
CRYSTALLOGRAPHY EDUCATION

Why scientists should learn to program in Python

Vidya M. Ayer,1 Sheila Miguez,2 and Brian H. Toby3,a)
1Svaksha.com, Bangalore, India
2Chicagopythonworkshop.org, Chicago, Illinois, USA
3Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439–4814

(Received 14 August 2014; accepted 24 September 2014)

The importance of software continues to grow for all areas of scientific research, no less for powder
diffraction. Knowing how to program a computer is a basic and useful skill for scientists. This paper
explains the three approaches for programming languages and why scripting languages are preferred
for non-expert programmers. The Python-scripting language is extremely efficient for science and its
use by scientists is growing. Python is also one of the easiest languages to learn. The language is in-
troduced, as well as a few of the many add-on packages available that extend its capabilities, for ex-
ample, for numerical computations, scientific graphics, and graphical user interface programming.
Resources for learning Python are also provided. © 2014 International Centre for Diffraction Data.
[doi:10.1017/S0885715614000931]

Key words: software, Python, numerical analysis, programming

I. INTRODUCTION

When scientists realized the ability for computers to facil-
itate their work, they were perhaps the most enthusiastic early
adopters of the technology. As computers became increasing-
ly available in the 1950s, 1960s, and 1970s, scientists em-
braced them further and developed software to perform
lengthy computations and to automate tedious data collection
activities. Few fields were transformed as greatly as crystallog-
raphy, through programs for direct-methods phasing and
least-squares refinements and through computerized instru-
ments. Fifty years later, the thought of recording measure-
ments on a strip chart recorder seems as quaint as a
commuting to work in a horse-drawn carriage.

There is now a plethora of highly specialized software
programs for powder diffraction and practitioners also draw
upon many general-purpose tools, such as spreadsheets and
word processing packages. While use of computers and their
power have grown in science, there is an irony that far fewer
scientists are learning software development skills. This is a
loss. While existing applications can accomplish quite a bit,
there are always simple tasks in science that no one has pro-
grammed in a convenient way. Additionally, there are always
new ideas that should be tried. Also of concern is the question
of who will write the next generation of scientific software?
Even when scientists team with computer specialists for
software development, it is still very helpful when the
scientists have a good understanding of the programming pro-
cess. Hence, we recommend that more scientists learn to pro-
gram. Fortunately, not only have computers become
ubiquitous, but also the skills needed to learn programming
have been simplified, at least with some high-level computer
languages.

There are programming languages aplenty, with each
computer language having been designed to fill a gap unmet
in the capabilities of its predecessors, but even so, every lan-
guage in common use has advantages and disadvantages,
some of which will be considered below. Even professional
programmers typically tend to specialize in the use of a
small number of languages, but since scientists have consider-
ably less time to invest, they typically prefer mastering a single
language that can satisfy as many needs as possible.

Scientific computing requires that multiple types of tasks
be done in combination: one needs to perform numerical or
symbolic analysis, usually with a scientific software package
to avoid reinventing the wheel; results need to be presented
to the user, usually with scientific graphics; the user must in-
teract with the program, typically in modern codes via a graph-
ical user interface (GUI or web browser); documentation is
needed to describe the software and for users to learn how
to utilize the program. The Python programming language is
able to perform all of this and more and thus satisfies what sci-
entists need (van Rossum, 1998). Furthermore, the authors of
this paper feel that Python is among the easiest of languages
for novices to learn, while being one of the best programming
environments for scientific purposes, such as automation,
image processing and numerical analysis. It also provides an
environment where users can start with only the simpler capa-
bilities, but possibly advance to using more powerful features,
such as object-oriented programming, as skills grow.

Python offers capabilities for two different approaches to
scientific computing: “numerical” vs. “symbolic” scientific
systems. The former requires tools specifically meant to han-
dle precise numerical data (e.g. Matlab, Octave, R-language,
and other high-level computer languages), whereas the latter
manipulates indefinite symbolic expressions or equations
(e.g. Mathematica and Maple). Since all these features are
available in Python, it can be applied to solve a wide range of
problems. A novice can easily learn Python in order to turn
their ideas into programs very quickly, but if needed for a larger

a)Author to whom correspondence should be addressed. Electronic mail:
toby@anl.gov

S48 Powder Diffraction 29 (S2), December 2014 0885-7156/2014/29(S2)/48/17/$18.00 © 2014 JCPDS-ICDD S48

https://doi.org/10.1017/S0885715614000931 Published online by Cambridge University Press

mailto:toby@anl.gov
http://crossmark.crossref.org/dialog/?doi=10.1017/S0885715614000931&domain=pdf
https://doi.org/10.1017/S0885715614000931

project, she or he can learn to create object-oriented code, op-
timize code for speed and develop sophisticated scientific vi-
sualization with complex graphical user interfaces.

Furthermore, Python is a cross-platform open source soft-
ware package that is licensed under the “Python Software
Foundation License”, enabling the free distribution of the in-
terpreter. Programs written in it incur no hidden licensing
costs. This makes it ideal for use in the classroom, as well
as in the laboratory, since replication of work is a cornerstone
of the scientific method. Below, we will explain many of the
features of Python and explain why it is so valuable for nearly
all aspects of scientific computation, from quick-and-dirty for-
mat data conversion to model fitting through instrument auto-
mation and even first-principles theory. We first compare
Python to some of the other programming languages com-
monly used in scientific computing, and then present a short
overview of Python syntax.

What makes Python so valuable for scientific computation
is not only Python’s novice-friendly syntax, but also the many
packages that allow many common programming tasks to be
completed in dozens of lines of code rather than hundreds or
thousands in other languages. Again, there are thousands of
such packages, so we point out a small selection of these in
order to highlight what makes Python so valuable and to
point novices toward some of the most valuable resources.
Finally, since a search for resources for learning Python can
produce an overwhelming number of results, many of which
are of limited value to a scientist, we provide a section
(Appendix 2) with recommendations on many different
types of pedagogical materials to help scientists learn to pro-
gram with Python.

II. AN OVERVIEW OF MODERN PROGRAMMING

LANGUAGES

Although there are many different programming languag-
es, they fall into three general categories and it is important to
understand the benefits and drawbacks of each approach. The
original computer languages such as Fortran, Algol, Cobol, as
well as more modern languages, such as C and C+ +, are inter-
preted by another large program called a compiler. The output
of a compiler process is called machine code, because it con-
tains the actual hardware instructions appropriate for the cir-
cuitry and operating system of a specific type of computer.
A program compiled to run in Windows will not run on a
Linux machine or on an Macintosh (except perhaps in an em-
ulator) and, in some cases, a program compiled for a specific
version of an operating system will not run on older or newer
versions of the same operating system. After recompilation,
code should be readily portable between computer platforms,
but in practice this is not always true. The main advantage of
using compilers is they produce the most powerful and effi-
cient programs, since they take direct advantage of the com-
puter and operating system design, but the cost is more of a
learning investment and slower coding progress for the
programmer.

Interpreted programming languages were developed as
computers became more common and efficiency became
less critical. In this, a master program called an interpreter
reads the program to be run and as each line of code is encoun-
tered, it is translated and the requested actions are performed.
One of the earliest interpreted languages was BASIC (circa

1964), but newer interpreted languages include Perl, Ruby,
Tcl/Tk, and Python. These languages also tend to have sophis-
ticated instructions that allow commonly used actions to be
coded in a simple manner. This tends to both reduce the size
of programs and simplify the process of writing them.
Another advantage of interpreted languages is that a program-
mer can type individual instructions directly into the interpret-
er and experiment with the results. These two features allow
programs to be developed with the minimum level of effort.
Most interpreters are tested to perform identically on a wide
range of computer platforms, which means that interpreted
language program code will usually run identically on many
types of computers. Initially these languages were used typi-
cally for writing simple and short programs, called scripts,
so they are often referred to as scripting languages.

Interpreted programming languages do bring some disad-
vantages. One is that the interpreter must be installed on each
computer where the program will be run. Furthermore, such
interpreted programs tend not to run as efficiently as those
in compiled languages. However, computational speed is
often less of a concern than the time needed to create and
debug a program. In the relatively rare cases where speed is
a significant concern, usually only a small fraction of the
lines in a program will impact this and many interpreted lan-
guages offer mechanisms for addressing these bottlenecks.

The newest type of computer language is something of a
hybrid between compiled and interpreted languages. A com-
piler is used to convert the program to simple and generalized
instructions called bytecode. Unlike the output from a compil-
er, these instructions are not specific to any type of computer
hardware. To run the program, once converted to bytecode, a
second program, called a virtual machine, reads these
hardware-independent bytecode commands and performs the
actual operations by translating them, command by command,
to the actual hardware and operating system. Thus, bytecode
will also run on any computer where the virtual machine has
been ported. Java is the leading example of this type of lan-
guage, which is available for a wide range of hardware, includ-
ing all common personal computers and an estimated 109

mobile phones worldwide. It is even incorporated into most
web browsers. The need for translation of bytecode to hard-
ware instructions adds a layer of overhead, reducing perfor-
mance to be typically intermediate between compiled and
unoptimized interpreted languages. The code tends to be as
complex and time-consuming to write as that of compiled lan-
guages, but has the advantage that the complied code tends to
be quite portable, unless machine-specific packages are em-
ployed to improve speed, graphics, etc. Although these lan-
guages are quite attractive for professional programming
tasks, a greater level of mastery is needed before they are use-
ful for science and we cannot recommend them for casual use.

III. THE SYNTAX OF PYTHON

In later sections of this paper, we will provide some exam-
ples of Python code to explain different concepts. Readers
who have no experience with programming languages or
who wish to see how Python differs from other languages
may want an introduction to Python syntax before continuing.
This has been provided as Appendix 1. This also discusses the
difference between the traditional (Python 2.7) and new
(Python 3 or 3.x) versions.

S49 Powder Diffr., Vol. 29, No. S2, December 2014 Why scientists should learn to program in Python S49

https://doi.org/10.1017/S0885715614000931 Published online by Cambridge University Press

https://doi.org/10.1017/S0885715614000931

As noted previously, the Python interpreter can be used
interactively, so the programming commands below can be
tried by typing them in a command window. In fact, many of
the examples are shown as they would appear if typed directly
into the interpreter, which uses prompts of >>> (or . . . for
continuation lines). The same commands can also be placed
in a file (sans the prompt characters), saved with the “.py” ex-
tension and the entire file can be run as a script.

In Section VII, below, an alternate approach for interac-
tive use of Python, using the IPython shell is presented.
When Python is used in that manner, input and output are pref-
aced with In [1] and Out [1] (where 1 will be subse-
quently incremented). Examples are also shown in that
format, as well.

IV. MODULES AND PACKAGES IN PYTHON

What makes Python so valuable for science is the exten-
sive library of modules that greatly extend a programmer’s
ability to perform different tasks. Note that if a package
with the desired functionality is not already present, a pro-
grammer can create additional modules. Packages can be writ-
ten in the Python language, or if speed or some other
functionality is needed, in C, C+ +, or Fortran.

