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Unitary dual of GL(n) at archimedean places

and global Jacquet–Langlands correspondence

A. I. Badulescu and D. Renard

Abstract

In a paper by Badulescu [Global Jacquet–Langlands correspondence, multiplicity one
and classification of automorphic representations, Invent. Math. 172 (2008), 383–438],
results on the global Jacquet–Langlands correspondence, (weak and strong)
multiplicity-one theorems and the classification of automorphic representations for inner
forms of the general linear group over a number field were established, under the
assumption that the local inner forms are split at archimedean places. In this paper, we
extend the main local results of that article to archimedean places so that the above
condition can be removed. Along the way, we collect several results about the unitary
dual of general linear groups over R, C or H which are of independent interest.
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1. Introduction

In [Bad08], results on the global Jacquet–Langlands correspondence, (weak and strong)
multiplicity-one theorems and the classification of automorphic representations for inner forms
of the general linear group over a number field were established, under the condition that the
local inner forms are split at archimedean places. The main goal of this paper is to remove this
hypothesis. The paper consists of two parts: in the first part, we extend the main local results
of [Bad08] to archimedean places; in the second part, we explain how to use these local results to
establish the global results in their full generality. Along the way, we collect several results about
the unitary dual of general linear groups over R, C or H which are of independent interest. Let
us now describe in more detail the content of this paper.

1.1 Preliminary notation

Let A be one of the division algebras R, C or H. If A= R or A= C and n ∈ N×, we denote by
det the determinant map on GL(n, A) (taking values in A). If A= H, let RN be the reduced
norm map on GL(n,H) (taking values in R×+).

If n ∈ N and
∑s

i=1 ni = n is a partition of n, then the group GL(n1, A)×GL(n2, A)×
· · · ×GL(ns, A) is identified with the subgroup of GL(n, A) of block-diagonal matrices of
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Global Jacquet–Langlands correspondence

sizes n1, . . . , ns. Let G(n1,...,ns) denote this subgroup and P(n1,...,ns) the parabolic subgroup
of GL(n, A) containing G(n1,...,ns) and the Borel subgroup of invertible upper-triangular matrices.
For 1 6 i6 s, let πi be an admissible representation of GL(ni, A) of finite length. We write
π1 × π2 × · · · × πs for the representation that is parabolically induced from the representation
π1 ⊗ π2 ⊗ · · · ⊗ πs of G(n1,...,ns) with respect to P(n1,...,ns). We also use this notation for the
image of a representation in the Grothendieck group of virtual characters, which makes the above
product commutative. Often we shall not distinguish between a representation and its isomorphy
class and will write ‘equal’ for ‘isomorphic’.

1.2 Classification of unitary representations

First, we recall Tadić’s classification of the unitary dual of the groups GL(n, R) and GL(n, C),
following [Tad09]. The classification is similar to that for non-archimedean local fields [Tad86,
Tad90] and is explained in detail in § 7. In the GL(n,H) case, parts of the arguments have not
appeared in the literature, so we give the complete proofs in §§ 10, 11 and 12, using Vogan’s
classification [Vog86].

Let XC be the set of unitary characters of C×. If χ ∈XC and n ∈ N×, let χn be the character
χ ◦ det of GL(n, C). Let νn be the character of GL(n, C) given by the square of the module of the
determinant. If σ is a representation of GL(n, C) and α ∈ R, write π(σ, α) for the representation
ναnσ × ν−αn σ of GL(2n, C). Set

UC = {χn, π(χn, α) | χ ∈XC, n ∈ N×, α ∈ ]0, 1
2 [ }.

Let XR be the set of unitary characters of R×. Let sgn denote the sign character. If χ ∈XR
and n ∈ N×, let χn be the character χ ◦ det of GL(n, R) and χ′n the character χ ◦ RN of GL(n,H).
For fixed n, the map χ 7→ χn is an isomorphism from the group of unitary characters of R× to
the group of unitary characters of GL(n, R), while χ 7→ χ′n is a surjective map from the group of
unitary characters of R× to the group of unitary characters of GL(n,H), with kernel {1, sgn}.

Let νn (respectively, ν ′n) be the character of GL(n, R) (respectively, GL(n,H)) given by the
absolute value (respectively, the reduced norm) of the determinant. If σ is a representation of
GL(n, R) (respectively, GL(n,H)) and α ∈ R, write π(σ, α) for the representation ναnσ × ν−αn σ
of GL(2n, R) (respectively, the representation ν ′αn σ × ν ′

−α
n σ of GL(2n,H)).

Let Du
2 be the set of isomorphy classes of square integrable (modulo center) representations of

GL(2, R). For δ ∈Du
2 and k ∈ N×, write u(δ, k) for the Langlands quotient of the representation

ν
(k−1)/2
2 δ × ν(k−3)/2

2 δ × ν(k−5)/2
2 δ × · · · × ν−(k−1)/2

2 δ.

Then u(δ, k) is a representation of GL(2k, R). Set

UR = {χn, π(χn, α) | χ ∈XR, n ∈ N×, α ∈ ]0, 1
2 [ }

∪ {u(δ, k), π(u(δ, k), α) | δ ∈Du
2 , k ∈ N×, α ∈ ]0, 1

2 [ }.

Now let D be the set of isomorphism classes of irreducible unitary representations of H×
which are not one-dimensional. For δ ∈D and k ∈ N×, write u(δ, k) for the Langlands quotient
of the representation

ν ′
(k−1)/2
1 δ × ν ′(k−3)/2

1 δ × ν ′(k−5)/2
1 δ × · · · × ν ′−(k−1)/2

1 δ.
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Then u(δ, k) is a representation of GL(k,H). Set

UH = {χ′n, π(χ′n, α) | χ ∈XR, n ∈ N×, α ∈ ]0, 1[ }
∪ {u(δ, k), π(u(δ, k), α) | δ ∈D, k ∈ N×α ∈ ]0, 1

2 [ }.

Theorem 1.1. For A= C, R or H, any representation in UA is irreducible and unitary, any
product of representations in UA is irreducible and unitary, and any irreducible unitary
representation π of GL(n, A) can be written as a product of elements in UA. Moreover,
π determines the factors of the product (up to permutation).

Notice the two different ranges for the possible values of α in the A= H case.

1.3 Jacquet–Langlands correspondence for unitary representations

Any element in GL(n,H) has a characteristic polynomial of degree 2n with coefficients in R.
We say that two elements g ∈GL(2n, R) and g′ ∈GL(n,H) correspond (to each other) if they
have the same characteristic polynomial and this polynomial has distinct roots in C (this last
condition means that g and g′ are regular semisimple). We then write g↔ g′.

Let C denote the Jacquet–Langlands correspondence between irreducible square integrable
representations of GL(2, R) and irreducible unitary representations of H× (see [JL70]). This
correspondence can be extended to a correspondence |LJ| between all irreducible unitary
representations of GL(2n, R) and GL(n,H) (it comes from a ring morphism LJ between the
respective Grothendieck groups, defined in § 4, whence the notation). In what follows, it will
be understood that whenever we write the relation |LJ|(π) = π′ for representations π and π′

of GL(2n, R) and GL(n,H), respectively, we have that π and π′ satisfy the character relation
Θπ(g) = ε(π)Θ′π(g′) for all g↔ g′, where ε(π) is an explicit sign (π clearly determines π′ and ε).
The correspondence |LJ| for unitary representations is given first on elements in UR, as follows.

(a) |LJ|(χ2n) = χ′n and |LJ|(π(χ2n, α)) = π(χ′n, α) for all χ ∈XR and α ∈ ]0, 1/2[.

(b) If δ ∈Du
2 is such that C(δ) is in D (i.e. is not one-dimensional), then |LJ|(u(δ, k)) =

|LJ|(C(δ), k) and LJ(π(u(δ, k), α)) = π(u(C(δ), k), α) for all α ∈ ]0, 1/2[.

(c) If δ ∈Du
2 is such that C(δ) is a one-dimensional representation χ′1, then:

• |LJ|(u(δ, k)) = π(χ′k/2, 1/2) and |LJ|(π(u(δ, k), α)) = π(π(χ′k/2, 1/2), α) if k is even and
α ∈ ]0, 1/2[ ;

• |LJ|(u(δ, k)) = χ′(k+1)/2 × χ
′
(k−1)/2 and |LJ|(π(u(δ, k), α)) = π(χ′(k+1)/2, α)× π(χ′(k−1)/2, α) if

k 6= 1 is odd and α ∈ ]0, 1/2[ ;
• |LJ|(δ) = χ′1 and |LJ|(π(δ, α)) = π(χ′1, α) for α ∈ ]0, 1/2[.

Let π be an irreducible unitary representation of GL(2n, R). If writing π as a product of
elements in UR involves a factor not listed in (a), (b) or (c), it is easy to show that π has a character
which vanishes on elements that correspond to elements of GL(n,H), and we set |LJ|(π) = 0.
If all the factors σi of π are in (a), (b) or (c) above, |LJ|(π) is the product of the |LJ|(σi) (an
irreducible unitary representation of GL(n,H)). Elements of UR not listed in (a), (b) or (c) are
of type χ or π(χ, α), with χ being a character of some GL(k, R) and k odd.

Note that some unitary irreducible representations of GL(n,H) are not in the image of this
map (if n> 2). For instance, when χ ∈XR and 1/2< α < 1, then both π(χ2, α) and π(χ′1, α)
are irreducible and they correspond to each other via the character relation, but π(χ′1, α) is
unitary while π(χ2, α) is not. Using the classification of unitary representations for GL(4, R) and
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basic information from the infinitesimal character, it is clear that no (possibly other) unitary
representation of GL(4, R) has character matching with π(χ′1, α).

As a consequence of the above results, we get the following theorem.

Theorem 1.2. Let u be a unitary irreducible representation of GL(2n, R). Then either the
character Θu of u vanishes on the set of elements of GL(2n, R) which correspond to some element
of GL(n,H) or there exists a unique irreducible unitary (smooth) representation u′ of GL(n,H)
such that

Θu(g) = ε(u)Θu′(g′)

for all g↔ g′, where ε(u) ∈ {−1, 1}.

The above results are proved in § 13 and are based on the fact that GL(2n, R) and GL(n,H)
share Levi subgroups (of θ-stable parabolic subgroups, i.e. the ones used in cohomological
induction [KV95]) which are products of GL(ni, C). The underlying principle (a nice instance
of Langlands’ functoriality) is that the Jacquet–Langlands morphism LJ commutes with
cohomological induction. The same principle, with Kazhdan–Patterson lifting instead of Jacquet–
Langlands correspondence, was already used in [AH97].

1.4 Character identities and ends of complementary series

In § 14, we give the composition series of the ends of complementary series in most cases. This is
not directly related to the main theme of the paper, the global theory of the second part, but it
solves some old conjectures of Tadić which will be important in understanding the topology of
the unitary dual of the groups GL(n, A), for A= R, C or H. The starting point is the Zuckerman
formula for the trivial representation of GL(n, A). Together with cohomological induction, it gives
character formulas for unitary representations of the groups GL(n, A). In the case of A= C, the
Zuckerman formula is given by a determinant (see formula (14.2)), and the Lewis Carroll identity
of [CR08] allows us to deduce formulas (14.3), (14.5), (14.6), (14.7) and (14.10) for the ends of
complementary series.

1.5 Global results

Let F be a global field of characteristic zero and D a central division algebra over F of
dimension d2. Let n ∈ N∗. Set A′ =Mn(D). For each place v of F , let Fv be the completion
of F at v and set A′v =A′ ⊗Fv. For every place v of F , A′v is isomorphic to the matrix algebra
Mrv(Dv) for some positive number rv and some central division algebra Dv of dimension d2

v

over Fv such that rvdv = nd. We will fix once and for all an isomorphism and identify these two
algebras with each other. Let V be the (finite) set of places where Mn(D) is not split (i.e. dv 6= 1).

Let G′(F) be the group A′× = GL(n,D). For every place v ∈ V , set G′v =A′×v = GL(rv,Dv)
and Gv = GL(n, Fv). For a given place v (which will be clear from the context), write g↔ g′ if
g ∈Gv and g′ ∈G′v are regular semisimple and have equal characteristic polynomial.

If v /∈ V , the algebras Av and A′v are isomorphic, hence we get an identification of G′v with Gv.

Theorem 1.2 has been proved in the p-adic case as well [Bad08, Tad06]. So, if v ∈ V , then
using the same notation and conventions for the p-adic and archimedean cases gives us the
following.
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Theorem 1.3. Let u be a unitary irreducible smooth representation of Gv. Then one and only
one of the following two possibilities holds.

(i) The character Θu of u vanishes on the set of elements of Gv which correspond to elements
of G′v.

(ii) There exists a unique unitary smooth irreducible representation u′ of G′v such that

Θu(g) = ε(u)Θu′(g′)

for any g↔ g′, where ε(u) ∈ {−1, 1}.

