v_i - v_j$ .

It is known that these conditions determine the flow uniquely when the total current I (flowing in at  $P_x$  and out at  $P_y$ ) is given and the conductances are all positive ([2], 324-331).

Then the fall in potential from  $P_r$  to  $P_s$  is given by

(B) 
$$\frac{(xy.rs)I}{C}$$
.

It is convenient to take I = C, thus fixing the values of the currents and potential differences of the network. The flow with I = C is called the *full flow*; we speak of "full currents", etc.

From the definition of a transpedance it follows that

(C) 
$$(rs.tu) = (tu.rs) = -(sr.tu).$$

Using (B) we may restate Kirchhoff's Laws for the full flow as

(D) 
$$\sum_{x} c_{tx} (rs.tx) = C (\delta_{ts} - \delta_{tr})$$

(E) 
$$(rs.tu) + (rs.uv) = (rs.tv).$$

The function  $\delta_{rs}$  is equal to 1 if r = s, and to 0 otherwise.

Another general property of transpedances is the following:

(F) 
$$C \text{ divides } (rs.rs)(tu.tu) - (rs.tu)^2$$

(for integral conductances).

To prove this we use Jacobi's Theorem on determinants ([3], p. 98). This states that if  $\Delta$  is a determinant,  $A_{ij}$  the cofactor of the element  $a_{ij}$  of  $\Delta$ ,

180

and  $\Delta_{pq,rs}$  the determinant obtained from  $\Delta$  by striking out the *p*th and *q*th rows and the *r*th and sth columns, then

$$\Delta \Delta_{pq, rs} = A_{pr}A_{qs} - A_{ps}A_{qr}$$

If we apply this result to the determinant X which is the minor of the element  $c_{ij}$  in the matrix  $\{c_{rs}\}$ , and if we assume that all the conductances are integers we find that

(G) 
$$C \text{ divides } (ip.jr)(iq.js) - (ip.js)(iq.jr).$$

This proof assumes that  $p \neq q$ ,  $r \neq s$  and that X has at least three rows. But (G) is trivially true when one of these conditions is not satisfied. It is also trivially true when i = p or q, or j = r or s. It is thus a general property of transpedances. If we replace p by p' in (G) and then subtract (G) from the resulting formula we obtain the result

(H) C divides (pp'.jr)(iq.js) - (pp'.js)(iq.jr)

by (E). Next we replace q by q' in (H) and then subtract (H) from the resulting formula. After four operations of this kind we have the result

(I) C divides (pp'.rr')(qq'.ss') - (pp'.ss')(qq'.rr'),

where  $P_p$ ,  $P_{p'}$ , etc. are any vertices of N. (F) is a special case of (I).

2. Self-dual maps. We define a map as a dissection of the surface of a sphere into a finite number of simple polygons  $P_1, P_2, \ldots, P_n$ , called *faces*. The boundary of each face is a simple closed curve, subdivided by a finite number  $\geq 2$  of points called *vertices* into simple arcs called *edges*. It is supposed that

(i) No two faces have any interior point in common.

- (ii) Each edge is common to just two faces.
- (iii) Each vertex is a vertex of every face in whose boundary it lies.

(iv) The union of the faces, edges, and vertices is the whole sphere.

We shall speak of vertices, edges, and faces collectively as *cells*.

A cell will be said to be *incident* with any cell which is contained in its boundary or in whose boundary it is contained. (The boundary of an edge is its pair of end-points.)

The vertices and edges of a map constitute a network or linear graph which we call the 1-section of the map.

Two maps  $M_1$  and  $M_2$  are combinatorially equivalent if there is a 1-1 correspondence f between the set of cells X of  $M_1$  and the set of cells f(X) of  $M_2$  such that f(X) is a vertex, edge, or face according as X is a vertex, edge or face, and such that f(X) is incident with f(Y) if and only if X is incident with Y. We call the correspondence f a combinatorial equivalence.

We shall be interested in a regular subdivision Z(M) of the map M. We define this as follows. In each edge  $W_i$  of M we select just one interior point of this edge, and denote it by  $w_i$ . In each face  $P_j$  we select just one interior point which we denote by  $P^*_j$ . We subdivide  $P_j$  into triangles by joining  $P^*_j$  to each vertex and each point  $w_i$  in the boundary of  $P_j$ . The resulting

map is Z(M). Its vertices are the vertices of M together with all the points  $w_j$  and  $P^*_{j}$ , its edges are the simple arcs into which the points  $w_j$  divide the edges of M and the joins made from the points  $P^*_{j}$ , and its faces are the triangles into which the faces  $P_j$  are subdivided. Since its faces are triangles it is called a *triangulation* or *simplicial dissection* of the sphere.

As consequences of the method of construction we see that

(i) Each face of Z(M) is incident with one vertex of M, one of the points  $w_j$  and one of the points  $P^*_j$ ;

(ii) Each vertex  $w_i$  of Z(M) is incident with just four edges.

Let us enumerate the vertices of M as  $V_1, V_2, \ldots, V_n$ . Consider the union of all the faces of Z(M), with their boundaries, which are incident with  $V_j$ . The boundary of this set is a simple closed curve. We denote the set by  $V^*_j$ . As a consequence of this result we can define a new map  $M^*$  as follows:

(i) The vertices of  $M^*$  are the points  $P^*_i$ .

(ii) For each point  $w_j$  we denote by  $W^*_j$  the union of the two edges of Z(M) joining  $w_j$  to points  $P^*_h$ . The edges of  $M^*$  are the arcs  $W^*_j$ .

(iii) The faces of  $M^*$  are the sets  $V^*_{j}$ .

It is easily verified that  $M^*$  satisfies the definition of a map. It is a *dual* map of M.

We observe that the combinatorial structure of  $M^*$  (given by the incidence relations) is fixed by that of M, that Z(M) is a regular subdivision of  $M^*$ , and that M is a dual map of  $M^*$ .

A map M is self-dual if there is a combinatorial equivalence f transforming M into  $M^*$ .

An edge  $W_j$  of a self-dual map M is *self-dual* under the combinatorial equivalence f transforming M into  $M^*$  if  $f(W_j) = W^*_j$ .