A. How to import packages

Python has some standard naming conventions for im-
porting package modules within a program. Let’s say our pro-
gram requires that we import Pandas, NumPy and a section of
the Matplotlib package. Normally this is done at the start of
the program, as below:

import numpy
import pandas as pd
import matplotlib.pyplot as plt

In this case, we have defined abbreviations pd and plt to
simplify later typing. To use the Pandas read_csv routine,
we reference it as pd.read_csv. If only import pandas
had been used, the reference would need to be referenced as
pandas.read_csv. Python does allow us to eliminate
use of these namespace prefixes by using the command
from pandas import *, but this is a very poor program-
ming practice. The prefix makes it clear to someone reading
the code what routines are defined in the current module ver-
sus in another module or package. If from . . . import * is
used with multiple packages and these packages contain rou-
tines with the same name, confusion is likely as to which rou-
tine will be accessed.

B. Built-in modules

There are more than 200 modules in the Python standard
library, which are called “built-in” because they are distributed
with Python as part of a basic installation. This “batteries in-
cluded” approach provides the basic functionality that one
would expect in any modern computer language. Examples
of this include: the datetime module, which is used to in-
terpret, compare, and manipulate representations of dates
and times and the glob module which is used to search for

files. Some of the modules provide more sophisticated func-
tionality, such as sqlite3, a simple database implementa-
tion, and modules that allow Python to run a web server
with very simple commands. There is on-line a complete list
of built-in packages (https://docs.python.org/2/library/). One
difficulty with Python is that because there are so many capa-
bilities in the standard library, it can be difficult to locate the
routine one needs – and there may be more than one way to
complete an operation. Search engines such as Yahoo,
Google, or Bing can also be useful. A query such as
“Python find unique elements in list” will likely turn up a sim-
ple solution, such as that the call list[set(l)]will convert
list l to a set, which only contains each unique element once
and then converts the set back to a list, thus eliminating
duplicates.

Scientists learning Python should certainly read the nu-
merical processing modules (https://docs.python.org/2/
library/numeric.html) section of the Python documentation.
These modules provide capabilities such as trigonometric
functions (but note that the NumPy package, Section V.A1,
provides a faster alternative for these in array operations.)
These built-in modules provide random number generation
and also can be used to perform computations at arbitrary lev-
els of precision, or even where rational numbers are stored and
manipulated as exact fractions allowing certain types of com-
putations to be performed with no round-off errors – infinite
precision.

C. Add-on Python packages

As will be discussed below in subsequent sections, of
great interest to scientists are the various “add-on” libraries
and modules that are not formally part of Python, but add im-
portant features. These are written by individuals or groups of
programmers and must be added to a basic Python installation.
These modules are usually grouped into packages that have
been written to solve particular needs or extend the capabili-
ties of Python. For example, the Python packages for numer-
ical processing will simplify coding and/or speed-up these
computations. These additional packages, such as Python,
are distributed as open-source and usually with non-restrictive
licenses. These third-party add-on packages greatly expand
the utility of Python, but introduce a complexity due to their
separate distribution. A Python program that needs add-on
packages requires a more complex Python “stack”, since
both the interpreter and the package(s) must be installed wher-
ever the Python program will be used.

It should be noted that while the transition from Python 2
to Python 3 discussed in Appendix 1 requires only minor
changes in Python scripts (if any), but more extensive changes
are needed for the code written in compiled languages that is
used inside many Python packages. This has delayed avail-
ability of Python 3 versions of many scientific packages.

D. Python package managers and Linux distributions

Dependencies are an important problem in any computa-
tional environment and this gets complex for scientific
Python, partly because the scientific stack evolved many
years after the language was born. Hence, the packaging
ecosystem for scientific Python is slightly messy and con-
fusing for beginners of the language, because of various

S50 Powder Diffr., Vol. 29, No. S2, December 2014 Ayer et al. S50

https://doi.org/10.1017/S0885715614000931 Published online by Cambridge University Press

https://docs.python.org/2/library/
https://docs.python.org/2/library/
https://docs.python.org/2/library/numeric.html
https://docs.python.org/2/library/numeric.html
https://docs.python.org/2/library/numeric.html
https://doi.org/10.1017/S0885715614000931

inter-dependent libraries and other dependencies. Python also
has its own set of package managers exclusively built to han-
dle this “dependency hell” for scientific Python distributions,
with the most commonly used tools for package installation
and dependency management:

• pip (https://pip.pypa.io/en/latest/) is the official Python
package and dependency manager.

• conda (https://github.com/conda/conda/) a cross-platform
binary package manager, an open source product of
Continuum Analytics, Inc. (www.continuum.io), is particu-
larly convenient.

The simplest solution is to find and install a single third-party
distribution that provides Python configured with all the pack-
ages a user is likely to need. The most popular ones being:

• Anaconda (http://continuum.io/downloads) Note that this
includes conda package manager.

• Canopy (https://www.enthought.com/products/canopy/).
• Python(x, y) (https://code.google.com/p/pythonxy/).

Anaconda and Canopy support Windows, Linux, and
Macintosh computers, whereas Python(x,y) has distributions
only for Windows and Linux.

Alternately, most Linux distributions have software instal-
lation programs and extensive libraries of well-tested software
packages, which usually include many Python scientific soft-
ware development resources. Among the most popular Linux
versions, Debian, and Ubuntu use “dpkg” (https://wiki.debian.
org/Teams/Dpkg) as the package management tool, while
rpm-based systems such as Fedora/RedHat use “yum”

(http://yum.baseurl.org) as their command line package man-
agement tool. GUI-based front-ends for running dpkg and
yum are usually provided as well.

Other tools for Python version and environment manage-
ment are:

• virtualenv (https://pypi.python.org/pypi/virtualenv) is a tool
to configure Python so that only certain packages are visible.
For example, this allows testing of software with selected
versions of different Python packages when more than one
version is installed.

• virtualenvwrapper (https://pypi.python.org/pypi/virtualenv-
wrapper) is a wrapper extension for virtualenv that makes
its use more convenient.

• pyenv (https://github.com/yyuu/pyenv) Uses shell (e.g.
Bash) scripts to manage installation of different Python
versions.

V. A SURVEY OF ADD-ON PYTHON PACKAGES OF

INTEREST TO SCIENTISTS

The PyPI site (https://pypi.python.org) provides an index
to freely distributed Python packages. This site lists >40 000
packages (!), but not all are of equal quality and many are
no longer maintained. Sometimes one can find historical evi-
dence for parallel approaches to solving a problem before the
community settles on a preferred method. Nonetheless, find-
ing even an abandoned unmaintained set of code for a partic-
ular task can be of tremendous help in tackling a project. The
large number of external packages is both a boon and some-
thing of an Achilles’ heel for Python users. It is almost certain
that one can find a package with routines of value for any

project, but then it must be installed and if software will be dis-
tributed, users will need to do the same. This is why package
management, as described previously, becomes so valuable.

Below we discuss some of the authors’ favorite packages.
All are available cross-platform on at least on all common
computers, though perhaps not on smartphones and tablets.
All are freely distributed. Not all of them are yet available
for Python3.x, but this can be expected to change by 2015
or 2016 at the latest.

A. Computation

Dynamic typing makes Python easier to use than C. It is
extremely flexible and forgiving, which leads to efficient use
of development time. On those occasions when the optimiza-
tion techniques available in C or Fortran are required, Python
offers easy hooks into compiled libraries. Python ends up
being an extremely efficient language for the overall task of
doing science via software and is one of the reasons why
Python use within many scientific communities has been con-
tinually growing. Below we discuss some of the packages that
make mathematical computations easy in Python.

1. NumPy

NumPy is the foundational package used in scientific
computing with Python. It is licensed under the BSD license,
enabling reuse with few restrictions. Among other features, it
supports operations on large, multi-dimensional arrays, and
matrices that allow manipulation of N-dimensional array ob-
jects. It also provides a large library of high-level mathe-
matical functions to operate on these arrays, including
broadcasting functions on arrays. Other mathematical features
include support for linear algebra, Fourier transformation, and
random number capabilities.

The “ndarray” or the N-dimensional array data structure is
the core functionality in NumPy, used as a container for many
values (van der Walt et al., 2011). However, unlike Python’s
“list” data structure, all elements in a single ndarray must have
the same type; ndarrays can support multiple levels of address-
ing, which allows them to be used as multi-dimensional
arrays.

To demonstrate the difference between a list and ndarray,
let us consider that a Python list may contain a mixture of var-
ious data types:

>>> list_subject_years=['Biology', 'Physics',
'|Chemistry', 2011, 2012, 2014]

In contrast, a NumPy array is typed. Here a nested list of inte-
gers is recast as a two-dimensional (2D) float array:

>>> import numpy as np
>>> convertgf = [[106, 177, 44], [32, 47, 30],
[133, 116, 112]]
>>> bitmap = np.array(convertgf,dtype = float)
>>> df = bitmap/255
>>> print(df)
[[0.41568627 0.45882353 0.17254902],
[0.1254902 0.18431373 0.11764706],
[0.52156863 0.45490196 0.43921569]])

S51 Powder Diffr., Vol. 29, No. S2, December 2014 Why scientists should learn to program in Python S51

https://doi.org/10.1017/S0885715614000931 Published online by Cambridge University Press

https://pip.pypa.io/en/latest/
https://pip.pypa.io/en/latest/
https://github.com/conda/conda/
https://github.com/conda/conda/
http://www.continuum.io
http://continuum.io/downloads
http://continuum.io/downloads
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://code.google.com/p/pythonxy/
https://code.google.com/p/pythonxy/
https://wiki.debian.org/Teams/Dpkg
https://wiki.debian.org/Teams/Dpkg
https://wiki.debian.org/Teams/Dpkg
http://yum.baseurl.org
http://yum.baseurl.org
https://pypi.python.org/pypi/virtualenv
https://pypi.python.org/pypi/virtualenv
https://pypi.python.org/pypi/virtualenvwrapper
https://pypi.python.org/pypi/virtualenvwrapper
https://pypi.python.org/pypi/virtualenvwrapper
https://github.com/yyuu/pyenv
https://github.com/yyuu/pyenv
https://pypi.python.org
https://pypi.python.org
https://doi.org/10.1017/S0885715614000931

Note that above, all array elements are scaled (bitmap/255)
in a single NumPy operation. With a list this would require a
loop.

Since NumPy has built-in support for memory-mapped
ndarrays, all NumPy arrays can be viewed into memory buff-
ers that are allocated by C/C+ +. The requirement that all items
in an NumPy array have the same type allows a more efficient
memory access mechanism as compared to Python’s object
model and results in speedy calculations as compared basic
Python. This ability to define efficient multi-dimensional
containers of same-typed generic data across a variety of
databases ensures data portability, a key requirement for
large scientific projects. However, despite the modules that
vectorize NumPy operations and call compiled code,
NumPy may still be much slower than other modern lan-
guages like Julia and even optimized Fortran and C.

a. Performing efficient computations with NumPy

NumPy allows some computationally intensive computa-
tions to be performed with speeds comparable to that of
Fortran or C codes (and sometimes exceeding them, since
NumPy routines themselves are often highly optimized).
Doing this requires writing the numerical calculations in a
way that minimizes looping, where each NumPy function
call will process as many values as possible, usually employ-
ing linear algebra and sometimes extending to arrays of 3, 4, or
more dimensions.