In case (ii) we say that u is compatible. We denote the map u 7→ u′ defined on the set of
compatible (unitary) representations by |LJv|.

Let A be the ring of adeles of F . The group G′(F) (respectively, G(F)) is a discrete subgroup
of G′(A) (respectively, G(A)). The centers of G′ and G consist of scalar non-zero matrices and
so can both be identified with the multiplicative group Gm defined over F ; both will be denoted
by Z.

We endow these local and global groups with measures as in [AC89]. For every unitary
continuous character (also known as a ‘grössencharacter’) ω of Z(A) that is trivial on Z(F), we
let L2(G′(F)Z(A)\G′(A); ω) be the space of functions f defined on G′(A) with values in C such
that:

(i) f is left invariant under G′(F);

(ii) f(zg) = ω(z)f(g) for all z ∈ Z(A) and all g ∈G′(A);

(iii) |f |2 is integrable over G′(F)Z(A)\G′(A).

Let us denote by R′ω the representation of G′(A) on L2(G′(F)Z(A)\G′(A); ω) by right
translations. A discrete series of G′(A) is the equivalence class of an irreducible subrepresentation
of R′ω for some smooth unitary character ω of Z(A) that is trivial on Z(F). Then ω is the
central character of π. Let R′ω,disc be the subrepresentation of R′ω generated by irreducible
subrepresentations. It is known that a discrete series representation of G′(A) appears with finite
multiplicity in R′ω,disc; see [GGP90].

Similar definitions and statements can be made with G instead of G′, with obvious
adjustments to the notation. Every discrete series π of G′(A) (respectively, G(A)) is ‘isomorphic’
to a restricted Hilbert tensor product of irreducible unitary smooth representations πv of the
groups G′v (respectively, Gv); see [Fla79] for a precise statement and proof. The local components
πv are determined by π.

Let DS (respectively, DS′) denote the set of discrete series of G(A) (respectively, of G′(A)).
We say that a discrete series π of G(A) is D-compatible if πv is compatible for all places v ∈ V .

Theorem 1.4.

(a) There exists a unique map G : DS′→DS such that for every π′ ∈DS′, if π = G(π′), then
one has that:

• π is D-compatible;
• if v /∈ V , then πv = π′v;
• if v ∈ V , then |LJv|(πv) = π′v.

The map G is injective. The image of G is the set of all D-compatible discrete series of
G(A).
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(b) If π′ ∈DS′, then the multiplicity of π′ in the discrete spectrum is one (multiplicity-one
theorem).

(c) If π′, π′′ ∈DS′ and π′v ' π′′v for almost all v, then π′ = π′′ (strong multiplicity-one theorem).

With D fixed, we now need to consider all possible n ∈ N× at the same time. We add a
subscript to the notation and write, for example, An =Mn(F), A′n =Mn(D), Gn, G′n, DSn, DS′n
and so on. We recall the Moeglin–Waldspurger classification of the residual spectrum for the
groups Gn(A), n ∈ N∗. Let ν be the character of Gn(A) or G′n(A) given by the restricted product
of characters νv = |det|v, where | · |v is the v-adic norm and det is the reduced norm at the place v.
Let m ∈ N∗ and ρ ∈DSm be a cuspidal representation. If k ∈ N∗, then the induced representation
to Gmk(A) from

⊗k−1
i=0 (ν(k−1)/2−iρ) has a unique constituent π (in the sense of [Lan79]) which is

a discrete series (i.e. π ∈DSmk). We then set π = MW(ρ, k). Discrete series π of groups Gn(A),
n ∈ N∗, are all of this type, and k and ρ are determined by π. The discrete series π is cuspidal
if k = 1 and residual if k > 1. These results are proved in [MW89].

The proofs of the following propositions and corollary are the same as those in [Bad08], once
the local and global transfer are established without the condition on archimedean places. First,
concerning cuspidal representations of G′(A), we have the following result.

Proposition 1.5. Let m ∈ N∗ and let ρ ∈DSm be a cuspidal representation. Then the following
hold.

(a) There exists sρ,D ∈ N∗ such that for k ∈ N∗, MW(ρ, k) is D-compatible if and only if sρ,D|k;
we have sρ,D|d.

(b) G−1(MW(ρ, sρ,D)) = ρ′ ∈DS′msρ,D/d is cuspidal; the map G−1 sends cuspidal D-compatible
representations to cuspidal representations.

(c) Every cuspidal representation in DS′msρ,D/d is obtained as in (b).

Let us call the twist of a cuspidal representation by a real power of ν an essentially cuspidal
representation. If n1, n2, . . . , nk are positive integers such that

∑k
i=1ni = n, then the subgroup

L of G′n(A) of diagonal matrices by blocks of sizes n1, n2, . . . , nk will be called the standard Levi
subgroup of G′n(A). We identify L with ×ki=1G

′
ni(A). All the definitions extend in an obvious way

to L. The two statements in the following proposition generalize, respectively, [MW89] and [JS81,
Theorem 4.4].

Proposition 1.6.

(a) Let ρ′ ∈DS′m be a cuspidal representation and let k ∈ N∗. The induced representation

from
⊗k−1

i=0 (ν(k−1)/2−i
ρ′ ρ′) has a unique irreducible quotient π′ (also characterized among

irreducible subquotients by being in the discrete series), denoted by π′ = MW′(ρ′, k). Every
discrete series π′ of a group G′n(A) with n ∈ N∗ is of this type, and k and ρ′ are determined
by π′. The representation π′ is cuspidal if k = 1 and residual if k > 1. If π′ = MW′(ρ′, k),
then G(ρ′) = MW(ρ, sρ,D) if and only if G(π′) = MW(ρ, ksρ,D).

(b) Let (Li, ρ′i), i= 1 or 2, be such that Li is a standard Levi subgroup of G′n(A) and ρ′i is an
essentially cuspidal representation of Li for i= 1, 2. Fix any finite set of places V ′ containing
the infinite places and all the finite places v where ρ′1,v or ρ′2,v is ramified (i.e. has no non-
zero vector fixed under Kv). If for all places v /∈ V ′ the unramified subquotients of the
representation of G′n(A) induced from the ρ′i,v are equal, then (L1, ρ

′
1) and (L2, ρ

′
2) are

conjugate.

1121

https://doi.org/10.1112/S0010437X10004707 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10004707


A. I. Badulescu and D. Renard

We know from [Lan79] that if π′ is an automorphic representation of G′n, then there exists
(L, ρ′) where L is a standard Levi subgroup of G′n and ρ′ is an essentially cuspidal representation
of L such that π′ is a constituent of the representation of G′n induced from ρ′. A corollary of
assertion (b) of the proposition is the following.

Corollary 1.7. (L, ρ′) is unique up to conjugation.

1.6 Some comments
The length of this paper can be explained by our desire to give complete proofs and/or references
for all of the statements. For instance, the proof in § 10 of U(3) for GL(n,H) is already quite long
in itself but moreover requires material about the Bruhat G-order introduced in the preceding
section, which is not needed elsewhere. We could have saved four or five pages by referring
to [Tad09], which gives the proof of U(3) for GL(n, R) and GL(n, C); however, [Tad09] was
still unpublished at the time of writing this paper, and our arguments by means of the Bruhat
G-order could be used to simplify the proofs in [Tad09]. Our paper is also aimed at the reader
who might be interested in comparing the archimedean and non-archimedean theory, so we have
tried to make the expositions as parallel as possible. Our discussion of Vogan’s classification in
§ 12 is also longer than is strictly necessary, but we feel that it is important for the relation
between Vogan’s and Tadić’s classifications to be explained in detail somewhere.

We thank D. Vogan for answering many questions concerning his work.

2. Notation

2.1 Multisets
Let X be a set. We denote by M(X) the set of functions from X to N with finite support, and
we consider an element m ∈M(X) as a ‘set with multiplicities’. Such an element m ∈M(X) will
typically be written as

m= (x1, x2, . . . , xr).
It is a (non-ordered) list of elements xi in X.

The multiset M(X) is endowed with the structure of a monoid induced from the one on N:
if m= (x1, . . . , xr) and n= (y1, . . . , ys) are in M(X), we get

m+ n= (x1, . . . , xr, y1, . . . , ys).

2.2 Local fields and division algebras
We will use the following notation: F is a local field, | · |F is the normalized absolute value on F ,
and A is a central division algebra over F with dimF (A) = d2.

If F is archimedean, then either F = R and A= R or A= H, the algebra of quaternions, or
F =A= C.

2.3 GL
For n ∈ N×, we set Gn = GL(n, A) and G0 = {1}. We denote the reduced norm on Gn by

RN :Gn→ F×.

We set
νn :Gn→ |RN(g)|F .

When the value of n is not relevant to the discussion, we will simply write G for Gn and ν for νn.
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Remark 2.1. If A= F , the reduced norm is just the determinant.

When F is non-archimedean, the character ν of G is unramified and, in fact, the group of
unramified characters of G is

X (G) = {νs : s ∈ C}.
The notation for the group of complex powers of ν will also be used in the archimedean case.

If G is one of the groups Gn or, more generally, the group of rational points of any
reductive algebraic connected group defined over F , we denote by M(G) the category of
smooth representations of G (in the non-archimedean case) or the category of Harish-Chandra
modules (in the archimedean case) with respect to a fixed maximal compact subgroup K of G.
For GL(n, R), GL(n, C) and GL(n,H), these maximal compact subgroups are chosen to be
O(n), U(n) and Sp(n), respectively, embedded in the standard way. Then R(G) denotes the
Grothendieck group of the category of finite-length representations in M(G). This is the free
Z-module with basis Irr(G), the set of equivalence classes of irreducible representations inM(G).
If π ∈M(G), of finite length, we will again denote by π its image in R(G). When confusion may
occur, we will state precisely if we consider π as a representation or as an element in R(G).

Set
Irrn = Irr(Gn), Irr =

∐
n∈N

Irrn, R=
⊕
n∈N
R(Gn).

If τ ∈M(Gn) or R(Gn), we set deg τ = n.

2.4 Standard parabolic and Levi subgroups
Let n ∈ N and let

∑s
i=1 ni = n be a partition of n. The group

s∏
i=1

Gni

is identified with the subgroup of Gn of block-diagonal matrices of sizes n1, . . . , ns. Let G(n1,...,ns)

denote this subgroup, and let P(n1,...,ns) (respectively, P̄(n1,...,ns)) denote the parabolic subgroup
of Gn generated by G(n1,...,ns) and the Borel subgroup of invertible upper-triangular (respectively,
lower-triangular) matrices. The subgroup G(n1,...,ns) is a Levi factor of the standard parabolic
subgroup P(n1,...,ns).

In this setting, we denote by i(n1,...,ns) (respectively, i(n1,...,ns)) the functor of normalized
parabolic induction from M(G(n1,...,ns)) to M(Gn) with respect to the parabolic subgroup
P(n1,...,ns) (respectively, P̄(n1,...,ns)).

Definition 2.2. Let π1 ∈M(Gn1) and π2 ∈M(Gn2) both be of finite length. We can then form
the induced representation

π1 × π2 := i(n1,n2)(π1 ⊗ π2).
The image of in1,n2(π1 ⊗ π2) in the Grothendieck group Rn1+n2 will still be denoted by π1 × π2.
This extends linearly to a product

× :R×R→R.

Remark 2.3. We warn the reader again that it is important to know when we are considering
π1 × π2 as a representation and when we are considering it as an element in R. For instance,
π1 × π2 = π2 × π1 in R (see below), but i(n1,n2)(π1 ⊗ π2) is not isomorphic to i(n1,n2)(π2 ⊗ π1) in
general.
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Proposition 2.4. The ring (R,×) is graded commutative. Its identity is the unique element
in Irr0.

3. The Langlands classification

We recall how to combine the Langlands classification of Irr in terms of irreducible essentially
tempered representations with the fact that, for the groups Gn, tempered representations
are induced fully from irreducible square integrable modulo center representations to obtain
a classification of Irr in terms of irreducible essentially square integrable modulo center
representations.

Let
Du
n ⊂ Irrn and Dn ⊂ Irrn

denote, respectively, the sets of equivalence classes of irreducible square integrable modulo center
and irreducible essentially square integrable modulo center representations of Gn, and set

Du =
∐
n∈N×

Du
n and D =

∐
n∈N×

Dn.

Similarly,
T un ⊂ Irrn and Tn ⊂ Irrn

denote, respectively, the sets of equivalence classes of irreducible tempered and irreducible
essentially tempered representations of Gn. Set

T u =
∐
n∈N×

T un and T =
∐
n∈N×

Tn.

For all τ ∈ T , there exist a unique e(τ) ∈ R and a unique τu ∈ T u such that

τ = νe(τ)τu.

Theorem 3.1. Let d= (δ1, . . . , δl) ∈M(Du). Then

δ1 × δ2 × · · · × δl
is irreducible and therefore in T u. This defines a one-to-one correspondence between M(Du)
and T u.