For any combinatorial equivalence f transforming a map  $M_1$  into a map  $M_2$ , let Y be a point set which is the union of a set of cells  $X_1, X_2, \ldots, X_k$  of  $M_1$ . Then we define f(Y) as the union of the set of cells  $f(X_1), f(X_2), \ldots, f(X_k)$  of  $M_2$ .

THEOREM 1. Let f be a combinatorial equivalence transforming a map M into its dual  $M^*$ . Then there is a combinatorial equivalence  $f_z$  transforming Z(M) into itself such that if X is any cell of M,  $f_z(X) = f(X)$ .

For vertices of Z(M) we define  $f_z$  as follows:

(i) If  $V_i$  is a vertex of M,  $f_z(V_i) = f(V_i)$ .

(ii) If  $W_j$  is an edge of M, and  $f(W_j) = W^*_k$ , then  $f_z(w_j) = w_k$ .

(iii) If  $P_k$  is any face of M, and if  $V_q$  is the vertex of M which is contained in  $f(P_k)$ , then  $f_z(P_k^*) = V_q$ .

Consider a face F of Z(M) with incident vertices  $V_i$ ,  $w_j$ ,  $P_k^*$ .  $f(P_k)$  is a face of  $M^*$  whose boundary contains  $f(W_j)$  and its end-point  $f(V_i)$ . Hence just one of the triangles into which  $f(P_k)$  is subdivided has the vertices  $f_z(V_i)$ ,  $f_z(w_j)$  and  $f_z(P_k^*)$ . So just one of the faces of Z(M) has these three vertices.

We take this face as  $f_z(F)$ . If G is any edge of F, with end-points A and B, we define  $f_z(G)$  as the edge of  $f_z(F)$  with end-points  $f_z(A)$  and  $f_z(B)$ . This defines  $f_z(G)$  uniquely, for it is clear that not more than one edge can join two given vertices of Z(M). It follows that  $f_z$  is a 1-1 correspondence, and that it preserves incidence relations.

THEOREM II. Let  $f_z$  be defined as above. Then there is a positive integer n, and a homeomorphism H of the sphere onto itself such that  $H^n = I$  (the identical mapping) and such that  $H(X) = f_z(X)$  where X is any cell of Z(M).

We begin by making a further subdivision of Z(M). For each edge  $E_r$  having one end a vertex of M and the other a vertex of  $M^*$  we select just one interior point  $e_r$ . We then subdivide each face of Z(M) into two triangles by making a join from its vertex  $w_i$  to the opposite point  $e_r$ .

Each face of the new map Z' is a triangle incident with one vertex either of M or  $M^*$ , one vertex  $w_i$  and one vertex  $e_r$ . (We take the vertices of Z' to be the vertices of Z(M) together with the points  $e_r$ .)

Clearly there is a combinatorial equivalence f' transforming Z' into itself such that if X is any cell of Z(M),  $f'(X) = f_z(X)$ . (We take  $f'(e_r)$  to be  $e_s$ , where  $f_z(E_r) = E_s$ .)

The correspondence f' has the property that if any iteration  $(f')^m$  of f' transforms the cell X of Z' into itself, then  $(f')^m$  transforms every cell of Z' in the boundary of X into itself. For no iteration of f' can map a vertex  $V_i$  or  $P^*_j$  onto a vertex  $w_i$ , or either onto an  $e_r$ .

Since f' is a 1-1 correspondence, if X is any cell of Z' some iteration  $(f')^m$  of f' will map X into itself. (The number of cells of Z' is finite.) The least positive integer m for which this is so will be denoted by  $\pi(X)$ .

In constructing the homeomorphism H we use the topological theorem that any homeomorphism of the boundary F(X) of an *n*-simplex X into the boundary F(Y) of an *n*-simplex Y can be extended as a homeomorphism of X onto Y. We begin by defining H for the vertices v of Z' by H(v) = f'(v). If X is any edge of Z' this gives us a homeomorphism H of F(X) onto F(f'(X))which we can extend as a homeomorphism of X onto f'(X). Actually if  $\pi(X) = 1$  we define the extension of H to X as the identity mapping. This is possible since H does not interchange the points of F(X). If  $\pi(X) > 1$  we define the extension of H to  $X, f'(X), \ldots, (f')^{\pi(X)-2}(X)$  as we please, and then define it for  $(f')^{\pi(X)-1}(X)$  by postulating that  $H^{\pi(X)}$  reduces to the identity mapping in X. The extension of H to the faces of Z' is analogous. From this construction it follows that H is a homeomorphism of the sphere onto itself which satisfies  $H^n = I$ , where n is the L.C.M. of the numbers  $\pi(X)$ . Moreover, if X is any cell of  $Z(M), H(X) = f'(X) = f_z(X)$ .

Now it is known that any homeomorphism of the sphere onto itself is topologically equivalent to a rotation, a reflection, or a rotation followed by a reflection ([4]). Any self-dual map M is topologically equivalent therefore to one which is transformed into its dual by one of these three operations.

**3.** Dual flows. Consider an edge  $W_j$  of any map M, not necessarily selfdual, with ends  $V_r$ ,  $V_s$  and incident faces  $P_u$ ,  $P_v$ . We orient  $W_j$  by specifying one end,  $V_r$  say, as its *positive* end and the other as its *negative* end.

Since each face  $P_q$  has a boundary which is a simple closed curve we may *orient*  $P_q$  by specifying a particular sense of description of this curve, (clockwise or anti-clockwise). For this it is enough to give the cyclic order of the vertices of Z(M) in the curve.

We say that  $W_j$  is *positively* or *negatively* incident with an incident face  $P_q$  according as its positive end immediately precedes or immediately succeeds  $w_j$  in the chosen cyclic order of vertices of Z(M) in the boundary of  $P_q$ .

From now on the symbols  $W_j$ ,  $P_q$  will denote edges or faces taken with some fixed orientation. For the same edges or faces taken with opposite orientation we use the symbols  $-W_j$  and  $-P_q$ .

We shall in fact take for the orientation of each face  $P_q$  or  $V^*_i$  that cyclic order of vertices which agrees with some fixed positive sense of rotation about simple polygons on the sphere. We can think of this sense as the clockwise direction as seen from the centre of the sphere. It is evident that  $W_j$  is positively incident with one of its incident faces of M and negatively incident with the other.