As an example for how this works, let us compute a part
of the structure factor equation:

Fhkl =
∑

fj exp [2pi(hxj + kyj + lzj)]

To simplify this a bit, we can assume a center of symmetry, so
that Fhkl are all real and that fj is the same for every atom, and
will be ignored. We then get:

Fhkl =
∑

cos [2p(hxj + kyj + lzj)]

We will define in Python the reflections as a nested list of hkl
values, [[h1k1l1], [h2k2l2],. . .] such as

ref = [[1,0,0], [0,1,0], [0,0,1], [1,1,0],
[0,1,1], [0,1,0], [1,1,1]]

so ref[j] is [hj,kj,lj] and ref [j][i] is hj, kj, or lj, for i = 0,
1, or 2, respectively. Likewise, we can define a nested list for
atom coordinates, where atom[j] is [xj, yj, zj] and atom [j]
[i] is xj, yj, or zj for i = 0,1, or 2, respectively:

atom=[[0,0.5,0.5], [0.5,0,0.5], [0.5,0.5,0],
[0.5,0.5,0.5]]

The simplistic way to compute a list of Fhkl values would then
be to directly translate the mathematical formula for Fhkl to
Python, as one might write C or Fortran code with a doubly
nested loop:

>>> import math
>>> atom = [[0,.5,.5], [.5,0,.5],[.5,.5,0],
[.5,.5,.5]]

>>> ref = [[1,0,0], [0,1,0], [0,0,1], [1,1,0],
[0,1,1], [0,1,0], [1,1,1]]
>>> F = []
>>> for j1 in range(len(ref)):
. . . s = 0
. . . for j2 in range(len(atom)):
. . . c = 0
. . . for i in range(3):
. . . c += ref[j1][i] * atom[j2][i]
. . . s += math.cos(2 * math.pi * c)
. . . F.append(s)
. . .
>>> F
[-2.0, -2.0, -2.0, 0.0, 0.0, -2.0, 2.0]

This works, but to show how this same computation can be
done without any loops using NumPy, we can repeat this as
a matrix computation. Note that we can cast the nested lists,
atom and ref, into rectangular (2D) NumPy arrays. Note
the shape member gives us the dimensions, (4 × 3) and
(7 × 3):

>>> np.array(atom)
array([[0., 0.5, 0.5],

[0.5, 0., 0.5],
[0.5, 0.5, 0.],
[0.5, 0.5, 0.5]])

>>> np.array(atom).shape
(4, 3)
>>> np.array(ref)
array([[1, 0, 0],

[0, 1, 0],
[0, 0, 1],
[1, 1, 0],
[0, 1, 1],
[0, 1, 0],
[1, 1, 1]])

>>> np.array(ref).shape
(7, 3)

The contents of the innermost loop, above, above computes an
interior product, where each row of the two arrays are multi-
plied and then are summed. This can be performed with
np.inner(), which yields a (7,4) array in a single call:

>>> np.inner(ref,atom)
array([[0., 0.5, 0.5, 0.5],

[0.5, 0., 0.5, 0.5],
[0.5, 0.5, 0., 0.5],
[0.5, 0.5, 1., 1.],
[1., 0.5, 0.5, 1.],
[0.5, 0., 0.5, 0.5],
[1., 1., 1., 1.5]])

Note that np.inner() expects two ndarrays as input, but
will cast our nested lists for us into that form. [We could
avoid that by explicitly performing the conversion using
np.inner(np.array(ref),np.array(atom)).]

This inner product multiples the first set of coordinates,
[0.,0.5,0.5], by the first reflection, [1,0,0], element
by element and then adds the three products to yield the first

S52 Powder Diffr., Vol. 29, No. S2, December 2014 Ayer et al. S52

https://doi.org/10.1017/S0885715614000931 Published online by Cambridge University Press

https://doi.org/10.1017/S0885715614000931

value in the first row (0). Then the second atom coordinates,
[0.,0.5,0.5], are multiplied by the same hkl value, (yield-
ing 0.5) for the second term in the first row (and so on). We
can then easily multiply every element in the matrix from
np.inner() times 2 and π and take the cosine of each term:

>>> np.cos(2. * np.pi * np.inner(ref,
atom))
array([[1., -1., -1., -1.],

[-1., 1., -1., -1.],
[-1., -1., 1., -1.],
[-1., -1., 1., 1.],
[1., -1., -1., 1.],
[-1., 1., -1., -1.],
[1., 1., 1., -1.]])

Note that the standard math module cos() function can only
compute one value at a time, whereas the corresponding func-
tion in NumPy can handle single values as well as arrays. In
fact, np.cos() can fully replace math.cos().

Finally, we want to sum the contents of each row, which
can be done with np.sum(, axis = 1), where 1 refers to
the second array dimension (since Python uses 0-based index-
ing, we count starting at zero).

Using this approach, we can reduce the previous example
to five lines of code, but where all the computations are per-
formed in a single line:

>>> atom = [[0,.5,.5], [.5,0,.5],[.5,.5,0],
[.5,.5,.5]]
>>> ref = [[1,0,0], [0,1,0], [0,0,1], [1,1,0],
[0,1,1], [0,1,0], [1,1,1]]
>>> import numpy as np
>>> F = np.sum(np.cos(2. * np.pi * np.
inner(ref,atom)), axis = 1)
>>> F
array([-2., -2., -2., 0., 0., -2., 2.])

With the small number of values used above, this computation
takes a negligible amount of time, but with more atoms and
reflections, this is not true. This was demonstrated by repeat-
ing the above with 500 atoms and 5000 reflections. Then the
computation using the first coding approach required 37 s to
complete, while the second, with the single optimized line
of NumPy code, required only 0.1 s.

2. SciPy

SciPy (http://www.scipy.org/scipylib/) is a package built
on top of and distributed together with NumPy. It contains a
wide variety of numerical analysis routines, such as real and
complex Fourier transforms, integration, interpolation,
image processing, and optimizers. It is used widely in fields
ranging from electrical engineering through bioinformatics
and oceanography and even finance.

SciPy has some nifty advanced features like “sparse matri-
ces” – an almost empty matrix storing only non-zero items.
Storing zeros is awaste of resources and computations can be sim-
plified by only treating the non-zero elements. SciPy also has rou-
tines for: image manipulation, image filtering, object properties
(segmentation), and feature extraction (edge detection).

3. Numba

Numba (http://numba.pydata.org) is an open-source opti-
mizing compiler for Python, sponsored by Continuum
Analytics, Inc. It adds just-in-time compilation to Python,
meaning that when a designated computation is first needed,
the compiler generates machine code optimized specifically
for the computer being used at present. It integrates with
NumPy and provides a possibility for computationally de-
manding sections of a program to be sent to specialized hard-
ware (such as a GPU). It thus integrates with the older Python
scientific software stack ensuring code portability, and often
provides performance comparable to or exceeding traditional
C, C+ +, and Fortran coding.

Numba uses two special codes called decorators, “@jit”
and “@autojit” to speed up compilation and optimize perfor-
mance. The jit decorator returns a compiled version of the
function using the input types and the output types of the func-
tion. The autojit decorator does not need type specification. It
watches the types called by the function and infers the type of
the return. When previously compiled code exists, it is reused.
If not, it generates machine code for the function and then ex-
ecutes that code.

4. Scikit-learn

Scikit-learn (http://scikit-learn.org) is a machine-learning
package written in Python. Machine learning is a form of ar-
tificial intelligence for pattern recognition, where the software
generates rules to classify information by being “trained” on
input datasets that have already been classified. For example,
k-means clustering is a popular algorithm for data mining from
text documents. Another example of the clustering technique
in machine learning is “unsupervised learning”, which tries
to create structure within unlabeled data, where no pre-defined
datasets are used. Scikit-learn was developed as an extension
to SciPy.

5. Sympy

SymPy (http://sympy.org/en/) is a module for performing
symbolic mathematics. Most scientific computation is per-
formed numerically, e.g. where equations are evaluated with
specific values. With symbolic processing, such as is imple-
mented in Mathematica and Maple, the equations themselves
are manipulated. Thus, SymPy can determine that the deriva-
tive of sin(x) with respect to x is cos(x). This is done directly
on the expression and without use of any numerical values
for x.

6. Theano

Theano (http://deeplearning.net/software/theano/) is an-
other Python library for efficiently computing mathematical
expressions involving multi-dimensional arrays. Most impor-
tantly, it has tight integration with NumPy, with dynamic C
code generation support that allows faster expression evalua-
tion. It supports symbolic differentiation and offers optimiza-
tion and extensive unit testing.

Theano uses graph structures for defining all mathemati-
cal relations by using symbolic placeholders known as
“Variables”, which are the main data structure-building

S53 Powder Diffr., Vol. 29, No. S2, December 2014 Why scientists should learn to program in Python S53

https://doi.org/10.1017/S0885715614000931 Published online by Cambridge University Press

http://www.scipy.org/scipylib/
http://www.scipy.org/scipylib/
http://numba.pydata.org
http://numba.pydata.org
http://scikit-learn.org
http://scikit-learn.org
http://scikit-learn.org
http://sympy.org/en/
http://sympy.org/en/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
https://doi.org/10.1017/S0885715614000931

blocks. Theano has strict typing constraints to allow it to tailor
C code to statically optimize the computation graph. Variables
can be an instance of a NumPy ndarray, or an array of 32-bit
integers (“int32”) or have a shape of 1 ×N. Broadcasting is a
feature that exists in NumPy, but primarily for scalars and ar-
rays. Theano extends broadcasting to cases where dimensions
are added to an array. Another feature of Theano is the differ-
ent types of computational optimizations that can be per-
formed globally or locally.

B. Big Data Processing Packages

The term “Big Data” is used for computation involving
very large collections of information, usually too large to fit
in the memory of a single computer. For example in diffrac-
tion, experiments involving large numbers of area detector im-
ages can reach the scale of a terabyte.

1. Pandas

Pandas (http://pandas.pydata.org) is a powerful data anal-
ysis manipulation library for Python, which provides an easy
tool for working with multi-dimensional data structures
(McKinney, 2012). The documentation is available online
(http://pandas.pydata.org/pandas-docs/stable/).

Matrix operations are commonly used in scientific com-
putations and Pandas uses the “DataFrame” data structure,
which makes it easy to work with data stored in relational
databases, text or spreadsheet data files such as Excel files
(tab- or comma-separated values), time-series financial data
analysis, multi-dimensional arrays, and statistical regressions
on large datasets. A DataFrame is essentially a “2D array”
with rows and columns of data, such as a spreadsheet.

Creating a DataFrame from an original set of records is
simple, and as an example, we use some financial data for
General Electric (GE) stock that has been uploaded to a git re-
pository (https://gitlab.com/aleph-omega/stockex-usa) for
easy reference. (Note that these files are quite large in size.)

