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ABSTRACT 

We discuss the fundamental ideas of particle acceleration in plasma shocks with emphasis on those features that 
are required to produce the "universal" power-law spectrum. We compare shock acceleration with the more 
familiar second-order or stochastic acceleration and see that they are not too different in many respects. We 
discuss the features of shock acceleration that make it appealing and some of its problems as well. 

Subject headings: acceleration of particles — MHD — plasmas — shock waves 

1. INTRODUCTION 

The notion that collisionless plasma shocks can accelerate 
charged particles to high energies has been around for a decade 
or so and by now it is widely accepted that this process can 
account for the majority, if not all, of the energetic, nonther
mal, particle distributions that we see in astrophysical settings. 
I would like to present some of the fundamental ideas of the 
theory of diffusive shock acceleration, show what there is 
about the theory that makes it so attractive, and, perhaps de-
mythologize the subject by demonstrating that it is not all that 
different from an old friend, namely, stochastic or second-
order Fermi acceleration. I will, therefore, begin with a discus
sion of stochastic acceleration. 

2. STOCHASTIC ACCELERATION 

The spectrum of particles that is produced by a stochastic 
acceleration process is derived simply from the equation of 
continuity in momentum space 

jp[pf(p)] + ~ 1 = QHp-P0), (1) 

where/'(p) is the distribution function of the particles in scalar 
momentum space, T is the mean time that particles stay in the 
accelerator, and p is the average rate of change of momentum 
produced by the acceleration process. A more rigorous treat
ment of stochastic acceleration would include a second deriva
tive in momentum describing diffusion along the momentum 
axis. However, it has been shown that the resulting spectrum is 
of the same form (Morrison 1961) as the one resulting from 
equation (1) and evolves on the same time scale (Davis 1954), 
so that, except for treating specific models, nothing significant 
is gained by including such a term. The rate of momentum 
gain in stochastic acceleration has been discussed from many 
viewpoints: Fermi's original derivation (Fermi 1949), the reso
nant interaction of particles with Alfven waves (Kennel & 
Englemann 1966; Hall & Sturrock 1967) or from a Boltzmann 
equation approach (Gleeson & Axford 1967; Jones 1990). In 
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each case it turns out that the momentum gain rate is propor
tional to the particles momentum. We may therefore set p = 
ap, where a depends on properties of the scattering medium. 
This equation has the solution 

O I p\-c+i/«n 
/(/>) = — - (2) 

<xPo\Pol 

and is a power law in momentum provided the product aT is 
independent of momentum. 

The problem with this approach is the independence of a 
and T; the power-law spectra that we see in nature tell us that 
the product a T must be of the order unity but nothing in most 
derivations requires this. However, it should be pointed out 
that recent work (Miller & Ramaty 1992) has connected the 
two parameters in models in which plasma turbulence controls 
both the momentum gain rate and the rate with which particles 
diffuse out of the system. 

3. SHOCK ACCELERATION 

3.1. Basic Ideas 

We begin by noting that, as in stochastic acceleration, shock 
acceleration theory shows that on each traversal of a shock a 
particle that is diffusing through the plasma gains an incre
ment of momentum that is proportional to its momentum. 
Therefore after N cycles through the shock a particle will have 
a momentum given by 

*»>-ftn ( • • (*) , ) . m 

where the term in angle brackets is the flux-averaged, relative 
momentum increment on the /th cycle through the shock. We 
label this term with the subscript / because it may vary slowly 
as the particle continues to cycle through the shock. We shall 
consider a cycle to comprise a shock crossing from down
stream to upstream, a second crossing from upstream to down
stream and finally the subsequent return to the shock, a cycle, 
therefore, includes two actual crossings of the shock. 

During each cycle there is a (assumed small) probability,«, 
that the particle will be swept downstream from the shock and 
never return. Thus the probability that the particle will actu-
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ally undergo N cycles through the shock is given by 

<*(#) = n o - o . (4) 

If we now take the logarithms of equations (3) and (4) we 
obtain 

In 
p(N) 

Po , l l n ( ' 
,--i \ P 

(5) 

\n[J>{N)] = 2 In ( 1 - 6 , ) 

-2«,-, 

and then taking their ratio gives 

ln.^(yV) _ - I £ l f / 

In [/>(#)//>„] 2,1, 
= -T(N?) 