FIGURE 1

Suppose the edge  $W_j$  considered in the first paragraph of this section is positively incident with  $P_u$  and negatively incident with  $P_v$ . Then we define the orientation of  $W^*_j$  dual to that of  $W_j$  by taking  $P^*_u$  as its positive end and  $P^*_v$  as its negative end. Fig. 1 shows the state of affairs in the region defined by the four faces of Z(M) which meet at  $w_j$ . The orientations of  $W_j$  and  $W^*_j$  are indicated by arrows directed from positive to negative ends. The curved arrows show the positive sense of rotation. From this figure we observe that

(i) If  $W_j$  is positively (negatively) oriented with respect to  $P_x$ , then  $P_x^*$  is the positive (negative) end of  $W_j^*$ ;

(ii) If  $V_x$  is the positive (negative) end of  $W_j$ , then  $W^*_j$  is negatively (positively) oriented with respect to  $V^*_x$ .

We shall now consider the 1-sections of M and  $M^*$  as electrical networks in which every "wire" (edge) has conductance 1. Consider any distribution (flow) F of currents in M. We denote the current in  $W_j$  from positive to negative end by  $I_j$ , so the current in the opposite direction is  $-I_j$ . If  $P_k$  is any face of M we denote by  $E(P_k)$  the sum of the currents in the edges of  $P_k$ , an edge  $W_j$  contributing  $I_j$  or  $-I_j$  to this sum according as it is positively or negatively oriented with respect to  $P_k$ .

We define the *dual flow*  $F^*$  in  $M^*$  by taking the current in  $W^*_j$  from positive to negative end to be  $I_j$ . Then from (i) and (ii) we find

(iii)  $E(P_k) = (algebraic sum of the current from P^*_k in the incident edges of <math>M^*$ ) and

(iv)  $E(V_i^*) = -$  (algebraic sum of the currents from  $V_i$  in the incident edges of M.)

Now the full flow in the 1-section of M whose positive and negative poles are the positive and negative ends respectively of  $W_j$  will be called the full flow in M with *polar edge*  $W_j$ . The current  $I_k$  in this flow is denoted by the "transpedance"  $(W_j, W_k)$ . Then using (C) we have

(1) 
$$(W_j, W_k) = (W_k, W_j) = -(W_j, (-W_k)).$$

THEOREM III. For any edges  $W_j$  and  $W_k$  of a map M,

(2)  

$$(W^{*}_{j}.W^{*}_{k}) = -\frac{C^{*}}{C}(W_{j}.W_{k}) \quad \text{if } j \neq k,$$

$$(W^{*}_{j}.W^{*}_{j}) = C^{*} - \frac{C^{*}}{C}(W_{j}.W_{j}),$$

where C is the complexity<sup>1</sup> of M and  $C^*$  is the complexity of  $M^*$ .

Consider the full flow in M with polar edge  $W_j$ . The total current flowing from the positive end of  $W_j$  is C, by (D). Let F be the flow obtained from this by replacing each  $I_k$  for which  $k \neq j$  by  $\frac{C^*}{C} I_k$ , and replacing  $I_j$  by  $-\frac{C^*}{C} (C - I_j)$ .

Then F satisfies Kirchhoff's Laws at each vertex and in the boundary of each face, save only for the two faces incident with  $W_j$ . Consequently  $F^*$  satisfies the Laws in the boundary of each face and at each vertex not incident with  $W^*_j$ , by (iii) and (iv). Now if  $P_u$  is the face of M with which  $W_j$  is positively incident we evidently have

$$E(P_u) = (-(W_j, W_j) + (-(C - (W_j, W_j)))) \frac{C^*}{C} = -C^*$$

for the flow F. It readily follows, using (iii) and (iv), that  $F^*$  is the full flow in  $M^*$  with polar edge  $-W^*_{j}$ . The Theorem follows.

<sup>&</sup>lt;sup>1</sup>More precisely we should say the complexity of the 1-section of M. It is clear that this 1-section is connected. Hence we can suppose C > 0. (See sec. 1).

COROLLARY. If M and  $M^*$  are combinatorially equivalent we may replace the above results by

(3) 
$$\begin{cases} (W^*_{j.}W_k) = -(W_{j.}W_k) & \text{if } j \neq k, \\ (W^*_{j.}W^*_{j.}) = C - (W_{j.}W_j). \end{cases}$$

For then  $C = C^*$ .

As a matter of fact,  $C^*$  is equal to C for all maps M, so that equations (3) are of general application. There is a proof in [1] that  $C^* = C$  for all maps. In this paper we shall be concerned mainly with the case in which M and  $M^*$  are combinatorially equivalent, and we shall not need a proof of the general theorem  $C^* = C$ .

**4. Reflexes.** Let  $W_j$  be any edge of a map M, and  $V_x$  the positive end of  $W_j$ . Then (by (i) and (ii) of sec. **3**) we find first that  $W^*_j$  is negatively oriented with respect to  $V^*_x$  and thence that  $((V_x)^*)^* = V_x$  is the negative end of  $(W^*_j)^*$ . Now  $(W^*_j)^*$  is an oriented edge of M which contains  $w_j$ , and so we have

$$(W^*_i)^* = -W_i$$
.

We return to the case of a self-dual map M transformed into its dual map by an operation  $\phi$  which is either a rotation, a reflection, or a rotation followed by a reflection.

Now it is easily verified that if we define a positive sense of rotation on a sphere, then the effect of a rotation is to map any positively oriented simple polygon onto another positively oriented simple polygon, but the effect of a reflection is to map positively oriented simple polygons onto negatively oriented ones. As a consequence of this and the definition of duality, we have

(i) If  $\phi$  is a reflection, or a rotation followed by a reflection, then for each edge  $W_j$  of M

$$\phi(W^*_j) = -(\phi(W_j))^*,$$

and

(ii) If  $\phi$  is a rotation, then for each edge  $W_j$  of M

$$\phi(W^*_j) = (\phi(W_j))^*.$$

Now if  $W_j$  is any edge of M,  $\phi^{-1}(W^*_j)$  is also an edge of M. We denote it by  $\tilde{W}_j$ . We say that M is a *reflex* with respect to  $\phi$  if it has more than two edges and satisfies

$$\tilde{W}_j = W_j$$

Now in order that M shall be a reflex with respect to  $\phi$  it is evidently necessary that  $\phi^2(w_j)$  shall be equal to  $w_j$  for each  $w_j$ . Whether we are dealing with case (i) or with case (ii),  $\phi^2$  must be a rotation (it must map positively oriented simple polygons onto positively oriented ones). As M has at least three points  $w_j$ ,  $\phi^2$  is a rotation which leaves three distinct points  $w_j$  invariant. Hence  $\phi^2 = I$ , the identity mapping.