To show how adept Pandas is at accessing “spreadsheet”
data, below we read data from the file into a DataFrame object
using pandas.read_table for tabulation in the second line. The
subsequent line slices through the DataFrame to pull in the
first 11 records.

In [1]: import pandas as pd

df = pd.read_csv('../Aleph-Omega/stockex-usa/GE-1990-

2014-stocks.csv')

df = df[:11]

print(df)

Out [1]: Date Open High Low Close Volume Adj Close

2014-07-03 26.81 26.89 26.78 26.86 20513900 26.86

2014-07-02 26.35 26.65 26.34 26.61 21246500 26.61

2014-07-01 26.27 26.50 26.26 26.40 28054100 26.40

2014-06-30 26.44 26.45 26.22 26.28 29661100 26.28

2014-06-27 26.29 26.43 26.23 26.43 35155200 26.43

2014-06-26 26.46 26.46 26.20 26.29 23159000 26.29

2014-06-25 26.47 26.51 26.34 26.42 26261200 26.42

2014-06-24 26.66 26.88 26.51 26.58 26418900 26.58

2014-06-23 27.05 27.06 26.60 26.68 31217700 26.68

2014-06-20 27.02 27.04 26.87 26.97 49734400 26.97

2014-06-19 26.66 26.98 26.66 26.93 31605200 26.93

[11 rows x 7 columns]

Furthermore, Pandas is excellent at memory management,
which is crucial for handling Big Data. The “groupby” feature
is especially helpful and can reduce lengths of Python scripts
by an order of magnitude over what is required with other lan-
guages. We can achieve this by splitting our data into smaller
groups, based on pre-defined criteria, and then by writing
functions that will be applied to each group separately with
the output being combined into a dataframe.

Pandas speeds up computation, as well as allows for rapid
coding and improved code maintenance, since it is much eas-
ier to express a mode of analysis with fewer lines of code.
Since operations such as merges, sorts, groupings, and creat-
ing new variables are performed within the package, in com-
piled and optimized machine code, the speed gain can be
tremendous.

2. Blaze

Blaze (http://blaze.pydata.org) is a mechanism to build
more complex data structures into the framework of NumPy
and building on Pandas. Although the ndarray in NumPy re-
quires arrays to have fixed lengths along each dimension,
Blaze allows for much more complex structures. It also uses
just-in-time compilation, as employed in Numba, to speed
computations. Blaze is a fairly recent project, also sponsored
by Continuum Analytics, Inc.

C. Statistics

Statistical capabilities are available in some of the previ-
ously discussed packages, but the packages described here
are specifically designed for statistical analysis.

1. PyMC

PyMC (http://pymc-devs.github.com/pymc/) is a Python
module for Bayesian statistical modeling and model fitting
that focuses on advanced Markov chain Monte Carlo fitting al-
gorithms, fitting sampling algorithms (such as Hamiltonian
Monte Carlo), numerical optimization, and also for solving
unconstrained non-linear optimization problems. Its flexibility
and extensibility make it applicable to a large suite of
problems.

2. Statsmodels

Statsmodels (https://github.com/statsmodels/statsmodels)
is a Python library package for econometrics, plotting func-
tions, statistical modeling, and tests, which provides a comple-
ment to SciPy for statistical computations, including
descriptive statistics, and estimation and inference for statisti-
cal models. Researchers can explore data, estimate statistical
models, perform statistical tests, and use it for their statistical
computing and data analysis in Python. Statsmodels runs on
Python 2.5 through 3.2 versions and some useful features it
supports are:

• Linear regression models
• Generalized linear models
• Discrete choice models
• Robust linear models
• Many models and functions for time series analysis

S54 Powder Diffr., Vol. 29, No. S2, December 2014 Ayer et al. S54

https://doi.org/10.1017/S0885715614000931 Published online by Cambridge University Press

http://pandas.pydata.org
http://pandas.pydata.org
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
https://gitlab.com/aleph-omega/stockex-usa
https://gitlab.com/aleph-omega/stockex-usa
https://gitlab.com/aleph-omega/stockex-usa
https://gitlab.com/aleph-omega/stockex-usa
http://blaze.pydata.org
http://blaze.pydata.org
http://pymc-devs.github.com/pymc/
http://pymc-devs.github.com/pymc/
http://pymc-devs.github.com/pymc/
https://github.com/statsmodels/statsmodels
https://github.com/statsmodels/statsmodels
https://doi.org/10.1017/S0885715614000931

• Non-parametric estimators
• A collection of datasets for examples
• A wide range of statistical tests
• Input–output tools for producing tables in a number of for-
mats (text, LaTeX, HTML) and for reading files into NumPy
and Pandas

• Plotting functions
• Extensive unit tests to ensure correctness of results
• Many more models and extensions in development.

D. Visualization and image-processing packages in

Python

Python excels at the graphical display of data, which is an
important aspect of scientific analysis. Graphical display can
be separated into two categories: 2D representations and
pseudo-three-dimensional (3D) ones. In the case of 3D, ob-
jects are portrayed as viewed from a particular direction, but
that direction can usually be manipulated interactively. This
allows the viewer’s brain to interpret the representation as if
an actual physical object had been seen.

A related computational task is the interpretation and
transform of digital images. Some capabilities for image pro-
cessing can be found in SciPy (5.1.2), but more sophisticated
capabilities are also discussed below.

1. Matplotlib

Matplotlib (http://matplotlib.org/) is a scientific 2D graph-
ics library consisting of a programming interface that creates
vector graphics representation and renders it for output display
(Hunter, 2007). The advantage of vector graphics is that the
resulting plots can be shown at very high quality, as might
be used for a journal article or presentation. Matplotlib can
also be used interactively to plot results, such as one might
use in a spreadsheet environment. Simple Matplotlib com-
mands can be used to generate graphics easily. As an example
of how simple it is to use Matplotlib, in the following code ex-
ample, NumPy is used to compute an array of 500 points over
the range from 0.0 to 6π and then a new array is created con-
taining the sine of each value in the previous array. Finally, the
a plot is generated, where the x-axis is the first plot, but indi-
cated in units of π and the y-axis shows the sine values:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(0,6*np.pi,500)
>>> y = np.sin(x)
>>> plt.plot(x/np.pi,y)
>>> plt.show()

The resulting plot, as it appears on the screen, is shown in
Figure 1. Note that even with this very simple plotting com-
mand, the resulting plot is quite fully featured. The icons at
the upper left allow the plot to be repositioned in the window,
including “zooming”, and the plot can be saved as a higher
resolution bitmap file. At the bottom, the position of the cursor
is displayed as it is moved around in the window.

The Matplotlib package is also very well suited for crea-
tion of sophisticated graphics and readers are recommended
to look at the web gallery (http://matplotlib.org/gallery.html)
of very complex and beautifully formatted sample

Matplotlib graphs and the corresponding (usually quite sim-
ple) example code to see what can be done with Matplotlib.

It is also possible to use Matplotlib for interactive applica-
tions, where the user can interact with the graphics through
mouse clicks and the keyboard. This, however, is not always
implemented as conveniently as might be liked.

2. Chaco

Chaco (http://code.enthought.com/projects/chaco/) is an-
other scientific graphics library intended more for display
than creation of “hard-copy” plots – it generates attractive stat-
ic 2D plots. Although it also works well for interactive data
visualization and exploration, it does not offer all the sophis-
tication of Matplotlib, but it is quite easy to use.

3. Bokeh

Bokeh (http://bokeh.pydata.org) is an interactive visuali-
zation library for Python and other languages for making pow-
erful graphical presentations. With graphics that rival the
widely used D3.js JavaScript library, it delivers good perfor-
mance with large datasets, but is integrated with Python. It
works well with the IPython Notebook. Bokeh is compatible
with Matplotlib. With it, programmers can easily create appli-
cations to deliver high-performance interactive visualization
of large datasets.

4. Mayavi

Mayavi (http://code.enthought.com/projects/mayavi/) is a
toolkit for 3D visualization of scientific data in Python, a part
of the Enthought Tool Suite (ETS). Data plotted in Mayavi
correspond to 3D objects that can be “rotated” on the comput-
er display, allowing people to better understand the 3D nature
of the displayed information. Mayavi is built on top of the very
sophisticated VTK (http://www.vtk.org/) system, which also
provides a Python interface. The interactive 3D display graph-
ics are performed using a combined hardware/software proto-
col known as OpenGL. Alternately, very high-performance
interactive graphics can be performed in Python with direct

Figure 1. (Color online) An example of simple screen graphics from the
Matplotlib package, generated with a simple command. Note that the plot
can be shifted and zoomed. Also, the cursor position is indicated.

S55 Powder Diffr., Vol. 29, No. S2, December 2014 Why scientists should learn to program in Python S55

https://doi.org/10.1017/S0885715614000931 Published online by Cambridge University Press

http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/gallery.html
http://matplotlib.org/gallery.html
http://code.enthought.com/projects/chaco/
http://code.enthought.com/projects/chaco/
http://bokeh.pydata.org
http://bokeh.pydata.org
http://code.enthought.com/projects/mayavi/
http://code.enthought.com/projects/mayavi/
http://www.vtk.org/
http://www.vtk.org/
https://doi.org/10.1017/S0885715614000931

use of OpenGL calls through use of the PyOpenGL (http://
pyopengl.sourceforge.net/) package, but this is considerably
more difficult and is not recommended for most uses.

5. Scikit-image

Scikit-image (http://scikit-image.org) is a machine-
learning module built on top of SciPy specifically for image
processing (see scikit-learn, above), Source code (https://
github.com/scikit-learn/scikit-learn).

6. PIL/pillow

PIL (http://www.pythonware.com/products/pil) is the
Python Imaging Library. This contains routines for reading
and processing images. This library is a simple and useful
tool for those starting out with image manipulation to learn
the basics. However, it had not been updated in some years
and support for Python 3.x was not planned. Hence, a fork-
called pillow (https://pypi.python.org/pypi/Pillow/) was devel-
oped to enhance PIL. The two projects were later integrated
into a single codebase, so that the packages are largely
interchangeable.

As an example of how this package is used, we will read a
rather famous image file from Wikipedia and perform some
simple processing steps.

In [2]: # retrieve a public-domain image
and write as a file locally

import urllib2
URL =

'http://upload.wikimedia.org/wikipedia/
commons/thumb/e/ec/Mona_Lisa%2C_by_Leo
nardo_da_Vinci%2C_from_C2RMF_retouched.
jpg/402px-
Mona_Lisa%2C_by_Leonardo_da_Vinci%
2C_from_C2RMF_retouched.jpg'

fp = open('Mona.jpg','w')
fp.write(urllib2.urlopen(URL).read())
fp.close()

These commands read and display the image and then convert
it to black-and-white.

In [3]: # read the image file and display it
import PIL.Image as Image
import matplotlib.pylab as plt
mona = Image.open(’Mona.jpg’)
plt.imshow(mona)

In [4]: # use the PIL to create a black and
white version of the image

import PIL.ImageEnhance as Enhance
enhancer = Enhance.Color(mona)
bw_mona= enhancer.enhance(0)
plt.imshow(bw_mona)

We can examine the image file. In the output below, the for-
mat attribute tells us that this is a JPEG image while the size
gives us the image width and height in pixels. Finally, the
mode attribute supplies pixel type and depth.