(6) 

(7) 

which leads to 

-iX/v?) 

(8) 

which is the integral spectrum (what is the probability that a 
particle has a momentum otp or greater). We have placed the 
question mark after the N because we do not yet know whether 
or not r depends on the number of cycles and hence momen
tum of a particle. If it does, then equation (8) is clearly not a 
power-law spectrum. To find out we must look at the terms 
(&P/p)i and t, in more detail. 

3.2. Similarity to Stochastic Acceleration 

First let us note the similarity of the shock acceleration pro
cess to that of stochastic acceleration. The terms (8p/p)i and 
«, represent the incremental momentum gain and probability 
of loss for a particle per cycle of the shock acceleration process. 
If r, is the time for one cycle we have 

y/v I 5P 

2,1, r, 
1 dp 

JN 

We therefore have 

p dt 

Probability of Loss 

a(N), 

1 

2,1 

Time T(N) 

y N * i y N T 

(9) 

(10) 

y N y N 
£• 1=1 

y N 

a(N)T(N) ' (11) 

and the differential spectrum is given by 

D \ - [ l + (lMAr)r(JV))] 

(12) 

just as in stochastic acceleration. The spectrum depends on the 
same physical parameters in the same way and, as before, if the 
product a(N)T(N) is independent of N (and hence momen
tum) the spectrum is a power law. 

3.3. Shock Acceleration Details 

To determine whether or not a(N) T(N) is independent of N 
we must look further at the momentum gain term, 8p/p and 
the probability of return. It has been shown that for a particle, 
bound to a flowing plasma by scattering (Parker 1963; Gleeson 
& Axford 1967) or by electromagnetic forces (i.e., drifts) 
(Jones 1990) the rate of change of its momentum is given by 

• ! ' • • • 
(13) 

where u is the flow velocity. If we take the normal of an infinite 
plane shock to be along the x axis the only variations are along 
x so we may write this as 

p du 
3 dx 

(14) 

Integrating equation (14) from the upstream side (side 1) to 
the downstream side (side 2) along a particles trajectory gives 

pside 2 

hp = pdt 
side 1 

1 /*side 2 

3 
fside2 (du\dx 

J,,rt„i \dx vr ' side 1 

5> (15) 

where vx is the x component of the particle's velocity. 
We now wish the average value of l/vx for those particles 

that cross the shock so we must weight the average by the flux 
of particles across the shock. Flux averaging gives 

1 \ 2 , 
— ) =— (assuming isotropy), 
f_/flux V 

(16) 

and since one cycle equals two traversals of the shock we have 

4 (i<i 

3 
u2) (17) 

The probability that a particle that crosses the shock from 
left to right will eventually return and cross the shock from 
right to left is simply the ratio of right to left flux to left to right 
flux. For particles of a given speed v this may be readily com
puted. Looking at Figure 1 we see that in the downstream fluid 
rest frame the shock is moving to the left with a speed -u2 and 
all particles with velocity vectors in the shaded cone can catch 
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Pass through to 
left 

Pass through to 
right 

Shock Plane 

FIG. 1.—Geometry showing the relative flux of particles crossing a 
moving shock in either direction. 

it and cross from left to right. Conversely, all other particles 
will cross the shock from right to left. The normalized fluxes of 
particles with speed t; are given by 

\p(u + vx)dvx\ _ (v-u)2 

J-v dvx 4v 

for left to right and 

\fv_u(u + vx)dvx\ (v + u)2 

(18) 

(19) 

for right to left, all of which assumes that the particles are 
isotropic in the downstream fluid frame immediately behind 
the shock. 

The probability of return is simply the ratio of the two above 
expressions and is given by 

# ( 0 = iazj£=(.pi«^y«1
 4" 

(u, + u) \ 1 + u/vt 

(for ««« , - ) . (20) 

In both of these derivations r, is the particles velocity on the 
/th cycle through the shock. 