186

We define  $\epsilon$  to have the value -1 in case (i) and +1 in case (ii). Then since  $\phi^2 = I$  we have in either case

$$\begin{split} \tilde{\tilde{W}}_{j} &= \phi^{2}(\tilde{\tilde{W}}) = \phi^{2}(\phi^{-1}((\phi^{-1}(W^{*}_{j}))^{*}) = \phi((\phi^{-1}(W^{*}_{j}))^{*}) \\ &= \epsilon \cdot (\phi(\phi^{-1}(W^{*}_{j}))^{*} = \epsilon \cdot (W^{*}_{j})^{*} \\ &= -\epsilon \cdot W_{j}. \end{split}$$

Thus M is a reflex with respect to  $\phi$  in case (i) but not in case (ii).

We deduce that there are essentially only two different kinds of reflexes, those in which  $\phi$  is a reflection in a plane through the centre of the sphere, which we call *planar* reflexes, and those in which  $\phi$  is a reflection followed by a rotation (through an angle not  $2\pi$ ) which we call *central* reflexes. (It is easily verified from the relation  $\phi^2 = I$  that for a central reflex  $\phi$  is a rotation through an angle  $\pi$  about an axis through the centre of the sphere followed by a reflection in the plane through the centre perpendicular to that axis.  $\phi$  is thus a "reflection in the centre," transforming each point of the sphere into its diametrically opposite point.)

THEOREM IV. Let  $W_j$  be any edge of a reflex. Then if  $W_j$  is not self-dual,  $(W_j, \tilde{W}_j) = 0$ .

For then

$$\begin{aligned} (W_j, \tilde{W}_j) &= -(W^*_j, \tilde{W}^*_j), & \text{Theorem III, corollary;} \\ &= -(\phi W^*_j, \phi \tilde{W}^*_j), & \text{symmetry of } Z(M); \\ &= -(\tilde{W}_j, \tilde{W}_j) &= -(\tilde{W}_j, W_j), & \text{definition of a reflex;} \\ &= -(W_j, \tilde{W}_j) & \text{by (1).} \end{aligned}$$

Consider any reflex M. Let m be the number of its vertices. Then m is also the number of its faces by the symmetry of Z(M). By the Euler polyhedron formula it follows that the number of its edges is 2m - 2. Let the vertices, edges and faces be enumerated as  $V_1, V_2, \ldots, V_m$ , as  $W_1, W_2, \ldots, W_{2m-2}$ , and as  $P_1, P_2, \ldots, P_m$  respectively.

The structure of the 1-section of M can be represented by its incidence matrix  $H_1 = \{\eta_{ij}^1\}$ . Here  $\eta_{ij}^1$  is +1, -1 or 0 according as  $V_i$  is the positive end of, the negative end of, or not incident with,  $W_j$ .

Let K be the matrix  $\{c_{hk}\}$  defined in sec. 1, for M.

Then

(4)

$$K = H_1 H'_2$$

where  $H'_1$  denotes the transpose of  $H_1$ . For the (h,h)th element of  $H_1H'_1$  is the sum of the squares of the elements of the *h*th row of  $H_1$ , that is the number of edges incident with  $V_h$ . And the (h,k)th element  $(h \neq k)$  is evidently -J where J is the number of edges which join  $V_h$  and  $V_k$ .

The incidence matrix  $H_2 = \{\eta_{jk}^2\}$  is defined as follows:  $\eta_{jk}^2$  is +1, -1 or 0 according as  $W_j$  is positively incident, negatively incident, or not incident with  $P_k$ . By elementary combinatorial topology we have ([5], p. 68) (5)  $H_1H_2 = 0.$ 

Now we divide the edges of M into four disjoint classes:  $S_1$ ,  $S_2$ ,  $S_3$ ,  $S_4$ .  $S_1$  is the class of all self-dual edges<sup>2</sup>  $W_i$  which satisfy  $\tilde{W}_i = W_i$ ,  $S_2$  is the class of all self-dual edges which satisfy  $\tilde{W}_j = -W_j$ , and finally the non-self-dual edges are partitioned among  $S_3$  and  $S_4$  in such a way that  $\tilde{W}_i$  belongs to  $S_4$  when  $W_i$ belongs to  $S_3$ . Let p denote the number of members of  $S_1$ , q the number of members of  $S_2$ , r the number of members of  $S_3$  and therefore also of  $S_4$ . With a suitable ordering of the edges of M we can partition the matrix  $H_1$ as follows

(6) 
$$H_1 = \{ L_1 | L_2 | L_3 | L_4 \}.$$

Here  $L_i$  is the submatrix of  $H_1$  defined by the columns corresponding to members of  $S_i$ . We imply by (6) that the edges of M are so ordered that the columns of  $L_1$  come first in  $H_1$ , then those of  $L_2$ , and so on.