In [5]: print(mona.format, mona.size,
mona.mode)
JPEG (402, 599) RGB

PIL allows images to be converted between different pixel rep-
resentations, so we will use the convert() method to con-
vert the above-mode attribute (RGB) to luminance (“L”). The
output from this is shown as Figure 2. Here each pixel is col-
ored by the luminance value using an arbitrary color scale to
show the values (this scale can easily be changed).

In [6]: # display as luminance
im = Image.open("Mona.jpg").

convert(“L”)
plt.imshow(im)

Not only can the Python Imaging Library (PIL) be used to per-
form image manipulations, but images can also be exported as
ndarrays, so that Numpy and Scipy computations may be
performed on them.

E. Python for instrument automation

The ubiquity of computers in science extends to instrumen-
tation; many scientific instruments are computer-automated
to reduce operational complexity. Other instruments have
sophisticated automation to the point of allowing remote or
even unattended operation. Python is an excellent choice for
automating instruments, since it can support libraries that
will perform the low-level communication with instrument
hardware and also higher-level computation and graphics.
Likewise, it is also relatively easy to create high-quality graph-
ical user interfaces or web applications for eventual user con-
trol. For Python to control a scientific instrument, a device

Figure 2. (Color online) An image that has been recolored to show the
luminance of each pixel according to a Matplotlib color mapping.

S56 Powder Diffr., Vol. 29, No. S2, December 2014 Ayer et al. S56

https://doi.org/10.1017/S0885715614000931 Published online by Cambridge University Press

http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/
http://scikit-image.org
http://scikit-image.org
http://scikit-image.org
https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
http://www.pythonware.com/products/pil
http://www.pythonware.com/products/pil
https://pypi.python.org/pypi/Pillow/
https://pypi.python.org/pypi/Pillow/
https://doi.org/10.1017/S0885715614000931

driver that implements the communication protocol(s) to the
instrument electronics is needed. For common communication
protocols, such as RS-232 devices (http://pyserial.sourceforge.
net/) or EPICS (http://cars9.uchicago.edu/software/python/
pyepics3/) there exist standard communication libraries. If a
vendor provides a function library, such as a Windows “.
DLL” module or Linux “.so” library, the ctypes module in
the Python standard library can be used to access those
functions.

The fact that Python code can be executed interactively
greatly simplifies creation of an applications programming in-
terface. For example, the highest resolution and most produc-
tive powder diffractometer in the USA, the 11-BM instrument
at the Argonne Advanced Photon Source, is automated
completely in Python (Toby et al., 2009). A video (http://
youtu.be/86TZpk_Tn1M) is online. The library that drives
the appropriate motors, coordinates use of the robot and ancil-
lary equipment, such as for sample temperature control, was
initially developed by typing commands into the Python inter-
preter and then collecting the code that worked. The result was
a library of ~3000 lines of code and comments, which pro-
vides routines to initialize and drive the instrument, to load
or unload a sample or read a sample’s barcode, set a temper-
ature, perform a data collection scan, etc. From that point, it
was relatively straightforward and only another 1000 lines
of commented Python to develop routines that query the in-
strument database for the details of data collection for each
sample, optimize the data collection sequence, and then per-
form the actual scans. Finally, ~1000 more lines of code
were used to develop a graphical user interface that allows
an operator to fine-tune data collection parameters. The result-
ing software can run the instrument for days at a time unat-
tended; recover from loss of the synchrotron beam; and even
send text messages to alert an operator, if the program aborts
because of unexpected problems.

VI. GRAPHICAL USER INTERFACES

Increasingly, scientists wish to create programs with
graphic user interfaces (GUI) – applications that display in
windows and have buttons and menus that are used to control
the program execution. Python has an integrated GUI pack-
age, Tkinter, in its standard library, but use of this is not rec-
ommended, since it is a grafted version of the Tcl/Tk language
that is rather clumsy to use in Python. In addition, the resulting
GUIs have a rather antique appearance.

Two very widely used cross-platform C ++ packages,
wxWidgets (http://www.wxwidgets.org/) and Qt (http://
qt-project.org/) (pronounced “cute”) have Python libraries
that are widely used. Qt was developed and released for
open access by cellphone manufacturer Nokia, is newer, and
seems to be attracting more attention at present. The alterna-
tive, Python package wxWidgets has been in use for quite a
while and has a large user base. Each will be discussed below.

It should be noted that regardless of which package is se-
lected, GUI programming requires a change in programming
paradigm. Traditional software is usually written in a linear
fashion, where the program starts, reads some input, produces
some results, and stops. GUI-based programs are event-
driven, which means they perform a series of initializations
when starting and then go into hibernation (in an event
loop) and from that point only respond to user actions such

as mouse clicks, which in turn initiate “callback” routines.
Most code is placed in routines that will be triggered only
through these callback routines. A GUI program will typically
stop only when a callback routine ends the program.

An alternate approach to creating a GUI for software is to
provide access to it from a web browser. This is typically not a
method of choice for very sophisticated interfaces, but is sur-
prisingly effective for many scientific computations. Python
has a number of mature web application frameworks, such as
Django (https://www.djangoproject.com/), available for build-
ing web sites. As one example the capability of Python for
web applications, very large portions of the code used to run
the YouTube web site are written in Python. Other languages
such as PHP, Java, Ruby, and JavaScript are also used for cre-
ating web applications, but these languages do not have the
wealth of scientific packages that Python has, so scientific pro-
jects using those languages frequently require components to be
written in another language. While this is frequently done for
commercial work when large teams manage different aspects
of a project, using Python for the entire application stack greatly
simplifies both development and maintenance tasks, facilitating
smaller-scale scientific projects.

Another alternative for GUI programming is through the
IPython Notebook architecture, which allows notebooks to
have interactive widgets (http://nbviewer.ipython.org/github/
ipython/ipython/blob/2.x/examples/Interactive%20Widgets/
Index.ipynb). Notebooks can provide the benefits of command
line interfaces and graphical interfaces. The IPython package
will be discussed in Section VII.

1. PyQt and PySide

PyQt (http://www.riverbankcomputing.com/software/
pyqt/intro) is a Python binding of the cross-platform GUI
toolkit Qt, providing GUI programming in Python. PyQt is
free software implemented as a Python plug-in, but because
of license restrictions is avoided by some commercial
organizations.

PySide (http://qt-project.org/wiki/pyside) is an alternate
and more recent open-source Python binding for Qt, which
was fostered by Nokia and avoids the licensing problems
that arose with PyQt. PySide is not completely mature soft-
ware, but it is widely used and should be highly reliable
soon, if it is not at that point already. The authors have no ex-
perience in use of PySide at present, but would likely select it
over wxPython if they start a new project requiring a complex
GUI.

2. wxPython

wxPython (http://www.wxpython.org/) is a Python bind-
ing package for wxWidgets (Rappin and Dunn, 2006). It is
a very comprehensive package offering a great wealth of
GUI tools that can be adapted into a project. One of this arti-
cle’s authors (BHT) has considerable experience with writing
wxWidgets-based GUI codes, for example with the GSAS-II
Rietveld code (Toby and Von Dreele, 2013; idem, 2014),
but still does not find all aspects of this coding to be
straightforward.

In order to make wxPython compatible with Python 3.x,
the package was redeveloped and initially released in a new

S57 Powder Diffr., Vol. 29, No. S2, December 2014 Why scientists should learn to program in Python S57

https://doi.org/10.1017/S0885715614000931 Published online by Cambridge University Press

http://pyserial.sourceforge.net/
http://pyserial.sourceforge.net/
http://pyserial.sourceforge.net/
http://cars9.uchicago.edu/software/python/pyepics3/
http://cars9.uchicago.edu/software/python/pyepics3/
http://cars9.uchicago.edu/software/python/pyepics3/
http://youtu.be/86TZpk_Tn1M
http://youtu.be/86TZpk_Tn1M
http://youtu.be/86TZpk_Tn1M
http://www.wxwidgets.org/
http://www.wxwidgets.org/
http://qt-project.org/
http://qt-project.org/
http://qt-project.org/
http://qt-project.org/
https://www.djangoproject.com/
https://www.djangoproject.com/
http://nbviewer.ipython.org/github/ipython/ipython/blob/2.x/examples/Interactive%20Widgets/Index.ipynb
http://nbviewer.ipython.org/github/ipython/ipython/blob/2.x/examples/Interactive%20Widgets/Index.ipynb
http://nbviewer.ipython.org/github/ipython/ipython/blob/2.x/examples/Interactive%20Widgets/Index.ipynb
http://nbviewer.ipython.org/github/ipython/ipython/blob/2.x/examples/Interactive%20Widgets/Index.ipynb
http://www.riverbankcomputing.com/software/pyqt/intro
http://www.riverbankcomputing.com/software/pyqt/intro
http://www.riverbankcomputing.com/software/pyqt/intro
http://qt-project.org/wiki/pyside
http://qt-project.org/wiki/pyside
http://qt-project.org/wiki/pyside
http://www.wxpython.org/
http://www.wxpython.org/
https://doi.org/10.1017/S0885715614000931

version in 2013 called “phoenix,” while the original version is
called “classic.” At present both are being updated in parallel.
It is unclear how much effort will be needed to migrate pro-
grams between the two.

VII. PYTHON APPLICATIONS

There are many applications that are based on Python or
offer programming capabilities in Python. As one example,
Sage (http://www.sagemath.org) is a freestanding mathemati-
cal software package with features covering many aspects of
mathematics, including algebra, combinatorics, numerical
mathematics, number theory, and calculus. It uses many open-
source computation packages with a goal of “creating a viable
free open source alternative to Magma, Maple, Mathematica,
and Matlab.” It is not an importable Python package, but
does offer a convenient Python programming interface. Sage
can also be used for cloud-based computing, where a task is
distributed to multiple computers at remote sites. Other exam-
ples include: Spyder (https://pythonhosted.org/spyder/) a code
development and computing environment and Enthought’s
PyXLL (https://www.pyxll.com/), which allows Python to
be embedded into Excel spreadsheets.

The IPython program is one of the nicest tools to emerge
out of the Python community (Pérez and Granger, 2007). The
IPython output (notebook file) architecture is built on top of
widely used protocols such as JSON, ZeroMQ, and
WebSockets, with CSS for HTML styling and presentation
and with open standards (HTML, Markdown, PNG, and
JPEG) to store the contents. The IPython program is now start-
ing to be used as a programming environment for other lan-
guages, since much of the capabilities are general and
because of the use of open standards, other programs can
read the notebook files.

The IPython notebook serves many purposes including:
code prototyping, collaboration, reviewing documentation,
and debugging. It incorporates tools for profiling code, so
that if a program is too slow, the (usually short) sections of
the code that are taking the most execution time can be quickly
identified and reworked. It integrates well with matplotlib and
NumPy and can be used as one might employ Matlab, to inter-
actively analyze data, with integrated graphics and computa-
tion. Finally, IPython provides a mechanism for remote
execution of Python commands. This can be used to distribute
a large computation to a supercomputer. Since Python com-
mands and intrinsic data objects are portable, the remote com-
puter can be a completely different architecture from the
controller. Perhaps the biggest problem with IPython is how
to master all the features.