If we now combine the above expressions, equations (17) 
and (20), to form the spectrum's "exponent" we have 

T(N) = 
4«2l£.£ 

4 1 
- (« , - M 2 ) 2 £ , -
3 t>, 

3Un 

u{ — u2 r — 1 
(21) 

where r = uju2. We can see that, although the incremental 
momentum gain and probability of return were not them
selves independent of N and hence p, they were dependent in 
such a way that the dependence cancelled out in forming the 
exponent r . Furthermore, since for non relativistic, mon-

atomic gases such as most astrophysical plasmas comprise, the 
compression ratio, r, is bounded from above by 4 so T > 1 and 
since many astrophysical shocks are strong (i.e., large Mach 
number) r is close to 4 and thus T is near 1 as is often observed. 

Thus we see that the "magic" of the theory of shock accelera
tion is that the parameters a and T are related in such a way 
that their product depends only on the compression ratio of 
the shock. Furthermore, astrophysical shocks tend to have 
compression ratios of the right order to produce observed spec
tra simply by being strong shocks. 

4. OBLIQUE SHOCKS 

4.1. Problems with Geometry 

In the foregoing we have assumed that particles are free to 
move directly back and forth across the shock. This is true for a 
shock with no magnetic field or for a "parallel" shock, a shock 
in which the magnetic field is parallel to the shock normal. The 
more general case, however, is where the magnetic field makes 
an oblique angle, 0B N with the shock normal and inhibits the 
free motion of the particles across the shock. In this case the 
effective speed of the particle is reduced by the cosine of the 
obliquity angle and we have v-*• v cos GBN. 

We therefore have 

# ( i ) (vi ~ u)2 

(«,- + u)2 

4 (ui - u2) 
3 t>, cos © B N 

1 ^ U/VJY 

1 + ll/Vj 

Au 
v, cos G„ 

(22) 

, (23) 

so r is unchanged provided u, cos 0BN >̂ u. This condition will 
break down for some value of GBN no matter how large the 
particle speed v. In such a case, as in a perpendicular shock for 
instance, the only way that shock acceleration can proceed is 
for particles to be able to diffuse across the magnetic field. 
Even for moderate values of QBN, however, there are always 
particles for which the above requirement is difficult, namely, 
those particles that are about to be injected into the shock 
acceleration process, the hot, shock-heated particles that have 
just traversed the shock for the first time. Computer simula
tions have shown (Jones & Ellison 1991) that, for parallel 
shocks, these particles form a natural injector for the accelera
tion process, with sufficient numbers of them able to catch the 
shock from downstream and cross it to begin the climb to 
higher energies. The speeds of these particles, however, is only 
marginally larger than the downstream flow speed and a mod
est value of the obliquity angle can significantly reduce the 
number that can overtake the shock. For a view of the strong 
effect that a moderate value of 0B N can have on the efficiency 
of shock acceleration in the absence of cross field diffusion, see 
the paper by Baring, Ellison, & Jones (1994) in these proceed
ings. 

4.2. Cross Field Diffusion 

If shocks with a modest obliquity angle (and, of course, 
quasi-perpendicular shocks) are to be at all effective in acceler
ating particles there must be some process whereby particles 
can move across the magnetic field lines. It has been shown 
from different points of view (Forman, Jokipii, & Owens 1974; 
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Jones 1990) that whenever particles in a magnetic field are 
scattered in pitch angle to produce a diffusion coefficient paral
lel to the field given by 

1̂ ! 
3 v ' 

(24) 

where v is the collision frequency, they also diffuse perpendicu
lar to the field with a diffusion coefficient given by 

1 2 1 ( y ) 2 

3 v 
(25) 

where rg is the particles gyroradius. The simplest interpreta
tion of this result is that when a particle has its pitch angle scat
tered by a significant amount (SB TT/2) its guiding center is dis
placed perpendicular to the field in a random direction by an 
amount « rg. We see from equation (25) that the motion 
perpendicular and parallel to the field may be treated similarly 
provided we consider the quantity rgv to be the particles veloc
ity perpendicular to the magnetic field. 