We now obtain a similar expression for  $H_2$ . We retain the same order for the edges, and we take the *i*th row of  $H_2$  to correspond to the face  $\phi V^*_i$ . The edge  $\tilde{W}_{i}$  is positively incident, negatively incident, or not incident with  $\phi V^{*}_{i}$ according as  $W_{i}^{*}$  is negatively incident, positively incident, or not incident with  $V^*_i$  (since  $\phi$  reverses the orientation of a face), that is according as  $V_i$  is the positive end, the negative end, or not an end of  $W_i$  (by sec. 3, prop. (ii)). Hence

$$H_2 = \{L_1 | -L_2 | L_4 | L_3\}'$$

By (4), (5), (6) and (7) we have

$$K = L_1L'_1 + L_2L'_2 + L_3L'_3 + L_4L'_4,$$
  
$$0 = L_1L'_1 - L_2L'_2 + L_3L'_4 + L_4L'_3,$$

whence

(8) 
$$K = 2L_1L'_1 + [L_3 + L_4][L_3 + L_4]'$$

(9) 
$$= 2L_2L'_2 + [L_3 - L_4][L_3 - L_4]'$$

We can write (8) and (9) in the forms

(10) 
$$K = (\sqrt{2} L_1 | [L_3 + L_4]) (\sqrt{2} L_1 | [L_3 + L_4])',$$

(11) 
$$K = (\sqrt{2} L_2 | [L_3 - L_4]) (\sqrt{2} L_2 | [L_3 - L_4])'.$$

Each of these expresses K as a product of a matrix with its transpose.

Now the rank of K cannot exceed that of  $(\sqrt{2} L_1 | [L_3 + L_4])$ , or that of  $(\sqrt{2} L_2 | [L_3 - L_4])$ . But the first of these matrices has p + r and the second q + r columns. Further the rank of K is m - 1, since C > 0 and |K| = 0. (By the definition of K its columns sum to zero.) As the sum (p + r) + (q + r)is equal to the number of edges of M, which is 2m - 2, it follows that (12)

$$p = q.$$

The number of edges  $W_i$  of M such that  $W_i = \pm W_i$  is thus even. We denote it by 2n.

We see also that the matrices  $L_1$  and  $L_2$  have each *m* rows and *n* columns, while  $L_3$  and  $L_4$  have each *m* rows and (m - n - 1) columns. Therefore

5

<sup>&</sup>lt;sup>2</sup>Here by "self-dual" we mean "self-dual with respect to the operation  $\phi$ ".

 $U = (\sqrt{2}L_1 | [L_3 + L_4])$  and  $V = (\sqrt{2}L_2 | [L_3 - L_4])$  have each *m* rows and (m - 1) columns. Since the sum of the elements in any column of  $H_1$  is zero, the same is true of *U* and *V*. These matrices accordingly have the property that all their minor determinants obtained by striking out one row are equal apart from sign; let us say that the minor determinants are equal to  $\pm u$  for *U* and  $\pm v$  for *V*. Since K = UU' = VV' we have, taking any first co-factor in *K* (which will by definition be the complexity of the 1-section of *M*),

$$C = u^2 = v^2.$$

But from its definition  $u = (\sqrt{2})^n X$ , where X is some integer. Hence we have

THEOREM V. The complexity of M is  $2^n X^2$ , where X is an integer.

Thus the complexity C of a reflex M is either of the form  $Y^2$  or else of the form  $2Y^2$ , where Y is an integer.

THEOREM VI. If C is of the form  $Y^2$  the transpedances of the 1-section of M all divide by Y; if C is of the form  $2Y^2$ , where Y is even, they all divide by 2Y.

Let Z denote Y in the first case, and 2Y in the second case.

First, if  $\tilde{W}_j = \pm W_j$ , we have  $(\tilde{W}_j, \tilde{W}_j) = (W^*_j, W^*_j) = (W_j, W_j)$ . Hence by (3),  $C = 2(W_j, W_j)$  and so Z divides  $(W_j, W_j)$ .

For any other edge  $W_j$  we have by (F),

$$C$$
 divides  $((W_j, W_j)(\tilde{W}_j, \tilde{W}_j) - (W_j, \tilde{W}_j)^2).$ 

But  $(W_j, \tilde{W}_j) = 0$ , by Theorem IV, and  $(\tilde{W}_j, \tilde{W}_j) = (W^*_j, W^*_j) = C - (W_j, W_j)$ , by (3). Hence C divides  $(W_j, W_j)^2$  and therefore Z divides  $(W_j, W_j)$ .

Next, if  $W_i$  and  $W_k$  are distinct edges of M then by (F)

C divides  $((W_j, W_j)(W_k, W_k) - (W_j, W_k)^2)$ .

But by our previous result Z divides  $(W_j, W_j)$  and  $(W_k, W_k)$ . Hence C divides  $(W_j, W_j)(W_k, W_k)$  and therefore C divides  $(W_j, W_k)^2$ . Consequently Z divides  $(W_j, W_k)$ .

This proves the theorem for transpedances (ab.cd) in which  $V_a$  and  $V_b$  are joined by an edge and  $V_c$  and  $V_d$  are joined by an edge. We can complete the proof by showing that each transpedance is a sum of transpedances of this form. This readily follows from (C) and (D).

**5.** Squared rectangles. Let M be any map. We orient the edges and faces of M as in sec. **3.** Let  $W_j$  be any edge of M. Let the positive and negative ends of  $W_j$  in M be  $V_p$  and  $V_q$  respectively. Let the faces of M incident with  $W_j$  be  $P_r$  and  $P_s$ . We may suppose that  $W_j$  is positively incident with  $P_r$  and negatively incident with  $P_s$ .

It is clear that the 1-sections of M and  $M^*$  are connected. Hence the complexities of these maps are positive. We shall denote the complexities of these maps by C and  $C^*$  respectively.

Let F be the full flow in M with polar edge  $W_j$  and let  $F_1$  be the full flow in  $M^*$  with polar edge  $W^*_j$ .

We may suppose that  $V_q$  has zero potential in F and that  $P^*_s$  has zero potential in  $F_1$ . Then the potential of  $V_p$  in F is  $(W_j, W_j)$  and the potential of  $P^*_r$  in  $F_1$  is  $(W^*_j, W^*_j)$ .

A vertex  $V_1$  of M is said to be *active* in F if there is a non-zero current (in F) in some edge incident with  $V_i$  in M. Since C > 0 it follows from (D) that  $V_p$ and  $V_q$  are active in F. If  $V_i$  is not a pole of F and is active in F it is evident from Kirchhoff's Laws that  $V_i$  is incident with an edge in which a positive current flows to  $V_i$  and an edge in which a positive current flows from  $V_i$ . Consequently  $V_i$  is then joined by edges of M to one vertex of M of higher potential and one vertex of M of lower potential than  $V_i$ .