This result is due to Jacquet and Zelevinsky in the A= F non-archimedean case (see [Jac77]
or [Zel80]). For a non-archimedean division algebra, it is established in [DKV84]. In
the archimedean case, reducibility of induced-from-square-integrable representations are well
understood in terms of R-groups (see [KZ82]), and for the groups Gn, the R-groups are trivial.

Definition 3.2. Let t= (τ1, . . . , τl) ∈M(T ). We say that t is written in a standard order if

e(τ1) > · · ·> e(τl).

Theorem 3.3. Let d= (d1, . . . , dl) ∈M(D) be written in a standard order, i.e.

e(d1) > e(d2)> · · ·> e(dl).

Then the following hold.

(i) The representation

λ(d) = d1 × · · · × dl
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has a unique irreducible quotient Lg(d) appearing with multiplicity one in a Jordan–Hölder
sequence of λ(d). It is also the unique subrepresentation of

dl × dl−1 × · · · × d2 × d1.

(ii) Up to a multiplicative scalar, there is an unique intertwining operator

J : d1 × · · · × dl −→ dl × · · · × d1.

We then have Lg(d)' λ(d)/ker J ' Im J .

(iii) The map

d 7→ Lg(d)

is a bijection between M(D) and Irr.

For a proof in the non-archimedean case, the reader may consult [Ren10].
Representations of the form λ(d) = d1 × · · · × dl with d= (d1, . . . , dl) ∈M(D) written in a

standard order are called standard representations.

Remark 3.4. If d is a multiset of representations in Irr, we denote by deg d the sum of the
degrees of representations in d. Let M(D)n be the subset of M(D) consisting of multisets of
degree n. Then the theorem gives a one-to-one correspondence between M(D)n and Irrn.

Proposition 3.5. The ring R is isomorphic to Z[D], the ring of polynomials in Xd (d ∈D)
with coefficients in Z; that is, {[λ(d)]}d∈D is a Z-basis of R.

See [Zel80, Proposition 8.5] for a proof.
We give some easy consequences of the above proposition.

Corollary 3.6.

(i) The ring R is a factorial domain.

(ii) If δ ∈D, then [δ] is prime R.

(iii) If π ∈R is homogeneous and π = σ1 × σ2 in R, then σ1 and σ2 are homogeneous.

(iv) The group of invertible elements in R is {±Irr0}.

4. Jacquet–Langlands correspondence

In this section, we fix a central division algebra A of dimension d2 over the local field F . We recall
the Jacquet–Langlands correspondence between GL(n, A) and GL(nd, F ). Since we need F and
A simultaneously in the notation, we write GAn and GFn for GL(n, A) and GL(n, F ), respectively,
and similarly with other notation, e.g. R(GAn ) or R(GFn ), DA

n or DF
n etc.

There is a standard way of defining the determinant and the characteristic polynomial for
elements of GAn , despite A being non-commutative (see, for example, [Pie82, § 16]), and the
reduced norm RN introduced earlier is just given by the constant term of the characteristic
polynomial. If g ∈GAn , then the characteristic polynomial of g has coefficients in F ; it is monic
and has degree nd. If g ∈GAn for some n, we say that g is regular semisimple if the characteristic
polynomial of g has distinct roots in an algebraic closure of F .

If π ∈R(Gn), then we denote by Θπ the function character of π as a locally constant map,
stable under conjugation, defined on the set of regular semisimple elements of Gn.
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We say that g′ ∈GAn corresponds to g ∈GFnd if g and g′ are regular semisimple and have the
same characteristic polynomial, and we write g′↔ g. Notice that if g′↔ g and if g′1 and g1 are
conjugate to g′ and g, respectively, then g′1↔ g1. In other words, ↔ is really a correspondence
between conjugacy classes.

Theorem 4.1. There is a unique bijection C :DF
nd→DA

n such that for all π ∈DF
nd we have

Θπ(g) = (−1)nd−nΘC(π)(g
′)

for all g ∈GFnd and g′ ∈GAn such that g′↔ g.

For the proof, see [DKV84] for the case where the characteristic of the base field F is zero
and [Bad02] for the non-zero characteristic case. For the archimedean case, see §§ 9.2–9.3; also
see Remark 9.6 for more details about this correspondence [DKV84, JL70].

We identify the centers of GFnd and GAn via the canonical isomorphisms with F×. Then the
correspondence C preserves central characters so that, in particular, σ is unitary if and only if
C(σ) is.

The correspondence C can be extended in a natural way to a correspondence LJ between
Grothendieck groups.

– If σ ∈DF
nd, viewed as an element in R(GFnd), then we set

LJ(σ) = (−1)nd−nC(σ),

viewed as an element in R(GAn ).
– If σ ∈DF

r , where r is not divisible by d, then we set LJ(σ) = 0.
– Since RF is a polynomial algebra in the variables d ∈DF , one can extend LJ in a unique

way to an algebra morphism between RF and RA. It is clear that LJ is surjective.

The fact that LJ is a ring morphism means that it ‘commutes with parabolic induction’. Let
us describe how to (theoretically) compute LJ(π), for π ∈RF . Since {λ(a)}a∈M(DF ) is a basis
of RF , we first write π in this basis as

π =
∑

a∈M(DF )

M(a, π)λ(a)

with M(a, π) ∈ Z (see § 6). Since LJ is linear, we have

LJ(π) =
∑

a∈M(DF )

M(a, π) LJ(λ(a)),

so it remains to describe LJ(λ(a)). If a= (d1, . . . dk), then

λ(a) = d1 × · · · × dk
(because we consider λ(a) as an element in RF , the order of the dj is not important). Since LJ
is an algebra morphism, we have

LJ(λ(a)) = LJ(d1)× · · · × LJ(dk).

If d does not divide one of the deg di, this is 0; if d divides all the deg di, then upon setting∑
i deg di = n we get

LJ(λ(a)) =
k∏
i=1

(−1)d deg di−deg diC(di) = (−1)nd−nC(d1)× · · · ×C(dk).
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5. Support and infinitesimal character

The goal of this section is, again, to introduce the necessary notation and recall some well-known
results, but we wish to adopt a uniform terminology for the archimedean and non-archimedean
cases. In the non-archimedean case, some authors, by analogy with the archimedean case, refer
to as ‘infinitesimal character’ the cuspidal support of a representation (a multiset of irreducible
supercuspidal representations). We take the opposite view of considering infinitesimal characters
in the archimedean case as multisets of complex numbers.

5.1 Non-archimedean case
We start with the case where F is non-archimedean. We denote by C (respectively, Cu) the
subset of Irr consisting of supercuspidal representations (respectively, unitary supercuspidal
representations, i.e. those with e(ρ) = 0).

For all π ∈ Irr, there exist ρ1, . . . , ρn ∈ C such that π is a subquotient of ρ1 × ρ2 × · · · × ρn.
The multiset (ρ1, . . . , ρn) ∈M(C) is uniquely determined by π, and we denote it by Supp(π),
called the cuspidal support of π. When π is a finite-length representation whose irreducible
subquotients have the same cuspidal support, we denote this cuspidal support by Supp(π). If
τ = π1 × π2 with π1, π2 ∈ Irr, we have

Supp(τ) = Supp(π1) + Supp(π2). (5.1)

For all ω ∈M(C), denote by Irrω the set of π ∈ Irr whose cuspidal support is ω. We obtain
a decomposition

Irr =
∐

ω∈M(C)

Irrω. (5.2)

Set
Rω =

⊕
π∈Irrω

Zπ.

Then
R=

⊕
ω∈M(C)

Rω (5.3)

is a graduation of R by M(C).
We recall the following well-known result.

Proposition 5.1. Let ω ∈M(C). Then Irrω is finite.

5.2 Archimedean case
Let gn denote the complexification of the Lie algebra of Gn, Un = U(gn) its enveloping algebra,
and Zn the center of the latter. Let hn be a Cartan subalgebra of gn and Wn =W (gn, hn) its Weyl
group. Harish-Chandra defined an algebra isomorphism from Zn to the Weyl group invariants in
the symmetric algebra over hn:

HCn : Zn −→ S(hn)Wn .

Using this isomorphism, every character of Zn (i.e. a morphism of algebra with unit Zn→ C)
is identified with a character of S(hn)Wn . Such characters are given by orbits of Wn in h∗n, by
evaluation at a point of the orbit.

A representation (recall that this means a Harish-Chandra module in the archimedean case)
admits an infinitesimal character if the center of the enveloping algebra acts on it by scalars.
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Irreducible representations admit infinitesimal character. For all λ ∈ h∗n, denote by Irrλ the set
of π ∈ Irr whose infinitesimal character is given by λ.

We are now going to identify infinitesimal characters with multisets of complex numbers.

A= R. In this case, gn =Mn(C) and we can choose hn to be the space of diagonal matrices,
identified with Cn. Its dual space is also identified with Cn via the canonical duality

Cn × Cn→ C, ((x1, . . . , xn), (y1, . . . yn)) 7→
n∑
i=1

xiyi.

The Weyl group Wn is then identified with the symmetric group Sn, acting on Cn by
permuting coordinates. Thus, an infinitesimal character for Gn is given by a multiset
of n complex numbers.

A= C. In this case, gn =Mn(C)⊕Mn(C) and we can choose hn to be the space of pairs
of diagonal matrices, identified with Cn × Cn. Its dual space is also identified with
Cn × Cn as above. The Weyl group is then identified with Sn ×Sn, acting on
h∗n ' Cn × Cn by permuting coordinates. Thus, an infinitesimal character for Gn is
given by a pair of multisets of n complex numbers.

A= H. The group Gn is a real form of GL(2n, C), so gn =M2n(C). The discussion is then the
same as for F = R, with 2n replacing n.

By analogy with the non-archimedean case, we denote by M(C) the set of multisets (or pairs
of multisets if A= C) described above.

Definition 5.2. Let ω ∈M(C) be a multiset (or a pair of multisets of the same cardinality if
A= C) of complex numbers. If π ∈ Irrn, we set

Supp(π) = ω

where ω ∈M(C) is the multiset (or pair of multisets of the same cardinality if F = C) defined
by the infinitesimal character of π. We say that ω is the support of π. When π is a finite-length
representation whose subquotients all have same support, we denote the support by Supp(π).
If π ∈ Irr and π = Lg(a) for a ∈M(D), we set

Supp(a) := Supp(π).

We denote by M(D)ω the set of a ∈M(D) with support ω.

Proposition 5.3. The results of § 5.1 are valid in the archimedean case.

By ‘results of § 5.1’ we mean (5.1)–(5.3) and Proposition 5.1 above.

6. Bruhat G-order

We continue using the notation of the previous section. In what follows, we will use a partial
order 6 on M(D), called the Bruhat G-order, which is obtained from partial orders on each
M(D)ω, ω ∈M(C).

Proposition 6.1. Let a ∈M(D). Then the decomposition of λ(a) in the basis {Lg(b)}b∈M(D)

of R is of the form

λ(a) =
∑
b6a

m(b, a) Lg(b),
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where the m(a, b) are non-negative integers. The decomposition of Lg(a) in the basis
{λ(b)}b∈M(D) of R is of the form

Lg(a) =
∑
b6a

M(b, a) λ(b),

where the M(b, a) are integers. In particular, all the factors Lg(b) (respectively, λ(b)) appearing
in the decomposition of λ(a) (respectively, of Lg(a)) have the same support. Furthermore,
m(a, a) =M(a, a) = 1.

In the non-archimedean case, Bruhat G-order was described by Zelevinsky [Zel80] (in the
case where A= F ) and Tadić [Tad90] in terms of linked segments. On arbitrary real reductive
groups, Bruhat G-order was defined by Vogan, on a different set of parameters, in terms of
integral roots (see [Vog82, Definition 12.12]). In all cases, Bruhat G-order is constructed by
first defining elementary operations, starting from an element a ∈M(D) and obtaining another
element a′ ∈M(D); this is written as

a′ ≺ a.
Bruhat G-order is then generated by ≺. (In the case of A= R, the situation is a little more
complicated.) Another important property of Bruhat G-order is the following. One can define
on all M(D)ω a length function

l :M(D)ω→ N
such that: if b6 a, then l(b) 6 l(a); if b6 a and l(b) = l(a), then b= a; and, finally, if b6 a and
l(b) = l(a)− 1, then b≺ a. In particular, if b≺ a, there is no c ∈M(D)ω such that b6 c < a but
b= c.

We then have the following proposition.

Proposition 6.2. Let a, b ∈M(D)ω such that b≺ a. Then m(b, a) 6= 0 and M(b, a) 6= 0.