A. IPython as a shell

Many developers utilize IPython as an interactive shell to
run Python commands and rarely invoke Python directly via
a command window. It provides many advantages over run-
ning Python directly, chiefly, code completion: if a part of a
command or function is typed and the tab key is pressed,
then all of the possible completions are shown; if only one
completion exists, the remaining characters are added. It
also will show the docstring documentation of functions
and classes, if a command is prefixed or followed with a
question mark (?).

In IPython, a prompt of In [#]: is used before user input
and Out [#]: is shown for values returned from a command.
The # symbol is replaced with a number. Both In and Out are
dicts that maintain a history of the commands that have been
run.

IPython provides a feature called “tab completion” that
suggests options to finish typing a command. As an example,
if one is not sure how to call the NumPy square-root function
and types np.sq and then presses the tab key, IPython re-
sponds by showing three possible completions, as is shown
below:

In [1]: import numpy as np
In [2]: np.sq
np.sqrt np.square np.squeeze

Typing an additional r and then pressing tab again causes the
t to be added, since that is the only valid completion. Placing
a question mark before or after the command causes the doc-
string for the routine to be displayed, such as:

In [2]: np.sqrt?

This documentation then includes:

sqrt(x[, out])

Return the positive square-root of an
array, element-wise.

Parameters
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

x : array_like
The values whose square-roots are re-
quired.

. . .

When IPython is used as an interactive environment for data
analysis, the history of commands in dict In can be used as
a source of Python commands to be placed in a program to au-
tomate that processing.

IPython can also be used to execute Python commands in
files. Using the IPython command %run command, the con-
tents of a file can be executed in a “fresh” interpreter or in
the current Python context (%run -i). The latter case causes
variable definitions in the current session prior to the %run
command to be passed into the file. Either way, the variables
defined during execution of the commands in the file are load-
ed into the current session. The command %run can also be
used for debugging, timing execution, and profiling code.

B. IPython with notebooks

An IPython notebook is an analog to running commands
in terminal-based IPython, but using a web browser window
(Shen, 2014). Python commands and their results can be
saved for future communication and collaboration. To start
IPython in this mode, type ipython notebook in the
command line on your computer. An IPython notebook is
comparable to a spreadsheet with only a single column, but
where each cell can contain formatted text or Python code,

S58 Powder Diffr., Vol. 29, No. S2, December 2014 Ayer et al. S58

https://doi.org/10.1017/S0885715614000931 Published online by Cambridge University Press

http://www.sagemath.org
http://www.sagemath.org
https://pythonhosted.org/spyder/
https://pythonhosted.org/spyder/
https://www.pyxll.com/
https://www.pyxll.com/
https://doi.org/10.1017/S0885715614000931

optionally accompanied with output from the previous com-
mands. As shown in Figure 3, output may contain graphics
and plots embedded within the notebook.

Hence, an IPython notebook is an excellent way for:

• researchers to collaborate on data analysis,
• instructors to provide worked-through examples of compu-
tations and perhaps even homework or exam problems,

• speakers to showcase Python code within their slides in their
talks or workshops.

Normally, the IPython notebook web service can only be ac-
cessed from the computer where the process is started. With
appropriate security protections in place, an IPython notebook
server could allow individuals to attack a programming or data
analysis problem as a team with all members of the team run-
ning Python from the same server using IPython via a web
browser. An IPython notebook likewise can be used within
a classroom setting to allow a group of students to work col-
laboratively with Python without having to install the inter-
preter on their individual computers. There are also free and
commercial services that offer access to IPython notebooks
over the web, such as Wakari (https://www.wakari.io/wakari).
Notebooks can also be freely viewed via the nbviewer service
(http://nbviewer.ipython.org/), by entering a link to your gitlab
or github repository or a link to your own website that hosts
the notebook. The IPython sponsored Jupyter CoLaboratory
(https://colaboratory.jupyter.org/welcome/) project allows
real-time editing of notebooks, and currently uses Google
Drive to restrict access to users with shared permissions.

As an example of how IPython can be used to share
a worked-through problem, the computations in the
“Performing efficient computations with NumPy” section,
above, are provided at this URL (https://anl.box.com/s/
hb3ridp66r247sq1k5qh) and the Supplementary Materials,
which also includes IPython notebook files demonstrating
several other code examples along with their output.

VIII. CONCLUSIONS

As we have discussed and demonstrated here, Python is a
powerful programming language, although simple enough to
be taught in introductory high school courses. It can be learned
easily, but still offers tremendous power for professional soft-
ware development. The large wealth of scientific packages, of
which only a few were presented here, shows the high value
that Python has in the hands of scientists. The authors encour-
age scientists to learn and use Python in their own work.

ACKNOWLEDGEMENTS

Use of the Advanced Photon Source, an Office of Science
User Facility operated for the US Department of Energy
(DOE) Office of Science by Argonne National Laboratory,
was supported by the US DOE under Contract no.
DE-AC02-06CH11357. The authors of this manuscript have
never met in person and all collaboration was done exclusively
via the internet text services (e-mail, git DVCS, bug tracking,
etc.). Text formatting was done using the Markdown protocol
and drafts were tracked using Git for version control. The

Figure 3. (Color online) An example of a
computation performed in an IPython notebook
showing a simple computation and the graphed
result. The IPython notebook file can be shared by
e-mail or even within a network, with a secured server.

S59 Powder Diffr., Vol. 29, No. S2, December 2014 Why scientists should learn to program in Python S59

https://doi.org/10.1017/S0885715614000931 Published online by Cambridge University Press

https://www.wakari.io/wakari
https://www.wakari.io/wakari
http://nbviewer.ipython.org/
http://nbviewer.ipython.org/
https://colaboratory.jupyter.org/welcome/
https://colaboratory.jupyter.org/welcome/
https://anl.box.com/s/hb3ridp66r247sq1k5qh
https://anl.box.com/s/hb3ridp66r247sq1k5qh
https://anl.box.com/s/hb3ridp66r247sq1k5qh
https://doi.org/10.1017/S0885715614000931

authors thank the websites CloudHost.io (now defunct) and
GitLab.com for providing the DVCS web services that made
this manuscript a reality.

SUPPLEMENTARY MATERIALS AND METHODS

The supplementary material for this article can be found at
http://www.journals.cambridge.org/PDJ

Brandl, G. (2010). Sphinx: Python Documentation Generator (Computer soft-
ware). Available at sphinx-doc.org

Hunter, J. D. (2007). “Matplotlib: a 2D graphics environment,” Comput. Sci.
Eng. 9(3), 90–95.

McKinney, W. (2012). Python for Data Analysis (O’Reilly Media,
Sebastopol, CA).

Pérez, F. and Granger, B. E. (2007). “IPython: a system for interactive scien-
tific computing,” Comput. Sci. Eng. 9(3), 21–29.

Rappin, N. and Dunn, R. (2006). wxPython in Action (Manning Publications,
Cherry Hill, NJ).

Shen, H. (2014). “Interactive Notebooks: Sharing the Code,” Nature. 515,
151–152.

Toby, B. H., Huang, Y., Dohan, D., Carroll, D., Jiao, X., Ribaud, L., Doebbler,
J. A., Suchomel, M. R., Wang, J., Preissner, C., Kline, D.,and Mooney, T.
M. (2009). “Management of metadata and automation for mail-in measure-
ments with the APS 11-BM high-throughput, high-resolution synchrotron
powder diffractometer,” J. Appl. Crystallogr. 42(6), 990–993.

Toby, B. H. and Von Dreele, R. B. (2013). “GSAS-II: The Genesis of a
Modern Open-Source All-Purpose Crystallography Software Package,”
J. Appl. Crystallogr. 46, 544–549.

Toby, B. H. and Von Dreele, R. B. (2014). “What’s new in GSAS-II,” Powder
Diffr. (in press). DOI: 10.1017/S0885715614000736.

van der Walt, S., Colbert, S. C., and Varoquaux, G. (2011). “The NumPy
array: a structure for efficient numerical computation,” Comput. Sci.
Eng. 13(2), 22–30.

vanRossum,G. (1998). “What’s new inPython1.5?,”Dr.Dobbs J.23(2), 44–45.

Appendix 1: A Brief Introduction to Python

Presenting the full syntax of Python is beyond the scope
of this paper, but here we provide some basic information
about how Python code is written and some background infor-
mation on the differing versions of the interpreter.

A1.1 Python statements and syntax

Probably the most basic statement in any language is that
of assignment of a value to a variable. In Python, this is
straightforward and no declarations for the type of information
in a variable are required:

>>> a = 1
>>> b = "one"
>>> c = 1.0

Note that in these assignments, variables a, b, and c, are as-
signed in turn, an integer, character, and floating-point value.

However, unlike C/C ++ or Java, in Python the types as-
sociated with a variable are never declared explicitly, rather
the type is associated with the value (or object) stored in
that variable. The type can then change as the contents of a
variable is reassigned. A strength of Python is a concept called
duck typing (from the joke that if an object walks like a duck,
quacks like a duck, and then consider it a duck). One writes

code that will process values without knowing the details of
the object type. The statement,

>>> a += 1

increments the value in variable a by 1, where this can be ap-
plied to an integer, float, or complex value or with NumPy in-
crements every element in an array. If a contains a string, an
error condition occurs, but Python provides a mechanism for
trapping that (commands try and except) so that an appro-
priate response can be taken.

Many types of Python objects contain collections of other
values (for example, the string “one” above is a collection of
three letters). Two other examples are the composite data types
of “lists” and “dicts” that can each contain multiple values:

>>> d = [1,2,3,5,7,11]
>>> e = {2: 4, 4:16, ’primes’:d, 3: 9}

In the example above, list d, contains six-ordered values,
where the first, which can be referenced as d[0], is 1 and
the last, which can be referenced as d[5] or d[-1], is 11.

The dict in the second line, e, is a kind of array, but where
values are located by arbitrary keys, so in the above, e[2] is
defined with a value of 4, but no value for e[1] has been de-
fined. Note that above, three of the keys are integers, but one is
a string ('primes') and the value associated with that ele-
ment references another composite item (list d).

Values can be added to a dict or list and the contents can
be changed:

>>> e
{2: 4, 3: 9, 4: 16, 'primes': [1, 2, 3, 5,
7, 11]}
>>> d.append(13)
>>> e
{2: 4, 3: 9, 4: 16, 'primes': [1, 2, 3, 5,
7, 11, 13]}
>>> e['primes'].append(17)
>>> d
[1, 2, 3, 5, 7, 11, 13, 17]
>>> e[0] = 0
>>> e
{0: 0, 2: 4, 3: 9, 4: 16, 'primes': [1, 2,
3, 5, 7, 11, 13, 17]}

Since the value associated with key ’primes’ in dict e directly
references list d, changes to d will affect e; likewise changes to
e['primes'] can affect d.