It follows that, in the flow F, the active vertices of highest and lowest potential are the poles. Since C > 0 it follows from (D) that  $V_p$  is incident with an edge in which a positive current flows from  $V_p$  in F. The other end of this edge is either  $V_q$  or an active vertex of lower potential than  $V_p$ . From these observations we may deduce the physically obvious result that

(13) 
$$(W_j, W_j) \ge v \ge 0,$$

where v is the potential of any active vertex of M in F.

Similarly we have

(14) 
$$(W^*_j, W^*_j) \ge w \ge 0.$$

where w is the potential of any active vertex of  $M^*$  in  $F_1$ .

Let  $\xi$  be any real number. We say that an edge  $W_k$  of M comprises  $\xi$  if  $\xi$  lies between the potentials in F of the ends of  $W_k$ . If  $W_k$  comprises  $\xi$  the ends of  $W_k$  are active in F. So by (13) we have

(15) 
$$(W_j, W_j) > \xi > 0.$$

Similarly  $W^*_k$  comprises the real number  $\eta$  if  $\eta$  lies between the potentials in  $F_1$  of the ends of  $W^*_k$ , and if  $W^*_k$  comprises  $\eta$  we have

(16) 
$$(W^*_j, W^*_j) > \eta > 0.$$

Suppose that  $W_k$  is not  $W_j$  and that the current of F in  $W_k$  is non-zero. Then the set of all points

$$\left(\frac{C}{C^*}\,\eta,\,\xi\right)$$

in the (x, y) plane such that  $W_k$  comprises  $\xi$  and  $W^*_k$  comprises  $\eta$  is the interior of a square  $E_k$  of side  $(W_j, W_k)$ , by (2). By (2), (15) and (16),  $E_k$  is contained in the rectangle

$$(W_j, W_j) \ge y \ge 0, \qquad C - (W_j, W_j) \ge x \ge 0.$$

We call this rectangle R.

Let  $\xi$  be any real number satisfying (15) and not equal to the potential in F of any vertex M. Let S be the set of all vertices of M whose potential in F exceeds  $\xi$ , and let T be the set of all other vertices of M. Let X be the set of all edges of M which have one end in S and the other in T. Thus X is the set of all edges of M which comprise  $\xi$ . X is non-null, for  $W_j \in X$ , by (15).

Let  $P_t$  be any face of M. Each vertex incident with  $P_t$  is either in S or in T. From this it follows that the number  $v_t$  of members of X incident with  $P_t$  is even. Also in consecutive members of X in the boundary of  $P_t$  the positive currents flow in opposite directions in this boundary. The current in a member of X is non-zero by the definition of X.

Let  $X^*$  be the set of edges of  $M^*$  dual to the members of X. We say that a vertex  $P^*{}_t$  of  $M^*$  is  $\xi$ -active in  $M^*$  if it is incident with a member of  $X^*$ . By the preceding paragraph it follows that the number of edges of  $X^*$  incident with a  $\xi$ -active vertex of  $M^*$  is even. Since  $W_j \in X$ ,  $P^*{}_r$  and  $P^*{}_s$  are  $\xi$ -active in  $M^*$ . If  $P^*{}_t$  is any other  $\xi$ -active vertex of  $M^*$  it follows from the preceding paragraph, and from equations (2), that in the flow  $F_1$  the positive current in half the members of  $X^*$  incident with  $P^*{}_t$  flows to  $P^*{}_t$ , and the positive current in the other half flows from  $P^*{}_t$ . So then  $P^*{}_t$  is joined by edges of  $M^*$  to one  $\xi$ -active vertex of higher potential in  $F_1$  and to one  $\xi$ -active vertex of lower potential in  $F_1$ .

We can construct a simple arc L in the 1-section of  $M^*$ , with ends  $P^*_r$  and  $P^*_s$  having the following properties:

(i) Each edge of L is in  $X^*$ , and L does not contain  $W^*_{j}$ ;

(ii) The potentials in  $F_1$  of the vertices of  $M^*$  in L, taken in order from  $P^*_r$  to  $P^*_s$  in L, form a strictly decreasing sequence.

To construct L we first observe that  $P^*_r$ , being incident with an even number of members of  $X^*$ , is incident with one edge  $K_1$  of  $X^*$  other than  $W^*_j$ . Let  $U_1$  be the other end of  $K_1$ . By the definition of X the current of F in  $K^*_1$ is non-zero, and therefore the current of  $F_1$  in  $K_1$  is non-zero. So by (14) the potential in  $F_1$  of  $U_1$  is less than that of  $P^*_r$ . If  $U_1$  is not  $P^*_s$  it is joined by a member of  $X^*$ ,  $K_2$  say, to a  $\xi$ -active vertex  $U_2$  of  $M^*$  of lower potential in  $F_1$ . Similarly if  $U_2$  is not  $P^*_s$  it is joined by a member  $K_3$  of  $X^*$  to a  $\xi$ -active vertex of  $M^*$  of lower potential in  $F_1$ , and so on. The sequence  $K_1, K_2 \ldots$ must terminate since the number of edges of  $M^*$  is finite. Clearly the union of the edges  $K_1, K_2 \ldots$  is a simple arc L in the 1-section of  $M^*$ , with ends  $P^*_r$  and  $P^*_s$  having properties (i) and (ii).

Let L' be the simple closed curve in the 1-section of  $M^*$  obtained by adjoining  $W^*_j$  to L. Then L' is a union of members of  $X^*$ .

Any vertex of M must be contained in one of the two residual domains in the sphere of the simple closed curve L'. The two ends of a member J of Xlie in different faces of  $M^*$  incident with  $J^*$ . Hence if  $J^*$  is contained in L'they lie in different residual domains of L'. In particular  $V_p$  and  $V_q$  lie in different residual domains of L'. We denote the residual domains containing  $V_p$  and  $V_q$  by  $D_+$  and  $D_-$  respectively.

The potential in F of any active vertex of M which is in  $D_+$  must exceed  $\xi$ . For let  $V_k$  be a vertex of M which is in  $D_+$ , is active in F, and has the lowest possible potential in F consistent with these conditions. Since  $V_k$  is in  $D_+$  it is not  $V_q$ . Hence it is joined by an edge H of M to an active vertex of lower potential. This vertex must be in  $D_-$ . Hence H intersects L'. Thus H must be a member of X. Consequently H comprises  $\xi$  and therefore the potential in F of  $V_k$  exceeds  $\xi$ .