Proof. The first assertion follows from the recursion formulas for Kazhdan–Lusztig–Vogan
polynomials in the archimedean case [Vog83]; we even have m(b, a) = 1 in this case. In the non-
archimedean case, the first assertion was established by Zelevinsky [Zel80] and Tadić [Tad90].
The second assertion follows from Proposition 6.1. 2

7. Unitary dual

7.1 Representations u(δ, n) and π(δ, n; α)

Let δ ∈D; then δ × δ is irreducible. Indeed, if δ ∈Du, this is Theorem 3.1, and the general case
follows from tensoring with an unramified character. Consider δ × ναδ with α > 0. There exists
a smallest α0 > 0 such that δ × να0δ is reducible.

Definition 7.1. Let δ ∈D. Set νδ = να0 , where α0 > 0 is the smallest real number α > 0 such
that δ × ναδ is reducible.

For all δ ∈D and n ∈ N×, set

a(δ, n) = (ν(n−1)/2
δ δ, ν

((n−1)/2)−1
δ δ, . . . , ν

−(n−1)/2
δ δ) ∈M(D), (7.1)

u(δ, n) = Lg(a(δ, n)). (7.2)
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For all δ ∈D, n ∈ N× and α ∈ R, set

π(δ, n; α) = ναδ u(δ, n)× ν−αδ u(δ, n). (7.3)

7.2 Tadić’s hypotheses and classification of the unitary dual
We recall Tadić’s classification of the unitary dual of the groupsGn. For a fixed division algebra A,
consider the following hypotheses.

U(0): if σ, τ ∈ Irru, then σ × τ ∈ Irru.
U(1): if δ ∈Du and n ∈ N×, then u(δ, n) ∈ Irru.
U(2): if δ ∈Du, n ∈ N× and α ∈ ]0, 1/2[, then π(δ, n; α) ∈ Irru.
U(3): if δ ∈D, then u(δ, n) is prime in R.
U(4): if a, b ∈M(D), then L(a)× L(b) contains L(a+ b) as a subquotient.
Suppose Tadić’s hypotheses are satisfied for A. Then we have the following theorem.

Theorem 7.2. The set Irru is endowed with the structure of a free commutative monoid with
product (σ, τ) 7→ σ × τ and basis

B = {u(δ, n), π(δ, n; α) | δ ∈Du, n ∈ N×, α ∈ ]0, 1/2[ }.

More explicitly, if π1, . . . , πk ∈ B, then π1 × · · · × πk ∈ Irru, and if π ∈ Irru, there exist
π1, . . . , πk ∈ B, unique up to permutation, such that π = π1 × · · · × πk.

This result is established in [Tad95, Proposition 2.1]. The proof is formal.
First, observe that U(4) is a fairly simple consequence of the Langlands classification,

established by Tadić for all A in [Tad06] (the proof works also for archimedean A; see [Tad09]).
It is also easy to see that U(2) can be deduced from U(0) and U(1) using the following
simple principle: if (πt)t∈I (where I is an open interval containing 0) is a family of hermitian
representations inM(G), continuous in a sense that we shall not make precise here, and if π0 is
unitary and irreducible, then πt is unitary on the largest interval J ⊂ I containing 0 where πt
is irreducible (the signature of the hermitian form can change only when crossing reducibility
points). The representations π(δ, n; α), α ∈ R, are hermitian, π(δ, n; 0) = u(δ, n)× u(δ, n) is
unitary and irreducible (by U(0) and U(1)), and π(δ, n; α) is irreducible for α ∈ ]−1

2 ,
1
2 [. For

details, see [Tad09] and the references therein.
For the remaining hypotheses U(0), U(1) and U(3), the situation is more complicated.

• U(3) was proved by Tadić in the non-archimedean case in [Tad86] and for A= R or C
in [Tad09]. Below we give the proof for A= H following Tadić’s ideas.

• U(1) was proved by Tadić in the non-archimedean case in [Tad86] for the field case A= F .
The generalization to all division algebras over F was given by the authors in [BR04], using
unitarity of some distinguished representations closely related to the u(δ, n) established by
the first author in [Bad07] using global methods. For F = C, u(δ, n) is a unitary character,
so the statement is obvious. For F = R, U(1) was first proved by Speh in [Spe83] using
global methods. It can also be proved using Vogan’s results on cohomological induction
(see details below). Finally, for A= H, U(1) can be established by using again the general
results on cohomological induction and the argument in [BR04]. A more detailed discussion
of the archimedean case can be found in § 11.

• U(0) is by far the most delicate. For A= F non-archimedean, U(0) was established
by Bernstein in [Ber84], using reduction to the mirabolic subgroup. For A= R or C,
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although the same approach can be used, some serious technical difficulties remained
unsolved until the paper of Baruch [Bar03]. For A being a general non-archimedean division
algebra, U(0) was established by Sécherre [Sec09] using his deep results on Bushnell and
Kutzko’s type theory for the groups GL(n, A); these give Hecke algebra isomorphisms
and allow one to reduce the problem to the field case (the proof also uses in a crucial
way Barbash and Moy’s results on unitarity for Hecke algebra representations [BM89]). In
the A= H case there are, to our knowledge, no written references, but it is well known to
some experts that U(0) can be deduced from Vogan’s classification of the unitary dual of Gn
in the archimedean case [Vog86]. Vogan’s classification is conceptually very different from
Tadić’s classification. It has its own merits, but the final result is quite difficult to state and
to understand, since it uses sophisticated concepts and techniques from the theory of real
reductive groups. So for people who are mainly interested in applications, for instance to
automorphic forms, Tadić’s classification is much more convenient. Before Baruch’s paper
was published, in the literature one could often find the statement of Tadić’s classification
along with a reference to Vogan’s paper [Vog86] for the proof. It may not be totally obvious
to non-experts how to derive Tadić’s classification from Vogan’s, so in this paper we take the
opportunity to explain (see § 12) some aspects of Vogan’s classification and how it is related
to Tadić’s classification, as well as how to deduce U(0) from it. Of course, an independent
proof of U(0) would be highly desirable in this case. It would be even better to have a
uniform proof of U(0) for all cases; however, for this, new ideas are clearly needed.

• All these results are true if the characteristic of F is positive (as explained in [BHLS]).

8. Classification of generic irreducible unitary representations

From the classification of the unitary dual of GL(n, R) given above and the classification
of irreducible generic representations of real reductive groups [Kos78, Vog78], we deduce the
classification of generic irreducible unitary representations of GL(n, R). Let us first recall
that Vogan gave a classification of ‘large’ irreducible representations of a quasi-split real
reductive group (i.e. one having maximal Gelfand–Kirillov dimension), that Kostant showed
that such a group admits generic representations if and only if the group is quasi-split, and that
‘generic’ is equivalent to ‘large’. Therefore, Vogan’s result can be stated as follows.

Theorem 8.1. Any generic irreducible representation of any quasi-split real reductive group is
irreducibly induced from a generic limit of discrete series; and, conversely, a representation which
is irreducibly induced from a generic limit of discrete series is generic.

Note that in the above theorem, one can replace ‘limit of discrete series’ by ‘essentially
tempered’, because according to [KZ82] any tempered representation is fully induced from a
limit of discrete series. In the case of GL(n, R), all discrete series are generic; so by Theorem 3.1,
all essentially tempered representations are generic.

Let us denote by Irrugen the subset of Irru consisting of generic representations. We then have
the following specialization of Theorem 7.2.

Theorem 8.2. The set Irrugen is endowed with the structure of a free commutative monoid with
product (σ, τ) 7→ σ × τ and basis

Bgen = {u(δ, 1), π(δ, 1; α) | δ ∈Du, α ∈ ]0, 1/2[ }.

More explicitly, if π1, . . . , πk ∈ Bgen, then π1 × · · · × πk ∈ Irrugen, and if π ∈ Irrugen, then there exist
π1, . . . , πk ∈ Bgen, unique up to permutation, such that π = π1 × · · · × πk.
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9. Classification of discrete series: archimedean case

In this section, we describe explicitly square integrable modulo center irreducible representations
of Gn in the archimedean case. For A= H we also give details about supports, Bruhat
G-order etc. Since the Bruhat G-order is defined by Vogan on a set of parameters for irreducible
representations consisting of (conjugacy classes of) characters of Cartan subgroups, we also
describe the bijections between the various sets of parameters.

9.1 A= C
There are square integrable modulo center irreducible representations of GL(n, C) only when
n= 1. Thus

D =D1 = Irr1.

An element δ ∈D is then a character

δ : GL(1, C)' C×→ C×.

Let δ ∈D. Then there exist a unique n ∈ Z and a unique β ∈ C such that

δ(z) = |z|2β
(
z

|z|

)n
= |z|βC

(
z

|z|

)n
.

Take x, y ∈ C satisfying {
x+ y = 2β,
x− y = n.

With the above notation (and abusing it by writing a complex power of a complex number), we
set

δ(z) = γ(x, y) = zxz̄y.

The following result is well known.

Proposition 9.1. Take δ = γ(x, y) ∈D as above. Then δ × ναδ is reducible for α= 1 and
irreducible for 0 6 α < 1. Thus νδ = ν (cf. Definition 7.1). In the case of reducibility, where
α= 1, we have that in R,

γ(x, y)× γ(x+ 1, y + 1) = Lg((γ(x, y), γ(x+ 1, y + 1))) + γ(x, y + 1)× γ(x+ 1, y).

9.2 A= R
There are square integrable modulo center irreducible representations of GL(n, R) only when
n= 1 or 2:

D =D1

∐
D2 = Irr1

∐
D2.

Let us start with the parametrization of D1. An element δ ∈D1 is a character

δ : GL(1, R)' R×→ C×.

Let δ ∈D1. Then there exist a unique ε ∈ {0, 1} and a unique α ∈ C such that

δ(x) = |x|αsgn(x)ε for x ∈ R×.

We set

δ = δ(α, ε).
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Let us now give a parametrization of D2. Let δ1, δ2 ∈D1. Then δ1 × δ2 is reducible if and
only if there exists p ∈ Z\{0} such that

δ1δ
−1
2 (x) = xpsgn(x) for x ∈ R×.

If δi = δ(αi, εi), we rewrite these conditions as

α1 − α2 = p, ε1 − ε2 = p+ 1 mod 2. (9.1)

If δ1 × δ2 is reducible, we have that in R,

δ1 × δ2 = Lg((δ1, δ2)) + η(δ1, δ2) (9.2)

where η(δ1, δ2) ∈D2 and Lg((δ1, δ2)) is an irreducible finite-dimensional representation (of
dimension |p| in the notation above).

Definition 9.2. If α1, α2 ∈ C satisfy α1 − α2 ∈ Z\{0}, we set

η(α1, α2) = η(δ1, δ2) (9.3)

where δ1(x) = |x|α1 and δ2(x) = |x|α2sgn(x)α1−α2+1. This defines a surjective map from

{(α1, α2) ∈ C2 | α1 − α2 ∈ Z\{0}}

to D2, and we have

η(α1, α2) = η(α′1, α
′
2)⇔{α1, α2}= {α′1, α′2}.

This gives a parametrization ofD2 by pairs of complex numbers α1, α2 satisfying α1−α2∈N×.

Remark 9.3. The representation η(x, y) ∈D2 for x, y ∈ C with x− y ∈ Z\{0} is obtained from
the character γ(x, y) of C× by some appropriate functor of cohomological induction. But even
when x= y, the functor of cohomological induction maps γ(x, x) to an irreducible essentially
tempered representation of GL(2, R), namely the limit of discrete series δ(x, 0)× δ(x, 1), which
is an irreducible principal series.

For this reason we set, for x ∈ C,

η(x, x) := δ(x, 0)× δ(x, 1) ∈ Irr2. (9.4)

Proposition 9.4. Let δ ∈D. Then δ × ναδ is reducible for α= 1 and irreducible for 0 6 α < 1.
Thus νδ = ν (cf. Definition 7.1).

This result is also well known. Let us be more precise by giving the composition series for
δ × νδ. We start with the case where δ = δ(α, ε) ∈D1. Then we get from (9.2) that in R,

δ(α, ε)× δ(α+ 1, ε) = Lg(δ(α, ε), δ(α+ 1, ε)) + η(α, α+ 1). (9.5)

In the case where δ = η(x, y) ∈D2 with x− y = r ∈ N×, we get that if r 6= 1,

η(x, y)× η(x+ 1, y + 1) = Lg(η(x, y), η(x+ 1, y + 1)) + η(x, y + 1)× η(x+ 1, y). (9.6)

If r = 1, the situation degenerates, but the following formulas remain valid by coherent
continuation (see § 13.1):

η(x, y)× η(x+ 1, y + 1) = Lg(η(x, y), η(x+ 1, y + 1)) + η(x, y + 1)× η(x+ 1, y).

Recall that our convention is that

η(y + 1, y + 1) = δ(y + 1, 0)× δ(y + 1, 1)
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is a limit of discrete series; thus

η(y + 1, y)× η(y + 2, y + 1) = Lg(η(y + 1, y), η(y + 2, y + 1))
+ δ(y + 1, 0)× δ(y + 1, 1)× η(y + 2, y). (9.7)

9.3 A= H
Let us identify quaternions with 2× 2 matrices of the form(

α β
−β̄ ᾱ

)
, α, β ∈ C.