When a variable name is placed on a line by itself in a
script, nothing happens, but when this is done in interactively,
the interpreter shows the contents of the variable, as is shown
above. Note also that the order that Python lists keys for a dict
is arbitrary, so you may see the contents of e in a different
order than shown above, if you repeat this example.

All computer languages have methods for conditional ex-
ecution. In Python, the if statement is particularly simple,
where one creates an if clause that ends with a colon (“:”),
as shown here:

if a == 1 and b < 2:

S60 Powder Diffr., Vol. 29, No. S2, December 2014 Ayer et al. S60

https://doi.org/10.1017/S0885715614000931 Published online by Cambridge University Press

http://www.journals.cambridge.org/PDJ
http://www.journals.cambridge.org/PDJ
http://sphinx-doc.org
http://sphinx-doc.org
https://doi.org/10.1017/S0885715614000931

print(''a is equal to 1'')
print(''b is less than 2'')

else:
print(''something is unexpected here'')

print(''done with if'')

The example above shows several important Python features.
Note that the block nature of the code is indicated by the in-
dentation, where two statements are to be run when the if
statement evaluates as true or one statement if false. The if
statement ends where the code matches the original level of in-
dentation. Blocks can be nested, with multiple levels of inden-
tation, when an if statement appears within an if block. The
amount of indentation is arbitrary, as long as all lines in the
block are indented the same, but it is strongly recommended
that four spaces be used for each level of indentation.
Parentheses are allowed in the if statement, but are only re-
quired when needed for correct logical formulation of the test:

if (a == 1 and b == 2) or c == 3:

The above statement will test as true anytime that c is 3,
whereas the test below will always be False if a is not 1.

if a == 1 and (b == 2 or c == 3):

There are several types of statements in Python that execute a
set of lines of code multiple times, a concept called looping.
The most commonly used one is the for statement, which
will execute the code for every value in a collection. As anoth-
er example of duck typing, the for statement can be used with
nearly every composite data type, including dict, list, or even
character string values to access each element:

>>> for v in range(4):
. . . print(v)
. . .

∅
1
2
3

In the above example, we use a Python function, range(),
which when called with argument 4 generates a list,
[0,1,2,3], but we could have also looped over values in d
with for v in d:, which would cause v to be set sequen-
tially to values 1, 2, 3,. . ., 17. Likewise, we could loop over the
dict e with for v in e:, which would cause v to be set to
the values corresponding to the keys in the dict, here 0, 2, 3, 4
and “primes”, but note that since dicts are not ordered, the
order each key will be referenced cannot be predicted.

As an example, where looping and an if statement are
combined, consider:

>>> for v in range(4):
. . . if v % 2 == 1:
. . . print(v,“is odd”)
. . .
(1, 'is odd')
(3, 'is odd')

Here, note how multiple levels of indentation are used, where
the if statement is inside the loop and the “print” statement is
inside the if conditional statement. If other statements were
to be included inside the loop, to be run after the if statement
is completed, those statements would be indented to match the
if statement, for example:

>>> for v in range(4):
. . . if 2*int(v/2) != v:
. . . print(v,'is odd')
. . . print('processed',v)

To complete our Python syntax introduction, we show how to
create a function; noting that user-written functions are used
identically to the many built-in functions. The function is cre-
ated with a def statement:

>>> def Square(a):
. . . '''This returns the square of the
parameter, a'''
. . . return a*a
. . .
>>> Square(3)
9
>>> Square(3.)
9.0
>>> Square('a')
TypeError: can’t multiply sequence by non-
int of type 'str'

Indentation indicates the end of block of code used to define the
function. Note that the first line of code after the def statement
defines a string, but nothing is done with that string, so it has no
effect on the code. Such a string,when supplied as thefirst line of
a function definition, is called a docstring and by convention it
provides documentation on the function.

A1.2 Documenting Python code

Documentation is essential for computer software. It al-
lows code to be reused or fixed by others. In fact, even the
original author can benefit, should that person work on some-
thing else, take a vacation, get sick, etc., and then need a re-
minder of what they have done. Python offers a nice tool
called Sphinx (http://sphinx-doc.org/) for creating documenta-
tion from the docstrings in Python code (Brandl, 2010). To use
it, a description is included in a docstring for every function
and class to be included in that documentation. These com-
ments can be formatted using reStructured Text (http://
sphinx.pocoo.org/rest.html), which allows for various types
of useful cross-references, changes in fonts, headers, etc.
Sphinx is then be used to build documentation files in a variety
of formats, including HTML and PDF. Sphinx is used for the
online Python and NumPy documentation, which is very use-
fully and attractively displayed.

Programmers are advised to always follow some very sim-
ple rules in adding comments to the definitions of their code
no matter how rudimentary. At a minimum, for every func-
tion, include a docstring that defines what the function does:

def my_funct(input):

S61 Powder Diffr., Vol. 29, No. S2, December 2014 Why scientists should learn to program in Python S61

https://doi.org/10.1017/S0885715614000931 Published online by Cambridge University Press

http://sphinx-doc.org/
http://sphinx-doc.org/
http://sphinx-doc.org/
http://sphinx.pocoo.org/rest.html
http://sphinx.pocoo.org/rest.html
http://sphinx.pocoo.org/rest.html
https://doi.org/10.1017/S0885715614000931

'''Takes variable input, grunges it
and returns the grunged

output'''
return grunge(input)

To better use Sphinx, keywords param and returns are
used to document the input and output, as below. Note that
we have also snuck in an example of a cross-reference key-
word (:func:). When Sphinx generates documentation,
this would render a link to the description of function
grunge, if present. The keyword str in the first :
param: definition is an optional data type, which is wise to
include if a programmer should know what data type is ex-
pected for that parameter.

def my_funct2(input1, input2):
'''Takes two variables of input,

grunges them combined
:param str input1: the first input

string
:param input2: the second input

value, which is cast as a string
:returns: the output of :func:`grungè

on the two input strings
concatenated
'''

return grunge(input1 + ' ' + str
(input2))

It is good practice to always document their program code,
even for a simple and obvious program so that if that code
finds its way into a larger project, where good documentation
becomes a necessity, the project will be ready for Sphinx with
minimal added effort.

A1.3. Python versions

All computer languages evolvewith use, where capabilities
added in the later stages will be absent in earlier versions, so
there is always the potential for incompatibilities. The Python
language has been evolving and growing for over two decades
and in most cases where new features have been added to the
language, this is done with backward compatibility to ensure
that code that ran in an earlier version of Python will run
completely unchanged in a newer version. An exception to
this is Python 3.0 and subsequent versions, which was intended
to eliminate design flaws in the original version of the language.
(We will refer to the new Python series as 3.x and the previous
version as 2.7.) Python 3.x did introduce someminor changes in
the language that are incompatible with syntax originally al-
lowed. Other coding practices in Python have been indicated
as depreciated – meaning that their use is discouraged and at
some point these features may be removed from the language.
As one example, in Python 3.x, the preferred use of the print
statement is print(line), while in the original language
this was written as print line. In both Python 2.7 and
3.x, both syntaxes are allowed. Indeed, the updates both re-
quired and recommended in Python 3.x, are all allowed in
Python 2.7, so the same code can be used in both. At some
point in the future, (Python 4?) perhaps the old style print
might trigger a warning.

Since most of the coding changes for Python 3.x are easy
to recognize and fix, they can be made automatically with a
program called 2to3, which is distributed with Python. An al-
ternative to that is Six (http://pythonhosted.org/six/), which is
built on the core “lib2to3” package and offers additional sup-
port for refactoring Python code.

While this transition has caused some community alarm
that working Python software might suddenly break, the chan-
ge is really a long-term strategy. Both Python 2.7 and 3.x in-
terpreters are still being updated; the latest versions (at the
time this is being written) are Python 2.7.8 (released on July
1, 2014) and Python 3.4.2 (released on October 6, 2014.)
Updates to address bugs in Python 2.7 are planned to continue
at least through 2020, while in parallel a Python 3.5 upgrade,
which will add new features is also in progress.

Appendix 2: Resources for Learning Python

While a formal course on Python may be a good way to
learn a first or a new programming language, not everyone
has access to, or the time for, or even the preference for that
mode of learning. Even after learning the basics of Python,
there are a wide variety of highly advanced skills that can benefit
scientists, even ones actively using Python in their daily work.
Fortunately, there are many other resources available for learn-
ing the use of Python. Below, we provide many Python resourc-
es that we feel are of particular value to scientists wishing to
learn the language or tools for scientific programming.

A2.1 Community events

The Python community is large and there are many events
and groups with a scientific focus. There are user groups and
conferences where community members meet and attend
talks, workshops, tutorials, and perform-coding sprints.
In-person events are an excellent learning resource and
some interesting events and useful resources are listed below:

• SciPy Conferences (http://conference.scipy.org/) is a yearly
conference highly focused on scientific programming.

• PyData (http://pydata.org/) is an event and conference fo-
cused on data analysis.

• Python Conferences and Workshops (https://www.python.
org/community/workshops/) are python events with a gene-
ral focus.

• Python User Groups (https://wiki.python.org/moin/Local
UserGroups) lists regional user groups, which have a variety
of events, mailing lists, etc.

• OpenHatch Events (https://openhatch.org/events/) runs
workshops focused toward beginning programmers.

A2.2 Mailing lists and help sites

There are a number of e-mail mailing lists related to
Python and most widely used packages also have their own
mailing lists. Many experienced and dedicated Python users
read the postings actively and it can be quite common to get
a quick helpful response to a very specialized question.
Local user groups may also run very useful mailing lists.
However, a few precautions are in order:

• Spend some time-reading messages on the list before post-
ing. Most mailing lists have archives and searching for a

S62 Powder Diffr., Vol. 29, No. S2, December 2014 Ayer et al. S62

https://doi.org/10.1017/S0885715614000931 Published online by Cambridge University Press

http://pythonhosted.org/six/
http://pythonhosted.org/six/
http://conference.scipy.org/
http://conference.scipy.org/
http://pydata.org/
http://pydata.org/
https://www.python.org/community/workshops/
https://www.python.org/community/workshops/
https://www.python.org/community/workshops/
https://wiki.python.org/moin/LocalUserGroups
https://wiki.python.org/moin/LocalUserGroups
https://wiki.python.org/moin/LocalUserGroups
https://openhatch.org/events/
https://openhatch.org/events/
https://doi.org/10.1017/S0885715614000931

previously posted question rather than asking it again can
save everyone’s time.

• There are many preferred styles that are used for different
lists. For example, on some lists, people will be annoyed
when replies are top-posted, while on other lists it may be
the preferred format. Read the archives to observe and follow
the predominant style for the list you are postingmessages to.

• Posting a large program and asking for help with a problem
in that code rarely generates a useful outcome. It takes work
to prepare, but a short example (typically 10–25 lines of
code) can typically demonstrate a problem in a manner
that can be quickly read and understood. Such short exam-
ples are much more attractive to the cognoscenti to browse.
Also, note that inclusion of Python code in the text of an
e-mail almost invariably results in a loss of the indentation
that Python requires. Code examples or output errors are
best posted on a github gist or other free sites (such as
dpaste.de, pastebin.com) that allow you to share snippets
of code. The resulting hashed link should be included in
your email query to the mailing list. Attachments containing
small amounts of code are encouraged on some mailing
lists, but are not allowed on others.