A similar argument shows that the potential in F of any active vertex of M which is in  $D_{-}$  must be less than  $\xi$ .

We conclude that if J is any member of X its two ends must be in different residual domains of L'. Hence J intersects L' and therefore  $J^*$  is one of the edges of  $M^*$  in L'. So L' is the union of all the members of  $X^*$ .

Now let  $\eta$  be any real number satisfying (16), and not equal to the potential in  $F_1$  of any vertex of  $M^*$ . By properties (i) and (ii) of the arc L it follows that there is just one edge  $W_k$  of N other than  $W_j$  such that  $W_k$  comprises  $\xi$  and  $W^*_k$  comprises  $\eta$ .

From this result it is easily seen that no two of the squares  $E_k$  have any interior point in common, and that each point of the rectangle R belongs to at least one of the squares  $E_k$ . We recall that  $E_k$  is defined only when  $W_k$  is not  $W_j$  and the current  $I_k$  of F is non-zero.

Thus the squares  $E_k$  define a squaring of the rectangle R.

We say that the 1-section of M is a *c-net* of the resulting squared rectangle. The network obtained from this 1-section by suppressing the edge  $W_j$  is a *p-net* of the squared rectangle. The highest common factor of the lengths of the sides of the squares  $E_k$ , i.e., the highest common factor of the transpedances  $(W_j, W_k)$  taken for the given value of j and all values of k, is called the *reduction* of the squared rectangle.

Segments parallel to the x axis will be called *horizontal*. Segments parallel to the y axis will be called *vertical*. The lengths of the vertical and horizontal sides of the squared rectangle R are  $(W_j, W_j)$  and  $C - (W_j, W_j)$  respectively. The numbers obtained by dividing these by the reduction of the squared rectangle are called the *reduced* horizontal and vertical sides respectively. The numbers  $(W_j, W_j)$  and  $C - (W_j, W_j)$  are called the *full* vertical and horizontal sides respectively.

A point in R which is common to four of the elements  $E_k$  is called a *cross* of the squared rectangle.

As a consequence of Theorem VI (leaving aside the case  $C = 2Y^2$ , Y odd) we see that the reduction of any squared rectangle having a reflex as *c*-net is a multiple of the reduced horizontal side. This property also holds for the reduction of a squared square ([1]). It seems plausible that if one made a list of a few hundreds of such rectangles one would discover some perfect squares among them. At least the possibility of deriving a perfect square from a given reflex cannot be excluded, as it can for most networks, by the reduction theorems of [1]. We have not made such a long list; we merely draw the attention of more industrious squares of rectangles to the possibility.

We have evaluated a few squared rectangles of fairly small order having 1-sections of reflexes as c-nets. The perfect ones in our list all correspond to central reflexes. They are given below in the notation of C. J. Bouwkamp ([6], pp. 1179-1180).

In Bouwkamp's notation the top left-hand corner of each component square of a squared rectangle is taken as its "representative point." The lengths of the sides of those squares for which the representative points lie in the same horizontal segment (connected component of the union of horizontal sides of the elements of the squared rectangle) are bracketed together in the order of the representative points from left to right. The brackets read in order from top to bottom of the rectangle. When several brackets correspond to collinear horizontal segments they are written in the order of these segments from left to right.

We remark that each one of the rectangles listed below has a cross. It can be shown that this is a consequence of Theorem IV.

Rectangle (1). Order XXII. Full horizontal side (271)<sup>2</sup>. Reduction 271. Reduced sides 271, 257.

(91, 80, 100), (11, 49, 20), (67, 35), (29, 30, 61), (32, 3),

(52, 28, 1), (31), (24, 4), (99), (96), (76).

Rectangle (2). Order XXIV. Full horizontal side (480)<sup>2</sup>. Reduction 480. Reduced sides 480, 456. Side-ratio 20:19.

(158, 160, 162), (118, 40), (38, 91, 31), (29, 133), (60,) (78),

(25, 66, 34, 26), (180, 41), (8, 18), (32, 10), (161), (139).

Rectangle (3). Order XXIV. Full horizontal side (494)<sup>2</sup>. Reduction 494. Reduced sides 494, 418. Side-ratio 13:11.

(183, 149, 162), (34, 102, 13), (59, 116), (113, 104), (30, 29),

(1, 28), (36, 66, 31), (4, 140), (35), (9, 131), (122), (101).

Rectangle (4). Order XXIV. Full horizontal side (459)<sup>2</sup>. Reduction 459. Reduced sides 459, 401.

(118, 107, 123, 111), (11, 80, 16), (12, 99), (129), (64, 87),

(35, 45, 41, 23), (18, 191), (25, 10), (59), (55), (154), (114).

Rectangle (5). Order XXIV. Full horizontal side (463)<sup>2</sup>. Reduction 463. Reduced sides 463, 464.

(200, 134, 129), (45, 84), (94, 40), (54, 31), (109, 63, 28),

(23, 8), (92), (35, 87, 77), (46, 52), (10, 159), (155), (149).

Rectangle (6). Order XXIV. Full horizontal side (473)<sup>2</sup>. Reduction 473. Reduced sides 473, 435.

(166, 138, 169), (57, 81), (137, 29), (50, 119), (86), (62, 69),

(27, 59, 55, 7), (48, 147), (132, 5), (32), (4, 99), (95).

Rectangle (7). Order XXIV. Full horizontal side (399)<sup>2</sup>. Reduction 399. Reduced sides 399, 429. Side-ratio 133:143.

(137, 120, 142), (17, 81, 22), (154), (59, 41, 64), (18, 23),

(106, 34, 13, 5), (8, 84), (21), (55), (139), (138, 16), (122).

Rectangle (8). Order XXIV. Full horizontal side (424)<sup>2</sup>. Reduction 848. Reduced sides 212, 214. Side-ratio 106:107.

(79, 62, 71), (17, 36, 9), (27, 20, 33), (53, 24, 19),

(7, 13), (5, 50, 34), (29), (46), (82), (16, 18), (66), (64).