The reduced norm is given by

RN
(

α β
−β̄ ᾱ

)
= |α|2 + |β|2.

The group of invertible elements H× contains SU(2), the kernel of the reduced norm. Thus we
have an exact sequence

1→ SU(2) ↪→H× RN−→ R×+→ 1,
and we can identify H× with the direct product SU(2)× R×+.

The group GL(n,H) is a real form of GL(2n, C); its elements are 2n× 2n matrices composed
of 2× 2 quaternionic matrices as described above. Complex conjugacy on GL(2n, C) for this real
form is given on the 2× 2 blocks by(

α β
γ δ

)
7→
(

δ̄ −γ̄
−β̄ ᾱ

)
.

A maximal compact subgroup of GL(n,H) is then

Sp(n)'U(2n) ∩GL(n,H).

Its rank is n, the rank of GL(n,H) is 2n, and the split rank of the center is one. Thus there are
square integrable modulo center representations only when n= 1.

For n= 1 and D1 = Irr1, all irreducible representations of H× are essentially square integrable
modulo center, since H× is compact modulo center. Harish-Chandra’s parametrization in this
case is as follows: irreducible representations of H× are parametrized by some characters of a
fundamental Cartan subgroup; here we choose

C× ↪→H×, α 7→
(
α 0
0 ᾱ

)
,

which is connected. Characters of C× were described in the F = C section; they are of the form
γ(x, y) where x− y ∈ Z. An irreducible representation of H× is then parametrized by a pair of
complex numbers (x, y) such that x− y ∈ Z. The pairs (x, y) and (x′, y′) parametrize the same
representation if and only if the characters γ(x, y) and γ(x′, y′) are conjugate under the Weyl
group, i.e. the multisets (x, y) and (x′, y′) are equal. Furthermore, γ(x, y) corresponds to an
irreducible representation if and only if x 6= y. Let us denote by η′(x, y) the representation
parametrized by the multiset (x, y) with x− y ∈ Z\{0}. It is obtained from the character γ(x, y)
of the Cartan subgroup C× by cohomological induction.

Remark 9.5. In contrast to the A= R case, when we induced cohomologically the character
γ(x, x) of the Cartan subgroup C× to H×, we get 0: there is no limit of discrete series. Thus we
set η′(x, x) = 0.
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Remark 9.6. The Jacquet–Langlands correspondence (see § 4) between representations of
GL(1,H) = H× and essentially square integrable modulo center irreducible representations
GL(2, R) is given by

C(η(x, y)) = η′(x, y) for x, y ∈ C with x− y ∈ Z\{0}.

The representations η(x, y) and η′(x, y) are obtained by cohomological induction from the same
character γ(x, y) of the Cartan subgroup C× of GL(2, R) and H×. In the case where x= y, the
construction still respects the Jacquet–Langlands character relation since both sides are equal
to zero.

More generally, let us now give the parametrization of irreducible representations of GL(n,H)
by conjugacy classes of characters of Cartan subgroups. The group GL(n,H) has only one
conjugacy class of Cartan subgroups, a representative being Tn, which consist of 2× 2 block-
diagonal matrices of the form (α 0

0 ᾱ). Thus Tn ' (C×)n is connected, t n = Lie(T )' Cn and
(t n)C ' (C⊕ C)n.

Let Λ be a character of Tn. Its differential

λ= dΛ : tn→ Lie(C×)' C,

is a R-linear map, with complexification being the C-linear map

λ= dΛ : t C ' (C⊕ C)n→ Lie(C×)' C.

Such a linear form is given by a n-tuple of pairs (λi, µi) such that λi − µi ∈ Z.
Since Tn is connected, a character Λ of Tn is determined by its differential. We write

Λ = Λ(λ1, µ1, . . . , λn, µn) = Λ((λi, µi)16i6n)

if its differential is given by the n-tuple of pairs (λi, µi) such that λi − µi ∈ Z.
Let P be the set of characters Λ = Λ((λi, µi)16i6n) of the Cartan subgroup Tn such that

λi − µi ∈ Z\{0}.
Irreducible representations of GL(n,H) are parametrized by P, with two characters Λ1

and Λ2 giving the same irreducible representation if and only if they are conjugate under
W (GL(2n, C), Tn). This group is isomorphic to {±1}n ×Sn. Its action on t C ' (C⊕ C)n is
as follows: each factor {±1} acts inside the corresponding factor C⊕ C by permutation, and Sn

acts by permuting the n factors C⊕ C. Thus we see that irreducible representations of GL(n,H)
are parametrized by multisets of cardinality n consisting of pairs of complex numbers (λi, µi)
such that λi − µi ∈ Z\{0}. Since such a pair (λi, µi) parametrizes the representation η′(λi, µi),
we recover the Langlands parametrization of Irr by M(D). Let us denote by ∼ the equivalence
relation on P given by the Weyl group action W (GL(2n, C), T ). We have described one-to-one
correspondences

P/∼ ' Irrn 'M(D)n.

Recall that a support for GL(n,H) is a multiset of 2n complex numbers, i.e. an element of
the quotient of t∗C ' (C⊕ C)n ' C2n by the action of the Weyl group WC 'S2n.

Definition 9.7. The support of a character Λ = Λ((λi, µi)16i6n) ∈ P is the multiset

(λ1, µ1, . . . , λn, µn).

It does not depend on the equivalence class of Λ with respect to ∼. If Λ ∈ P parametrizes the
irreducible representation π, we write Supp(Λ) = Supp(π).
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This describes explicitly the map

P →M(C), Λ 7→ Supp(Λ)

and its fibers: two parameters

Λ1((λ1
i , µ

1
i )) and Λ2((λ2

i , µ
2
i ))

have the same support if and only if the multisets

(λ1
1, . . . , λ

1
n, µ

1
1, . . . , µ

1
n) and (λ2

1, . . . , λ
2
n, µ

2
1, . . . , µ

2
n)

are equal. We denote by P(ω) the fiber at ω.
We now give the description of the Bruhat G-order in terms of integral roots. We have the

following decomposition of the Lie algebra:

Lie(GL(2n, C)) = (g2n)C = (tn)C ⊕
(⊕
α∈R

gαC

)
where R= {±(ei − ej) : 1 6 i < j 6 2n} is the usual root system of type A2n−1. Let us denote
by σ the non-trivial element of the Galois group of C/R.

The roots ±(e2j−1 − e2j), j = 1, . . . , n, are imaginary compact; thus

σ · e2j−1 = e2j for j = 1, . . . , n.

Other roots are complex: for all j, l such that 1 6 j 6= l 6 l,

σ · (e2j−1 − e2l−1) = e2j − e2l, σ · (e2j−1 − e2l) = e2j − e2l−1.

Let us fix a support ω and take Λ to be a character of Tn such that Supp(Λ) = ω, say
Λ = Λ((λi, µi)i=1,...,n) where λi − µi ∈ Z\{0}. Notice that WC 'S2n does not act on P(ω), since
the condition

λi − µi ∈ Z
may not hold anymore after some permutation of the λi.

Denote by WΛ the subgroup of WC consisting of elements w such that

w · (λi, µi)i − (λi, µi)i ∈ (Z× Z)n.

Then WΛ is the Weyl group of the root system RΛ of integral roots for Λ. A root α= ek − el
in R is integral for Λ if, upon writing

λ1, µ1, λ2, µ2, . . . , λn, µn = ν1, . . . , ν2n,

we have νk − νl ∈ Z.
Suppose that the support ω is regular, i.e. that all the νi, 1 6 i6 2n, are distinct. We choose

as a positive root system R+
Λ ⊂RΛ the roots ek − el such that νk − νl > 0. This defines simple

roots.
Let us state, first, a necessary and sufficient condition for reducibility of standard modules

(for regular support).

Proposition 9.8. Let a= (η′(λi, µi)i=1,...,n) ∈M(D)ω be parametrized by the character Λ =
Λ((λi, µi)i=1,...,n) of Tn. Suppose that the support

ω = (λ1, µ1, . . . , λn, µn)
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is regular. Then λ(a) is reducible if and only if there exists a simple root ek − el in R+
Λ which is

complex and such that if ek − el = e2i−1 − e2j−1 or ek − el = e2i − e2j for i 6= j, then

λi − λj > 0 and µi − µj > 0,

and if ek − el = e2i−1 − e2j or ek − el = e2i − e2j−1 for i 6= j, then

λi − µj > 0 and µi − λj > 0.

When ω is not regular, we still have a necessary condition for reducibility: if λ(a) is reducible,
then there exists a root ek − el in R+

Λ which is not necessarily simple but still satisfies the
condition above.

See [Vog82].

Definition 9.9. We still assume ω ∈M(C) to be regular and suppose that Λ ∈ P(ω) satisfies
the reducibility criterion above for the simple integral complex root ek − el. Write

Λ = Λ((λ1, µ1), . . . , (λn, µn)) = Λ((ν1, ν2), . . . , (ν2n−1, ν2n)).

Let Λ′ ∈ P(ω) be obtained from Λ by exchanging νk and νl, and let a′ ∈M(D)ω correspond to Λ′.
We say that a′ is obtained from a by an elementary operation, and we write a′ ≺ a. The Bruhat
G-order on M(D)ω is the partial order generated by ≺.

Let us now deduce from the above reducibility criterion the invariant νδ attached
(cf. Definition 7.1) to an essentially square integrable modulo center irreducible representation
δ = η′(x, y), where x, y ∈ C with x− y ∈ Z\{0}. We may suppose that x− y = r > 0, since
η′(x, y) = η′(y, x).

Proposition 9.10. With the previous notation, νδ = ν if r > 1 and νδ = ν2 if r = 1. Since r
is the dimension of δ, we see that νδ = ν except when δ is a one-dimensional representation of
GL(1,H).

Proof. We want to study the reducibility of

π = η′(y + r, y)× η′(y + r + α, y + α)

for α > 0. The support of this representation is regular if and only if y + r, y, y + r + α and
y + α are distinct; but since

y + r + α > y + α > y and y + r + α > y + r > y,

the support is regular except when r = α. The representation π is the standard representation
attached to the character

Λ = Λ((y + r + α, y + α), (y + r, y)).

If α /∈ Z, then the support is regular, all integral roots are imaginary compact for Λ, and
then π is irreducible.

If α= 1 and r 6= 1, then the support is regular, all the roots are integral for

Λ((y + r + 1, y + 1), (y + r, y)),

and e1 − e3 is a complex root, simple in

R+
Λ = {e1 − e3, e1 − e2, e1 − e4, e3 − e2, e3 − e4, e2 − e4}
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and satisfying the reducibility criterion since

(σ · (e1 − e3))(y + r + 1, y + 1, y + r, y) = (e2 − e4)(y + r + 1, y + 1, y + r, y) = 1> 0.

The only element smaller than Λ in the Bruhat G-order is

Λ′ = Λ((y + r, y + 1), (y + r + 1, y)),

and we get

η′(y + r, y)× η′(y + r + 1, y + 1)
= Lg(η′(y + r, y), η′(y + r + 1, y + 1)) + η′(y + r, y + 1)× η′(y + r + 1, y). (9.8)

If α= 1 and r = 1, the support is singular. Applying Zuckerman translation functors (see,
e.g., [KV95]), we get

η′(y + 2, y)× η′(y + 3, y + 1)
= Lg(η′(y + 2, y), η′(y + 3, y + 1)) + η′(y + 1, y + 1)× η′(y + 2, y).

But, according to our convention, η′(y + 1, y + 1) = 0 (this is really what we get upon
applying the translation functor to the wall), and thus

η′(y + 1, y)× η′(y + 2, y + 1) = Lg(η′(y + 1, y), η′(y + 2, y + 1))

is irreducible.
The next possibility of reducibility for r = 1 is α= 2, but then the support is regular and we

see as above that π is reducible; more precisely,

η′(y + 3, y + 2)× η′(y + 1, y)
= Lg(η′(y + 3, y + 2), η′(y + 1, y)) + η′(y + 2, y + 1)× η′(y + 3, y). (9.9)

This completes the proof of the proposition. 2

10. Hypothesis U(3) for A= H

We follow [Tad09], which gives a proof of U(3) for A= C or R, to deal with the case where
A= H.

Theorem 10.1. Let δ = η′(y + r, y) ∈D for y ∈ C and r ∈ N×, and let n ∈ N×. Then u(δ, n) is
a prime in the ring R.

Proof. We know that δ is prime in R, so we start with n> 2. Let us first deal with r = 1. In this
case νδ = 2 and we have

a0 = a(δ, n) = (ν(n−1)/2
δ δ, ν

((n−1)/2)−1
δ δ, . . . , ν

−(n−1)/2
δ δ)

= (η′(y + n, y + n− 1), η′(y + n− 2, y + n− 3), . . . η′(y − n+ 2, y − n+ 1)).