• Finally, on mailing lists it is important to be polite and help-
ful. Remember that anyone reading and responding to you is
doing so as a volunteer and simply for the pleasure of help-
ing. People who are annoying make the process much less of
a pleasure.

A related form of help can be found on wiki sites and similar
self-help sites, of which Stackoverflow (stackoverflow.com)
seems to be the most widely used. The goal here is that a ques-
tion is raised and different people may suggest answers.
Readers score the answers, so the best one(s) are usually top
rated. Repeating a previous question in this type of forum is
frowned upon. Search engines are generally the best way to
find previously asked questions.

A2.3 Web institutions

Organizations that promote best practices in software and
data management for scientists also run events and make les-
sons and videos available online; these can also be directly
useful to scientists learning to program.

• Software Carpentry (http://software-carpentry.org) provides
lessons and bootcamps on which are structured to teach sci-
entists command line and programming skills that make
their work more productive. Lesson materials are main-
tained in a repository (https://github.com/swcarpentry/bc)
and published to the Software Carpentry website,
Programming with Python: Introduction to data analysis
and programming with Python (http://software-carpentry.
org/v5/novice/python/index.html).

• Data Carpentry (http://datacarpentry.org/) is a Software
Carpentry offshoot with an intense focus on data
analysis skills. Data Carpentry materials are also maintained
in a public repository (https://github.com/datacarpentry/
datacarpentry).

• The Software Sustainability Institute (http://www.software.
ac.uk/) works in conjunction with these groups and others
to promote practices that lead toward usable and maintain-
able research software. They provide materials, run events,
and offer training.

A2.4 Interactive tutorials/references

A number of websites offer interactive Python tutorials,
which can be another resource for people wanting to learn pro-
gramming skills. Some of these are based around textbooks,
but all offer free access to at least some of the material:

• CodingBat Python (http://codingbat.com/python);
• How to Think Like a Computer Scientist (http://interactive-
python.org/runestone/static/thinkcspy/index.html);

• Learn Python (http://www.learnpython.org/);
• Online Python Tutor: Learn programming by visualizing
code execution (http://www.pythontutor.com/);

• Problem Solving with Algorithms and Data Structures (http://
interactivepython.org/runestone/static/pythonds/index.html);

• Python Codecademy (http://www.codecademy.com/tracks/
python);

• Learn Python the Hard Way (http://learnpythonthehardway.
org/book/);

• Introduction to Python for Science (https://github.com/
djpine/pyman): an electronic book aimed at students;

• Python Scientific Lecture Notes (https://scipy-lectures.
github.io/): notes for professional scientists.

A2.5 Online courses

Many educational institutions have begun offering mas-
sive open online courses (MOOCs), which usually allow
some form of participation without charge, although providers
do charge for grading, certification, etc. Some examples of
Python course offerings from some courseware providers are
listed below. Note that course offerings change at the discre-
tion of the providers, and some place materials online only
when the class is being run, so some of these listings may
not be available at any given time.

• AGentle Introduction to Python (http://mechanicalmooc.org/);
• High Performance Scientific Computing (https://www.cour-
sera.org/course/scicomp);

• An Introduction to Interactive Programming with Python
(https://www.coursera.org/course/interactivepython);

• Introduction to Computer Science and Programming Using
Python (https://www.edx.org/node/2841);

• Programming Foundations with Python (https://www.udac-
ity.com/course/ud036);

• Python for Informatics: Exploring Information (http://
pythonlearn.com/), related MOOC site is Programming for
Everybody (https://www.coursera.org/course/pythonlearn);

• List of free online programming and computer courses
(https://github.com/fffaraz/free-programming-courses).

While not a complete course, the paid subscription versions of
the Python bundle offered by Enthought, Inc., Canopy (https://
www.enthought.com/products/canopy/), provides access to
downloadable training lectures that include many topics of inter-
est to scientists. Enthought offers academic users (students and
faculty) free access to their products, including these lectures.

A2.6 Curated web resources

A number of individuals provide annotated lists of re-
sources for Python programmers. These crowd-sourced efforts
can be the most up-to-date sources of information about avail-
able packages, books, and other materials. The maintainers of
these lists and update them on a regular basis and the

S63 Powder Diffr., Vol. 29, No. S2, December 2014 Why scientists should learn to program in Python S63

https://doi.org/10.1017/S0885715614000931 Published online by Cambridge University Press

http://software-carpentry.org
http://software-carpentry.org
http://software-carpentry.org
https://github.com/swcarpentry/bc
https://github.com/swcarpentry/bc
http://software-carpentry.org/v5/novice/python/index.html
http://software-carpentry.org/v5/novice/python/index.html
http://software-carpentry.org/v5/novice/python/index.html
http://software-carpentry.org/v5/novice/python/index.html
http://datacarpentry.org/
http://datacarpentry.org/
https://github.com/datacarpentry/datacarpentry
https://github.com/datacarpentry/datacarpentry
https://github.com/datacarpentry/datacarpentry
http://www.software.ac.uk/
http://www.software.ac.uk/
http://www.software.ac.uk/
http://codingbat.com/python
http://codingbat.com/python
http://interactivepython.org/runestone/static/thinkcspy/index.html
http://interactivepython.org/runestone/static/thinkcspy/index.html
http://interactivepython.org/runestone/static/thinkcspy/index.html
http://www.learnpython.org/
http://www.learnpython.org/
http://www.pythontutor.com/
http://www.pythontutor.com/
http://interactivepython.org/runestone/static/pythonds/index.html
http://interactivepython.org/runestone/static/pythonds/index.html
http://interactivepython.org/runestone/static/pythonds/index.html
http://www.codecademy.com/tracks/python
http://www.codecademy.com/tracks/python
http://www.codecademy.com/tracks/python
http://learnpythonthehardway.org/book/
http://learnpythonthehardway.org/book/
http://learnpythonthehardway.org/book/
https://github.com/djpine/pyman
https://github.com/djpine/pyman
https://github.com/djpine/pyman
https://scipy-lectures.github.io/
https://scipy-lectures.github.io/
https://scipy-lectures.github.io/
https://scipy-lectures.github.io/
http://mechanicalmooc.org/
http://mechanicalmooc.org/
https://www.coursera.org/course/scicomp
https://www.coursera.org/course/scicomp
https://www.coursera.org/course/scicomp
https://www.coursera.org/course/interactivepython
https://www.coursera.org/course/interactivepython
https://www.edx.org/node/2841
https://www.edx.org/node/2841
https://www.udacity.com/course/ud036
https://www.udacity.com/course/ud036
https://www.udacity.com/course/ud036
http://pythonlearn.com/
http://pythonlearn.com/
http://pythonlearn.com/
https://www.coursera.org/course/pythonlearn
https://www.coursera.org/course/pythonlearn
https://github.com/fffaraz/free-programming-courses
https://github.com/fffaraz/free-programming-courses
https://github.com/fffaraz/free-programming-courses
https://github.com/fffaraz/free-programming-courses
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://doi.org/10.1017/S0885715614000931

maintainers will likely appreciate hearing about broken or
changed URLs, as well as suggestions of additional resources.

• Python for Non-Programmers (https://wiki.python.org/
moin/BeginnersGuide/NonProgrammers): resources for be-
ginning programmers.

• Pythonidae (http://svaksha.github.io/pythonidae) contains curat-
ed descriptions of scientific programming resources in Python.

• Awesome-python (https://github.com/vinta/awesome-py-
thon) has a curated list of awesome Python frameworks, li-
braries and software.

• Planet SciPy (http://planet.scipy.org/) aggregates blog posts
from the scientific Python community.

• Planet Python (http://planet.python.org/) aggregates blog
posts from the overall Python community.

• pyvideo.org (http://pyvideo.org/) indexes Python videos of
conferences, lectures, tutorials, and events.

• List of free programming books (https://github.com/vhf/
free-programming-books)

• List of free software testing books (https://github.com/lig-
urio/free-software-testing-books)

• The Python Bookshelf (https://github.com/OpenTech
School/bookshelf/blob/master/python.md)

S64 Powder Diffr., Vol. 29, No. S2, December 2014 Ayer et al. S64

https://doi.org/10.1017/S0885715614000931 Published online by Cambridge University Press

https://wiki.python.org/moin/BeginnersGuide/NonProgrammers
https://wiki.python.org/moin/BeginnersGuide/NonProgrammers
https://wiki.python.org/moin/BeginnersGuide/NonProgrammers
http://svaksha.github.io/pythonidae
http://svaksha.github.io/pythonidae
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
https://github.com/vinta/awesome-python
http://planet.scipy.org/
http://planet.scipy.org/
http://planet.python.org/
http://planet.python.org/
http://pyvideo.org/
http://pyvideo.org/
https://github.com/vhf/free-programming-books
https://github.com/vhf/free-programming-books
https://github.com/vhf/free-programming-books
https://github.com/vhf/free-programming-books
https://github.com/vhf/free-programming-books
https://github.com/ligurio/free-software-testing-books
https://github.com/ligurio/free-software-testing-books
https://github.com/ligurio/free-software-testing-books
https://github.com/ligurio/free-software-testing-books
https://github.com/ligurio/free-software-testing-books
https://github.com/ligurio/free-software-testing-books
https://github.com/OpenTechSchool/bookshelf/blob/master/python.md
https://github.com/OpenTechSchool/bookshelf/blob/master/python.md
https://github.com/OpenTechSchool/bookshelf/blob/master/python.md
https://doi.org/10.1017/S0885715614000931

	Why scientists should learn to program in Python
	INTRODUCTION
	AN OVERVIEW OF MODERN PROGRAMMING LANGUAGES
	THE SYNTAX OF PYTHON
	MODULES AND PACKAGES IN PYTHON
	How to import packages
	Built-in modules
	Add-on Python packages
	Python package managers and Linux distributions

	A SURVEY OF ADD-ON PYTHON PACKAGES OF INTEREST TO SCIENTISTS
	Computation
	NumPy
	Performing efficient computations with NumPy
	SciPy
	Numba
	Scikit-learn
	Sympy
	Theano

	Big Data Processing Packages
	Pandas
	Blaze

	Statistics
	PyMC
	Statsmodels

	Visualization and image-processing packages in Python
	Matplotlib
	Chaco
	Bokeh
	Mayavi
	Scikit-image
	PIL/pillow

	Python for instrument automation

	GRAPHICAL USER INTERFACES
	Outline placeholder
	PyQt and PySide
	wxPython

	PYTHON APPLICATIONS
	IPython as a shell
	IPython with notebooks

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	SUPPLEMENTARY MATERIALS AND METHODS
	A Brief Introduction to Python
	Python statements and syntax
	Documenting Python code
	Python versions

	Resources for Learning Python
	Community events
	Mailing lists and help sites
	Web institutions
	Interactive tutorials/references
	Online courses
	Curated web resources