If we add both components of vx to compute the mean value 
( l /Onux we obtain 

( H 2 - UX) 

(\v cos 6BN + rgv sin 0BN), ' 

The probability of return is given by 

(26) 

'(/) 
[(u; cos 6BN - u)2]/[4vi cos 8BN] + (l/3)rgv sin 6B N 

[(u, cos9B N + M)2]/[4I; , COS6 B N ] + ( l / 3 ) r , V Sin v7gN 

(for u < Vj cos 0j 

( l / 3 ) r vsin0B N 

u + (l/3)rgv sin GB 

(for u < Vj cos 0BN) 

(for u > Vj cos GB N). 

(27) 

It should be noted that in equation (27) the flux due to cross 
field diffusion enters equally for the left to right flux and right 
to left flux, the flow velocity produces no asymmetry. This is 
because the guiding center is considered to jump instanta
neously from one position to another so that the number 
jumping across a plane from any given direction is propor
tional to the particle density at that instant and is not affected 
by the flow speed. 

Expanding equation (27) to first order in u requiring that 
u 4 Vj and that u <̂  rgv we have 

1 
3w 

.*(/)« { 
.v sin 9BN + \Vj cos 6 B 

3M 

r v sin GBN 

(w < Vj cos0B N) 

(u> Vj cos9 B N ) . 

(28) 

We should note, however, that the second form of equation 
(28) is really unnecessary, long before vt cos 0B N becomes less 

than w it will have become negligible compared to rgv because 
for cross field diffusion to be effective at all in oblique or per
pendicular shocks we were forced to require rgvP u and hence 
the first form of the equation may be taken to be generally 
valid. 

If we now insert equations (28) and (26) into equation (7) 
we see once again that we obtain 

3w2 

u, - u2 
1 

(29) 

and even though we do not yet know how much cross field 
diffusion will help the injection problem when t; S; u we can see 
that if the acceleration process does get started it will ultimately 
yield a power-law spectrum at high energies with the same 
power law as predicted for parallel shocks. 

5. TIMESCALES 

In closing, we will take one final look at the similarities be
tween shock and stochastic acceleration. Stochastic accelera
tion is called "second order" because the relative momentum 
gain per collision is proportional to the second power of the 
(small) velocity ratio; i.e., 

(30) 

where uA is the Alfven speed, and the rate of momentum gain 
or acceleration rate is just this quantity times the collision fre
quency 

Idp 
p dt 

cc (31) 

bp\ 
— 
p 

Au 
OC a 

V 

u 
^ — V 

Shock acceleration, on the other hand, is sometimes called 
"first-order Fermi" acceleration because the relative momen
tum gain per shock crossing is linear in the same ratio; 

(32) 

where u is the plasma flow speed and Aw is its change across the 
shock. As we have seen, the mean time a particle remains in 
the vicinity of the shock, T, is proportional to v~l(v/u)2 but 
the average number of times a particle crosses the shock during 
this period is given by 

W= 2 N[0>(N)- &>(N+ 1)] oc - , (33) 
N U 

so the crossing frequency (equivalent to the scattering fre
quency in stochastic acceleration) is just2 

N 'XH5!'- (34) 
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u 
CC I -

V 

(35) 

and thus the acceleration rate is 

\_dp\ 

which is just the same as for stochastic acceleration. 

6. CONCLUSION 

We see, therefore, that shock acceleration has no particular 
advantage over stochastic acceleration in so far as speed is con

cerned. It is true that the speed u in the shock acceleration rate 
is a (supersonic) flow speed which is usually faster than the 
Alfven speed uA which appears in the stochastic acceleration 
but this is usually not a huge difference and can be quite insig
nificant when comparing different acceleration sites. The ad
vantage that shock acceleration holds is its simple dependence 
of the spectral shape on the shock parameters and the fact that 
the particle spectra and the shocks that are observed in astro
physics seem to fit together quite well. 
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