Set a0 = a(δ, n) = (X1, . . . , Xn) with

Xi = γ(y + n+ 2− 2i, y + n+ 1− 2i) for i= 1, . . . , n.

Remark 10.2. The support of u(δ, n) is the multiset

(y + n+ 2− 2i, y + n+ 1− 2i)i=1,...n.

This support is regular.
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Suppose that u(δ, n) is not prime in R. Then there exist polynomials P and Q in the variables
d ∈D which are non-invertible and such that u(δ, n) = PQ. Since u(δ, n) is homogeneous in R
for the natural graduation, the same holds for P and Q.

Let us write

P =
∑

c∈M(D)

m(c, P )λ(c), Q=
∑

d∈M(D)

m(d, Q)λ(d). (10.1)

Set SP = {a ∈M(D) |m(a, P ) 6= 0} and SQ = {a ∈M(D) |m(a, Q) 6= 0}. We get

Lg(a0) =X1 ×X2 · · · ×Xn +
∑

a∈M(D),a<a0

M(a, a0) λ(a).

Thus there exist c0 ∈ SP and d0 ∈ SQ such that

c0 + d0 = a0 = (X1, . . . , Xn).

Since deg P > 0 and deg Q> 0, c0 and d0 are not empty and the polynomials P and Q are not
constant. Denote by S1 the set of Xi such that Xi ∈ c0, and denote by S2 the set of Xi such that
Xi ∈ d0. We get a partition of the Xi into two non-empty disjoint sets. Therefore we can find
1 6 i6 n− 1 such that

{Xi, Xi+1} 6⊂ Sj for j = 1, 2

and, without any loss of generality, we may suppose that Xi ∈ S1 and Xi+1 ∈ S2. Furthermore,
we have

|S1|= deg P, |S2|= deg Q, deg P + deg Q= n.

We get from (9.9) that Xi ×Xi+1 is reducible; more precisely,

Xi ×Xi+1 = Lg(Xi, Xi+1) + Yi × Yi+1

where

Yi = η′(y + n+ 2− 2i, y + n− 1− 2i), Yi+1 = η′(y + n+ 1− 2i, y + n− 2i).

We have a1 := (Yi, Yi+1)≺ (Xi, Xi+1). Set

ai,i+1 = a1 + (X1, . . . , Xi−1, Xi+2, . . . , Xn).

Then ai,i+1 ≺ a0 and hence M(a1, a0) 6= 0 by Proposition 6.2. Therefore, there exist non-empty
c1 ∈ SP and d1 ∈ SQ such that

c1 + d1 = ai,i+1.

Suppose now that Yi divides λ(c1) in R. The case where Yi divides λ(d1) is similar.
Suppose that λ(Yi+1) divides λ(c1) also. We get a partition of the Xj , where j 6= i, i+ 1, into

two non-empty sets S′1 and S′2 such that

c1 = {Xj : j ∈ S′1}+ Yi + Yi+1, d1 = {Xj : j ∈ S′2}.

As the polynomials P and Q are homogeneous, we get

deg(P ) = |S′1|+ 2, deg(Q) = |S′2|.

We see that Xi+1 /∈ T := S1 ∪ S′2 and thus {X1, . . . , Xn} 6⊂ T . For r ∈R, denote by degT (r) the
degree of r in the variables Xj ∈ T . We get degT P > |S1|= deg P and degT Q> |S′2|= deg Q,
so degT (Lg(a0)) > n. But the fact that the total degree of Lg(a0) is n implies degT (Lg(a0)) = n.
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The expression of Lg(a0) in the basis λ(b), b6 a0, shows that we can find b0 ∈M(D) such that
M(b0, a0) 6= 0, deg(b0) = n and degT λ(b0) = n. Furthermore, λ(b0) can be written as

λ(b0) =Xα1
1 Xα2

2 · · ·X
αn
n for αj ∈ N with α1 + · · ·+ αn = n.

Since T 6= {X1, . . . , Xn}, there exists j such that αj > 1. But then Xj appears with multiplicity
at least two in b0. Since Supp(b0) = Supp(a0) is regular, we get a contradiction.

Suppose now that λ(Yi+1) does not divide λ(c1). We get a partition of the Xj , where
j 6= i, i+ 1, into two non-empty sets S′1 and S′2 such that

c1 = {Xj : j ∈ S′1}+ Yi, d1 = {Xj : j ∈ S′2}+ Yi+1.

Now set T = S′1 ∪ S2 and observe that Xi+1 does not belong to T ; thus {X1, . . . , Xn} 6⊂ T . For
r ∈R, denote by degT (r) the degree of r in the variables Xj ∈ T and Yi. As above, we get that
degT (Lg(a0)) = n and that there exists b0 ∈M(D) such that M(b0, a0) 6= 0, deg(b0) = n and
degT (λ(b0)) = n. We can write

λ(b0) =Xα1
1 Xα2

2 · · ·X
αn
n Y α

i for αj ∈ N with α1 + · · ·+ αn + α= n.

Since {X1, . . . , Xn} 6⊂ T , there exists j such that αj = 0. If α= 0, we get a contradiction as
before; thus α> 1. But since multiplicities in Supp(a0) are at most one, we get α= 1, αj = 1 if
j 6= i+ 1, i, and αi = αi+1 = 0, which still gives a contradiction. This finishes the proof for the
r = 1 case.

Let us deal with briefly the case where r > 1. Here νδ = ν and

a(δ, n) = (ν(n−1)/2δ, ν((n−1)/2)−1δ, . . . , ν−(n−1)/2δ)

=
(
η′
(
x+

n− 1
2

, y +
n− 1

2

)
, η′
(
x+

n− 1
2
− 1, y +

n− 1
2
− 1
)
,

. . . , η′
(
x− n− 1

2
, y − n− 1

2

))
.

Set a0 = a(δ, n) = (X1, . . . , Xn) with

Xi = γ

(
y + r +

n− 1
2

+ 1− i, y +
n− 1

2
+ 1− i

)
for i= 1, . . . , n.

We proceed as above, now using formula (9.8) for the reducibility of λ(Xi, Xi+1):

λ(Xi, Xi+1) = Lg(Xi, Xi+1) + λ(Yi, Yi+1)

where

Yi = η′
(
y + r +

n− 1
2

+ 1− i, y +
n− 1

2
− i
)
,

Yi+1 = η′
(
y + r +

n− 1
2
− i, y +

n− 1
2

+ 1− i
)
.

In all cases, we get contradictions by inspecting multiplicities in the support. We leave the details
to the reader. 2

11. Hypothesis U(1) for the archimedean case

We recall briefly the arguments for A= C and R, even though these are well known and presented
elsewhere, because we will need the notation anyway. We give the complete argument for the
A= H case.
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11.1 A= C
This case is easy because for γ = γ(x, y), with x, y ∈ C such that x− y ∈ Z is a character of C×,
we have

u(γ, n) = γ ◦ det.

Representations u(γ, n) are thus one-dimensional representations of GL(n, C). Furthermore, if γ
is unitary (i.e. Re(x+ y) = 0), then u(γ, n) is unitary.

11.2 A= R
There are two cases to consider. The first is where δ = δ(α, ε) ∈D1, with α ∈ C and ε ∈ {0, 1}.
This is similar to the A= C case above, since

u(δ, n) = δ ◦ det.

Representations u(δ, n) are one-dimensional representations of GL(n, R). Furthermore, if δ is
unitary (i.e. Re(α) = 0), then u(δ, n) is unitary.

The second case is where δ = η(x, y) ∈D2, with x, y ∈ C such that x− y = r ∈ N×. We
have already mentioned, without giving any details, that η(x, y) is obtained by cohomological
induction from the character γ(x, y) of the Cartan subgroup C× of GL(2, R). Let us be more
precise now. The cohomological induction functors considered here are normalized as in [KV95,
(11.150)]: suppose that (gC, K) is a reductive pair associated to a real reductive group G,
qC = l C ⊕ u C is a θ-stable parabolic subalgebra of gC with Levi factor l C, and L is the normalizer
in G of qC; then we define the cohomological induction functor to be

Rq C :M(l C, K ∩ L)−→M(gC, K)

X 7→ ΓS ◦ pro(X ⊗ τ̃)

where S = dim(u C ∩ k C), ΓS is the Sth Zuckerman derived functor from M(gC, K ∩ L) to
M(gC, K), pro is the parabolic induction functor from M(l C, K ∩ L) to M(gC, K ∩ L), and
τ̃ is a character of L, the square root of the character

∧top(u C/u C ∩ k C) (note that such a
square root is usually defined only on a double cover of L, but for the cases of interest here,
i.e. products of G= GL(n, R), GL(n, C) or GL(n,H), we can find such a square root on L). This
normalization preserves infinitesimal character.

With this notation, for G= GL(2, R), L' C× and u C = ge1−e2C we get

Rq C(γ(x, y)) = η(x, y) for x, y ∈ C with x− y ∈ N.

Recall the convention η(x, x) = δ(x, 0)× δ(x, 1) for limits of discrete series; so this formula is
also valid when x= y.

Set a0 = a(η(x, y), n) ∈M(D). The standard representation λ(a0) is obtained by parabolic
induction from the representation

η = η

(
x+

n− 1
2

, y +
n− 1

2

)
⊗ η
(
x+

n− 3
2

, y +
n− 3

2

)
⊗ · · · ⊗ η

(
x− n− 1

2
, y − n− 1

2

)
of GL(2, R)× · · · ×GL(2, R); from what has just been said, the representation η is obtained by
cohomological induction from the character

γ = γ

(
x+

n− 1
2

, y +
n− 1

2

)
⊗ γ
(
x+

n− 3
2

, y +
n− 3

2

)
⊗ · · · ⊗ γ

(
x− n− 1

2
, y − n− 1

2

)
of C× × · · · × C×. Furthermore, u(η(x, y), n) is the unique irreducible quotient of λ(a0).
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Results on independence of polarization in [KV95, ch. 11] show that the standard
representation λ(a0) could also be obtained from the character γ of (C×)n in the following way:
first, use parabolic induction from (C×)n to GL(n, C) (with respect to the usual upper-triangular
Borel subgroup) to get the standard representation

γ

(
x+

n− 1
2

, y +
n− 1

2

)
× γ
(
x+

n− 3
2

, y +
n− 3

2

)
× · · · × γ

(
x− n− 1

2
, y − n− 1

2

)
(11.1)

whose unique irreducible quotient is u(γ(x, y), n); then, use the cohomological induction functor
Rq C from GL(n, C) to GL(2n, R) (the reader can guess which θ-stable parabolic subalgebra qC
we use). This shows also that u(δ, n) is the unique irreducible quotient of Rq C(u(γ(x, y), n)).
Now, irreducibility and unitarizability theorems from [KV95] also imply, since the character
u(γ(x, y), n) of GL(n, C) is in the weakly good range, that Rq C(u(γ(x, y), n)) is irreducible and
unitary if u(γ(x, y), n) is unitary. Thus we get

Rq C(u(γ(x, y), n)) = u(η(x, y), n),

and this representation is unitary if and only if Re(x+ y) = 0.
In the degenerate case of x= y (see (9.4)), we get

Rq C(u(γ(x, y), n)) = u(δ(x, 0), n)× u(δ(x, 1), n).

11.3 A= H
Let δ = η′(x, y), where x, y ∈ C with x− y ∈ N×, be an irreducible representation of H×. Consider
the representation u(η′(x, y), n) and recall the invariant νδ of Definition 7.1. We have seen
that νδ = ν when x− y > 1 and νδ = ν2 when x− y = 1. In the former situation, the discussion
concerning unitarizability of u(η′(x, y), n) is exactly the same as that in the A= R case: the
standard representation λ(a0) whose unique irreducible quotient is u(η′(x, y), n) is obtained by
cohomological induction from GL(n, C) to GL(n,H) of the representation γ defined in (11.1).
Furthermore, u(η′(x, y), n) is the unique irreducible quotient of Rq ′C

(u(γ(x, y), n)) and is unitary
if and only if Re(x+ y) = 0.

When νδ = ν2, i.e. x− y = 1, we get the same results, not for u(η′(x, y), n) but rather for
ū(η′(x, y), n), the Langlands quotient of the standard representation

η′
(
x+

n− 1
2

, y +
n− 1

2

)
× η′

(
x+

n− 3
2

, y +
n− 3

2

)
× · · · × η′

(
x− n− 1

2
, y − n− 1

2

)
= ν(n−1)/2η′(x, y)× ν(n−3)/2η′(x, y)× · · · × ν−(n−1)/2η′(x, y).