The last of these deserve special comment. It is remarkable that any perfect rectangle of the twenty-fourth order should have such small elements. Even in the thirteenth order most of the perfect rectangles have larger reduced elements than this. (A list of all the simple squared rectangles of order less than 14 is given in [6]).

6. Central and planar reflexes. For a central reflex the number n is zero, since  $\phi$  can transform no point  $w_j$  into itself. Hence, by Theorem V, the complexity of a central reflex is of the form  $X^2$  where X is an integer. This is exemplified by the full sides given in the above list.

For any planar reflex M, let Q be the great circle in which the plane of symmetry of Z(M) cuts the sphere. By symmetry considerations Q can meet the boundary of a face F of Z(M) only in the vertex  $w_j$  or in the mid-point of the opposite side  $(V_iP_k^* \text{ say})$ . It follows that Q cuts the 1-section of M only in points  $w_j$ . An arc in Q joining two consecutive points  $w_{j_1}$ —let us say  $w_{j_1}$  and  $w_{j_2}$ —on Q is evidently a diagonal of a quadrilateral  $w_{j_1}w_{j_2}V_1P_k^*$  composed of two faces of Z(M).

From this we deduce that if  $w_1, w_2, \ldots, w_k$  are points  $w_j$  on Q, taken in their cyclic order on Q, then  $W_1, W_2, \ldots, W_k$  is a cyclic sequence of selfdual edges in which each edge has one end in common with its successor, and the other with its predecessor. We say that these edges constitute the *girdle* of M. The girdle of  $M^*$  evidently consists of the edges  $W^*_1, W^*_2, \ldots, W^*_k$ .

From these considerations it is evident that an edge  $W_j$  of M satisfies  $W_j = \pm \tilde{W}_j$  if and only if it is in the girdle of M.

THEOREM VII. The edges  $W_j$  of the girdle satisfy alternately  $\tilde{W}_j = W_j$  and  $\tilde{W}_j = -W_j$ .

Consider the quadrilateral  $w_{j_1}w_{j_2}V_iP^*_k$  mentioned above. If  $V_i$  is the positive (negative) end of both  $W_{j_1}$  and  $W_{j_2}$  then  $W^*_{j_1}$  and  $W^*_{j_2}$  are both negatively (positively) oriented with respect to  $V^*_i$ . (Sec. 3, Prop. (ii)). Then  $P^*_k$  must be the positive end of one of them and the negative end of the other, by (5). It follows that  $V_i$  is the positive end of the edges  $\tilde{W}_{j_1}$ ,  $\tilde{W}_{j_2}$  and the negative end of the other, whence the theorem is true for  $W_{j_1}$  and  $W_{j_2}$ . The argument when  $V_i$  is the positive end of one of the edges  $W_{j_1}$  and  $W_{j_2}$ .

Thus the edges of the girdle belong alternately to  $S_1$  and  $S_2$ . (See sec. 4).

THEOREM VIII. If  $W_j$  and  $W_k$  are distinct edges belonging to the same class  $S_1$  or  $S_2$ , then  $(W_j, W_k) = 0$ .

For then  

$$(W_j, W_k) = -(W_j, W_k) \text{ by } (3),$$

$$= -(\phi W_j, \phi W_k) = -(\tilde{W}_j, \tilde{W}_k)$$

$$= -(W_j, W_k), \text{ by the definition of } S_1 \text{ and } S_2.$$

THEOREM IX. Let  $W_j$  be an edge of the girdle of a planar reflex M. Then the squared rectangle corresponding to the full flow in the 1-section of M with polar edge  $W_j$  is a diagonally symmetric squared square.

We use the notation of sec. 5.

Suppose there is an edge  $W_k$  of M, other than  $W_j$ , and real numbers  $\xi$  and  $\eta$ , such that  $W_k$  comprises  $\xi$  and  $W^*_k$  comprises  $\eta$ . Then by the symmetry of Z(M),  $\tilde{W}_k$  comprises  $\eta$  and  $(\tilde{W}_k)^*$  comprises  $\xi$ . Hence the elements of the rectangle corresponding to  $W_k$  and  $\tilde{W}_k$  are reflections of one another in the line y = x. The theorem follows.

It is this theorem that underlies the methods for the construction of perfect squares given in [1]. It is easily seen that we can construct a planar reflex by the following sequence of operations. First we draw the girdle. Then we arbitrarily fix the 1-section of M in the "northern hemisphere," arranging that it shall fit the given girdle and not meet the "equator" Q. Then we subdivide this so as to form the part of Z(M) in the northern hemisphere. Finally we complete Z(M) by reflecting in the equator.

Fig. 2 shows a planar reflex as seen from above the "north pole". The full lines represent the part of M in the northern hemisphere. The broken lines represent equally well the part of M in the southern hemisphere or the part of  $M^*$  in the northern hemisphere.



The device adopted in [1] amounts to taking a "rotor" for the part of the 1-section of M, apart from the edges of the girdle, in the northern hemisphere and then in the resulting planar reflex replacing this rotor, in one hemisphere only, by its mirror image. It is found that this destroys the symmetry of the squares of Theorem IX without affecting their squareness. For details the reader is referred to [1] and to the companion paper which follows immediately.

#### References

- [1] R. L. Brooks, C. A. B. Smith, A. H. Stone and W. T. Tutte, "The Dissection of Rectangles into squares," *Duke Math. J.*, vol. 7 (1940), 312-340.
- [2] J. H. Jeans, The Mathematical Theory of Electricity and Magnetism (Cambridge, 1908).
- [3] A. C. Aitken, Determinants and Matrices (Edinburgh, 1939).
- [4] B. v. Kerékjártó, "Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche," Math. Ann., vol. 80 (1919), 36-38.
- [5] O. Veblen, Analysis Situs (Amer. Math. Soc. Colloquium Publications, 2nd ed. (1913)).
- [6] C. J. Bouwkamp, On the Dissection of Rectangles into Squares, Papers I and II. (Koninklijke Nederlandsche Akademie van Wetenschappen, Proc., vol. 49 (1946), 1176-1188, and vol. 50 (1947), 58-71).

University College, London and University of Toronto