Recall that u(η′(x, y), n) is the Langlands quotient of

ν
(n−1)/2
δ η′(x, y)× ν(n−3)/2

δ η′(x, y)× · · · × ν−(n−1)/2
δ η′(x, y)

= νn−1η′(x, y)× νn−3η′(x, y)× · · · × ν−(n−1)η′(x, y).

From the two conditions x− y = 1 and Re(x+ y) = 0 we see that, up to a twist by a unitary
character, we only have to study the case of u(η′, n) with η′ = η′(1/2,−1/2). Unitarity of u(η′, n)
can be deduced from unitarity of the ū(η′, k) as in [BR04], using the fact that

ū(η′, 2n+ 1) = u(η′, n+ 1)× u(η′, n). (11.2)

For further reference, note that we also have

ū(η′, 2n) = ν
1
2u(η′, n)× ν−

1
2u(η′, n). (11.3)
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One can also observe (as was done by the referee) that u(η′, n) is the trivial representation, and
therefore is certainly unitarizable.

12. Vogan’s classification and U(0) in the archimedean case

As we have already said, hypothesis U(0) has been established in the case where A= R or C
by work of M. Baruch that filled the serious technical gap remaining in Kirillov’s treatment of
Bernstein approach [Kir62]. It is also possible to establish U(0) from Vogan’s classification, and
this will work for A= H as well. Of course, this might seem a rather convoluted and unnatural
approach to achieve the final goal of proving the classification of the unitary dual in Tadić’s
form, since a direct comparison between the classifications is possible. However, let us point out
the following issues.

– One of the main difficulties in Vogan’s paper is to prove some special cases of U(0) (another
difficult point is the exhaustion of the list of unitary almost spherical representations). The
rest of his paper uses only standard and general techniques of the representation of real
reductive groups, mainly cohomological induction.

– The argument which allows comparison between the two classifications (‘independence of
polarizations’) is also the one that leads to U(0) from Vogan’s classification.

– There is still some hope of finding an uniform proof of U(0) for all A.

In this section, we give a brief overview of Vogan’s paper [Vog86] and how it implies U(0).
Here, A= R, C or H.

Let us fix a unitary character

δ : GL(1, A)'A×→ C×.

It extends canonically to a family of unitary characters

δn : GL(n, A)→ C×

by composition with the determinant GL(n, A)→GL(1, A) (the non-commutative determinant
of Dieudonné if F = H).

The basic blocks of Vogan’s classification are the representations

νiβδn, β ∈ R

(in Tadić’s notation we have νiβδn = u(νiβδ, n), a unitary character of GL(n, A)) and the
representations

π(νiβδ, n; α) = ν−ανiβδn × νανiβδn, 0< α < 1
2

of GL(2n, F ). These are Stein’s complementary series.
Vogan first considers parabolically induced representations of the form

τ = τ1 × τ2 × · · · × τr, (12.1)

where each τj is either a unitary character

τj = νβjδnj , βj ∈ iR,

or a Stein’s complementary series

τj = π(νβjδ, nj ; α), βj ∈ iR, 0< α < 1
2 .
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The reason for imposing these conditions is the following. Recall our choices of maximal
compact subgroups K(n, A) of GL(n, A) for A= R, C and H:

O(n), U(n) and Sp(n),

respectively, and denote by µn the restriction of δn to K(n, A). We say that µn is a special
one-dimensional representation of K(n, A). If A= R, then since µn factorizes through the
determinant, there are two special representations of O(n), namely the trivial representation
and the sign of the determinant. If A= C, then special representations of U(n) are obtained by
composing the determinant (with values in U(1)) with a character of U(1) (given by an integer).
Finally, if A= H, then the only special representation of Sp(n) is the trivial one. A representation
of GL(n, A) is said to be almost spherical (of type µn) if it contains the special K-type µn. This
generalizes spherical representations. The characters δnνβ are exactly the ones whose restriction
to K(n, A) is µn. Thus the τi above are either almost spherical unitary characters of type µ (the
family µ= (µn)n is fixed) or almost spherical Stein’s complementary series of type µ.

Vogan showed the following [Vog86, Theorem 3.8].

Theorem 12.1. The representations τ = τ1 × τ2 × · · · × τr are:

(i) unitary;

(ii) irreducible.

Furthermore, every irreducible, almost spherical of type µ, unitary representation is obtained in
this way, and two irreducible, almost spherical of type µ, unitary representations

τ = τ1 × τ2 × · · · × τr
and

τ ′ = τ ′1 × τ ′2 × · · · × τ ′s
are equivalent if and only if the multisets {τ ′i} and {τj} are equal.

Note that this theorem contains a special case of U(0), i.e. point (ii). It can be proved
using [Bad08, Proposition 2.13] and results of Sahi [Sah95, Theorem 3A].

Furthermore, the classification of irreducible, almost spherical, unitary representations given
by this theorem coincides with Tadić’s classification. (One has to notice that an irreducible,
almost spherical, unitary representation is such with respect to a unique special K-type: special
K-types are minimal, and minimal K-types for GL(n, A) are unique and appear with multiplicity
one.)

Vogan’s classification of the unitary dual of GL(n, A) reduces matters to this particular
case of almost spherical representations by using cohomological induction functors that
preserve irreducibility and unitarity. More precisely, let us recall some material about Vogan’s
classification of the admissible dual of a real reductive group G by minimal K-types [Vog79].
To each irreducible representation of G is attached a finite number of minimal K-types. As
mentioned above, for G= GL(n, A) the minimal K-type is unique and appears with multiplicity
one. This gives a partition (which can be explicitly given in terms of the Langlands classification)
of the admissible dual of GL(n, A).

Vogan’s classification of the unitary dual deals with each term of this partition
separately. To each irreducible representation µ of the compact group K(n, A) is attached a
subgroup L of GL(n, A) with maximal compact subgroup KL :=K(n, A) ∩ L and an irreducible
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representation µL of KL. The subgroup L is a product of groups of the form GL(ni, Ai),

K(n, A) ∩ L'
∏
i

K(ni, Ai),

and µL is a tensor product of special representations of the K(ni, Ai).
As opposed to Tadić’s classification, which uses only parabolic induction functors, Vogan’s

classification of GL(n, R), for instance, uses classification of the almost spherical unitary dual of
groups GL(k, C). More precisely:

– for F = R, the subgroups L are products of GL(k, R) and GL(m, C);
– for F = C, the subgroups L are products of GL(k, C);
– for F = H, the subgroups L are products of GL(k,H) and GL(m, C).

A combination of parabolic and cohomological induction functors then defines a functor

IGL
from M(L) to M(GL(n, A)) with the following properties.

• IGL sends an irreducible (respectively, unitary) representation of L with minimal KL-type µL
to an irreducible (respectively, unitary) representation of GL(n, F ) with minimal K-type µ.

• IGL realizes a bijection between equivalence classes of irreducible unitary representations of
L with minimal KL-type µL and equivalence classes of irreducible unitary representations
of GL(n, F ) with minimal K-type µ.

From this point of view, to establish hypothesis U(0), the first thing to do is to check that
products of representations of the form (12.1) for different families of special K-types µ are
irreducible. For F = H, there is nothing to check since there is only one family of special K-types
µ= (µn)n. For F = R, there are two families of special K-types, the trivial and sign characters of
the determinant of O(n). The relevant result is then [Vog86, Lemma 16.1]. For F = R, we have
now obtained all irreducible unitary representations which are products of u(δ, k) and π(δ, k; α)
with δ being any unitary character of GL(1, R) = R×.

The A= C case is simpler and is dealt with as follows. Notice first that since square integrable
modulo center representations of GL(n, C) exist only for n= 1, the above assertion implies that
we get all representations of Tadić’s classification, and this establishes U(0). In that case, the
subgroups L from which we use cohomological induction are of the form

L= GL(n1, C)× · · · ×GL(nr, C).

The cohomological induction setting requires that l C = Lie(L)C be a Levi factor of a θ-stable
parabolic subalgebra qC of gC = Lie(GL(n, C))C. But L is also a Levi factor of a parabolic sub-
group of GL(n, C). Thus there are two ways of inducing from L to GL(n, C): parabolic and coho-
mological induction. An ‘independence of polarization’ result, [Vog86, Theorem 17.6] (see [KV95,
ch. 11] for a proof), asserts that the two coincide. This finishes the argument in the case of A= C.

We now proceed to discuss the cases of A= R and A= H. The representations from Tadić’s
classification which are still missing are the ones built from the u(δ, k) and π(δ, k; α) with
δ a square integrable modulo center representation of GL(2, R) or H×. As we have seen in
§ 11.2, a square integrable modulo center representation of GL(2, R) or H× is obtained by
cohomological induction from the subgroup L' C× of GL(2, R) or GL(1,H) = H×. This indicates
why cohomological induction will produce the missing representations. Let us explain this in more
detail.
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For F = R, we start with representations of the form

u(χa, ka), π(χb, kb; αb), u(χc, kc), π(χd, kd; αd), u(χe, ke), π(χf , kf ; αf )

where the u(χa, ka) are unitary characters of GL(ka, C), the π(χb, kb; αb) are Stein
complementary series of GL(2kb, C), the u(χc, kc) are unitary characters of GL(kc, R) of trivial
type µ, the π(χd, kd; αd) are Stein complementary series of GL(2kd, R) of trivial type µ, the
u(χe, ke) are unitary characters of GL(kc, R) of type µ= sgn, and the π(χf , kf ; αf ) are Stein
complementary series of GL(2kf , R) of type µ= sgn.

The tensor product(⊗
a

u(χa, ka)
)
⊗
(⊗

b

π(χb, kb; αb)
)
⊗
(⊗

c

u(χc, kc)
)

⊗
(⊗

d

π(χd, kd; αd)
)
⊗
(⊗

e

u(χe, ke)
)
⊗
(⊗

f

π(χf , kf ; αf )
)

is a representation of the Levi subgroup∏
a

GL(ka, C)
∏
b

GL(2kb, C)
∏
c

GL(kc, R)
∏
d

GL(2kd, R)
∏
e

GL(ke, R)
∏
f

GL(2kf , R)

of GL(n, R), where n=
∑

a 2ka +
∑

b 4kb +
∑

c kc +
∑

d 2kd +
∑

e ke +
∑

k 2kf .
As seen previously, we first form almost spherical representations of a given type by parabolic

induction. Thus we induce (⊗
c

u(χc, kc)
)
⊗
(⊗

d

π(χd, kd; αd)
)

from ∏
c

GL(kc, R)
∏
d

GL(2kd, R)

to GL(q0, R) where q0 =
∑

c kc +
∑

d 2kd, obtaining an irreducible unitary spherical representa-
tion π0; similarly, we induce(⊗

e

u(χe, ke)
)
⊗
(⊗

f

π(χf , kf ; αf )
)

from ∏
e

GL(ke, R)
∏
d

GL(2kf , R)

to GL(q1, R) where q1 =
∑

e ke +
∑

f 2kf , obtaining an irreducible unitary almost spherical
representation of type µ= sgn.

Then we mix spherical representations and almost spherical representations of type µ= sgn,
parabolically inducing π0 × π1 from GL(q0, R)×GL(q1, R) to GL(q0 + q1, R). We thus get an
irreducible unitary representation π of GL(q0 + q1, R).

The group
∏
a GL(ka, C)

∏
b GL(2kb, C)×GL(q0 + q1, R) is denoted by Lθ in [Vog86].

Applying the cohomological induction functor IGLθ to the representation(⊗
a

u(χa, ka)
)
⊗
(⊗

b

π(χb, kb; αb)
)
⊗ π

of Lθ, we get an irreducible unitary representation ρ of GL(n, R).
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Independence of polarization theorems (see [Vog86, Theorems 17.6, 17.7 and 17.9] and [KV95,
ch. 11]) allow us to reverse the order of the two types of induction. We could in fact start with
cohomological induction, inducing each

u(χa, ka)

from GL(ka, C) to GL(2ka, R). In the non-degenerate case, following the terminology of [Vog86,
Definition 17.3], we get representations u(δa, 2ka) where δa is a square integrable modulo
center irreducible representation of GL(2, R). In the degenerate case, δa is a limit of discrete
series (9.4). These are almost spherical representations of the kind we had before (see [Vog86,
Proposition 17.10]).

In the same way, we induce all

π(χb, kb; αb)

from GL(2kb, C) to GL(4kb, R). In the non-degenerate case, we get representations π(δb, 2kb; αb),
where δb is as above. In the degenerate case, we still get almost spherical representations.

The parabolically induced representation from∏
a

GL(2ka, R)
∏
b

GL(4kb, R)×GL(q0 + q1, R)

to GL(n, R) of (⊗
a

u(δa, ka)
)
⊗
(⊗

b

π(δb, kb; αb)
)
⊗ π

is ρ (and thus irreducible); see [Vog86, Theorem 17.6].

This finishes the comparison of the two classifications. The A= H case is entirely similar.

We deduce hypothesis U(0) by using independence of polarization again. We want to show
that ρ= ρ1 × ρ2 is irreducible if ρ1 and ρ2 are irreducible and unitary. We write ρ1 and ρ2 as above
using, first, cohomological induction and, then, parabolic induction. Using parabolic induction in
stages, we see that ρ1 × ρ2 can also be written in this form. Using independence of polarization
again, we write ρ as a parabolically and then cohomologically induced representation; we see
that, as such, this is a representation appearing in Vogan’s classification, which must therefore
be irreducible.

13. Jacquet–Langlands correspondence in the archimedean case

The ideas in this section are taken from [AH97], which deals with a similar problem (Kazhdan–
Patterson lifting).

13.1 Jacquet–Langlands correspondence and coherent families

Since we need to consider the A= R and A= H cases simultaneously, we shall add superscripts
to the notation when needed, as in § 4. We have already noted that the Jacquet–Langlands
correspondence between essentially square integrable modulo center irreducible representations
of GL(2, R) and irreducible representations of H× is given at the level of Grothendieck groups
by

LJ(η(x, y)) =−η′(x, y).
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Representations in DR
1 are sent to 0. We extend this linearly to an algebra morphism

RR→RH.

Lemma 13.1. Jacquet–Langlands correspondence preserves supports.

Proof. Let a= (η(x1, y1), . . . , η(xr, yr)) ∈M(D). We then have

LJ(λ(a)) = (−1)rλ(a′)

where a= (η′(x1, y1), . . . , η′(xr, yr)). The support of a is (x1, y1, . . . , xr, yr), and this is also the
support of a′. 2

We now recall the definition of a coherent family of Harish-Chandra modules.

Definition 13.2. Let G be a real reductive group and H a Cartan subgroup, and let gC and hC
be the respective complexifications of their Lie algebras. Let Λ be the lattice of weights of H in
finite-dimensional representations of G. A coherent family of (virtual) Harish-Chandra modules
based at λ ∈ h∗C is a family

{π(λ+ µ) | µ ∈ Λ}
(note that λ+ µ is merely a formal expression, since the two terms are not actually in the same
group) in the Grothendieck group R(G) such that the following hold.

– The infinitesimal character of π(λ+ µ) is given by λ+ dµ.
– For any finite-dimensional representation F of G we have, with ∆(F ) denoting the set of

weights of H in F , the following identity in R(G):

π(λ+ µ)⊗ F =
∑

γ∈∆(F )

π(λ+ µ+ γ).

Jacquet–Langlands correspondence preserves coherent families.

Lemma 13.3. Let us identify two Cartan subgroups H and H ′ of GL(2n, R) and GL(n,H),
respectively, isomorphic to (C×)n. Let π(λ+ µ) be a coherent family of Harish-Chandra modules
for GL(2n, R) based at λ ∈ h∗C. Then LJ(π(λ+ µ)) is a coherent family for GL(n,H).

Proof. The first property of coherent families is satisfied by LJ(π(λ+ µ)) because of the previous
lemma. For the second property, let us remark first that since GL(2n, R) and GL(n,H) are two
real forms of GL(2n, C), a finite-dimensional representation F of one of these two groups is in
fact the restriction of a finite-dimensional representation of GL(2n, C). We get that, for any
regular element g′ of GL(n,H) corresponding to an element g in GL(2n, R),∑

γ∈∆(F )

ΘLJ(π(λ+µ+γ))(g
′) =

∑
γ∈∆(F )

Θπ(λ+µ+γ)(g) = Θπ(λ+µ)⊗F (g)

= Θπ(λ+µ)(g) ΘF (g) = ΘLJ(π(λ+µ))(g
′)ΘF (g′) = ΘLJ(π(λ+µ))⊗F (g′)

and so ∑
γ∈∆(F )

LJ(π(λ+ µ+ γ)) = LJ(π(λ+ µ))⊗ F. 2

13.2 Jacquet–Langlands correspondence and cohomological induction
The cohomological induction functor Rq C introduced in § 11.2 preserves irreducibility and
unitarity when the infinitesimal character of the induced module satisfies certain positivity
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properties with respect to qC (‘weakly good range’). Furthermore, under the same conditions,
other derived functors Γi(pro(• ⊗ τ̃)), i 6= S, vanish. This is not true in general, and is why we
need to consider the Euler–Poincaré characteristic

R̂q C :=
∑
i

(−1)iΓi(pro(• ⊗ τ̃)).

This is no longer a functor betweenM(L) andM(G) but, rather, is simply a morphism between
the Grothendieck groups R(L) and R(G).

Lemma 13.4. The morphism R̂q C :R(L)→R(G) preserves coherent families.

Proof. The functors Γi(pro(• ⊗ τ̃)) are normalized in order to preserve infinitesimal character,
thus the first property of coherent family is preserved.

Let π(λ+ µ) be a coherent family of Harish-Chandra modules for (l, L ∩K). We want to
show that for any finite-dimensional representation F of G,

R̂q C(π(λ+ µ))⊗ F =
∑

γ∈∆(F )

R̂q C(π(λ+ µ+ γ)). (13.1)

However, ∑
γ∈∆(F )

R̂q C(π(λ+ µ+ γ)) = R̂q C

( ∑
γ∈∆(F )

π(λ+ µ+ γ)
)

= R̂q C(π(λ+ µ)⊗ F ).

Hence it is enough to show that for any (l, L ∩K)-module X,

R̂q C(X)⊗ F = R̂q C(X ⊗ F ). (13.2)

Let U be any (g, K)-module. Using adjunction properties of the functors involved, we
compute:

Homg ,K(U, Γ(pro((X ⊗ F )⊗ τ̃)))'Homl ,L∩K(U, X ⊗ F ⊗ τ̃)
'Homl ,L∩K(U, X ⊗ (F ∗)∗ ⊗ τ̃)'Homl ,L∩K(U,HomC(F ∗, X ⊗ τ̃))
'Homl ,L∩K(U ⊗ F ∗, X ⊗ τ̃)'Homg ,K(U ⊗ F ∗, Γ(pro(X ⊗ τ̃)))
'Homg ,K(U, Γ(pro(X ⊗ τ̃))⊗ F ).

From this we deduce that Γ(pro(X ⊗ τ̃ ⊗ F ))' Γ(pro(X ⊗ τ̃))⊗ F .
The same is true with Γi replacing Γ in the computation above. This can be seen by using

general arguments and the exactness of the functor • ⊗ F . Thus, for all i> 0, Γi(pro(X ⊗⊗τ̃ ⊗
F ))' Γi(pro(X ⊗ τ̃))⊗ F , which implies (13.2). 2

Let us denote by R̂R
q C

and R̂H
q ′C

the Euler–Poincaré morphisms of cohomological induction
between GL(1, C) and, respectively, GL(2, R) and GL(1,H), where qC and q′C are as given in
§§ 11.2 and 11.3.

Lemma 13.5. With the above notation, for x, y ∈ C with x− y ∈ Z we have

LJ(R̂R
q C

(γ(x, y))) =−R̂H
q ′C

(γ(x, y)).

Proof. When x− y > 0, we have

R̂R
q C

(γ(x, y)) =−RR
q C

(γ(x, y)) =−η(x, y)
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and
R̂H

q ′C
(γ(x, y)) =−RH

q ′C
(γ(x, y)) =−η′(x, y).

The formula is thus true in this case. It is also true for the case where x− y < 0, because
LJ(R̂R

q C
(γ(x− n, y + n))) and R̂H

q ′C
(γ(x− n, y + n)) are two coherent families which coincide for

n> 0 and are therefore equal. 2

Theorem 13.6. Let RR
q C

and RH
q ′C

be the cohomological induction functors from GL(n, C) to

GL(2n, R) and GL(n,H), respectively. Then

LJ ◦ R̂R
q C

= (−1)nR̂H
q ′C
.

Proof. It is enough to show that the formula holds on the basis λ(a), a ∈M(D), of RC. Let
a= (γ(x1, y1), . . . , γ(xr, yr)) ∈M(D). We compute

LJ ◦ R̂R
q C

(λ(a)) = LJ ◦ R̂R
q C

(γ(x1, y1)× · · · × γ(xr, yr))

= LJ(iGL(2r,R)
GL(2,R)r ◦ R̂

R
q C

(γ(x1, y1)⊗ · · · ⊗ γ(xr, yr)))

= i
GL(r,H)
GL(1,H)r ◦ LJ(R̂R

q C
(γ(x1, y1)⊗ · · · ⊗ γ(xr, yr)))

= (−1)riGL(r,H)
GL(1,H)r ◦ R̂

H
q ′C

(γ(x1, y1)⊗ · · · ⊗ γ(xr, yr))

= (−1)rR̂H
q ′C

(γ(x1, y1)× · · · × γ(xr, yr))

= (−1)rR̂H
q ′C

(λ(a)).

We have used the independence of polarization theorem from [KV95, ch. 11] to replace a part of
the cohomological induction by parabolic induction; we have also used the fact that LJ commutes
with parabolic induction. 2

Corollary 13.7. Recall the representations ū(η′, n) introduced in § 11.3. We have

LJ(u(η(x, y), n) = (−1)n ū(η′(x, y), n),

for x, y ∈ C such that x− y ∈ N.

Recall that when x− y 6= 1, ū(η′(x, y), n) = u(η′(x, y), n) (see § 11.3).

Proof. This follows from the previous theorem and the formulas RR
q C

(u(γ(x, y))) = u(η(x, y), n)
and RH

q ′C
(u(γ(x, y))) = ū(η′(x, y), n) obtained in §§ 11.2 and 11.3. 2

In order to compute the transfer to GL(n,H) of any irreducible unitary representation of
GL(2n, R), we need to compute the transfer of the u(δ, k) when δ ∈DR

1 . But in this case, if
δ = δ(α, ε), then

u(δ(α, ε), 2k) = δ(α, ε) ◦ det,
and we know from [DKV84] that the transfer of this character is the character

δ(α, ε) ◦ RN

(where RN is the reduced norm), which is

u(η′(α+ 1
2 , α−

1
2), k).

From this, we get the next theorem.
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Theorem 13.8. Let u be an irreducible unitary representation of GL(2n, R). Then LJ(u) is
either 0 or, up to a sign, an irreducible unitary representation of GL(n,H). For representations
u(δ, k), we get that:

– if δ = δ(α, ε) ∈DR
1 , then

LJ(u(δ(α, ε), 2k)) = u(η′(α+ 1
2 , α−

1
2), k);

– if δ = η(x, y) ∈DR
2 , then

LJ(u(η(x, y)), k) = (−1)kū(η′(x, y), k).

To make it simple, a character is sent by LJ to the corresponding character, while if δ ∈DF
2

and δ′ = C(δ) =−LJ(δ), then LJ(u(δ, k)) = (−1)kū(δ′, k).

In the first case, note that we are dealing with a slightly different situation from non-
archimedean fields, since the reduced norm of H is not surjective but has image in R∗+. In
particular, if s is the character sign of the determinant on GL2k(R), then LJ(s) is the trivial
character of GLk(H). In the non-archimedean case, it is easy to check that LJ is injective on the
set of representations u(δ, k).

The above theorem gives a correspondence between irreducible unitary representations of
GL(2n, R) and those of GL(n,H), by forgetting the signs. As in the introduction, we denote this
correspondence by |LJ|. Using (11.2) and (11.3), we can easily reformulate the result as that
given in the introduction.

14. Character formulas and ends of complementary series

From Tadić’s classification of the unitary dual and the character formula for induced
representations, the character of any irreducible unitary representation of GL(n, A) can be
computed from the characters of the u(δ, n), with δ ∈D and n ∈ N. It is remarkable that the
characters of the u(δ, n) can be computed or, more precisely, expressed in terms of characters of
square integrable modulo center representations. We also give composition series for the ends
of complementary series. This information is important for the topology of the unitary dual
(see [Tad87]).

14.1 A= C
Let γ = γ(x, y) be a character of C×, where x, y ∈ C with x− y = r ∈ Z. The representation
u(γ(x, y), n) is the character

det ◦ γ
of GL(n, C). There is a formula, due to Zuckerman, for the trivial character of any real reductive
group; it is obtained from a finite-length resolution of the trivial representation by standard
modules in the category M(G).

For GL(n, C) this formula is

1GL(n,C) = u(γ(0, 0), n) =
∑
w∈S n

(−1)l(w)
n∏
i=1

γ

(
n− 1

2
− i+ 1,

n− 1
2
− w(i) + 1

)
,

where 1GL(n,C) denotes the trivial representation.
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From this we obtain, upon tensoring with γ(x, y),

u(γ(x, y), n) =
∑
w∈S n

(−1)l(w)
n∏
i=1

γ

(
x+

n− 1
2
− i+ 1, y +

n− 1
2
− w(i) + 1

)
. (14.1)

Set

γi,j = γ

(
x+

n− 1
2
− i+ 1, y +

n− 1
2
− j + 1

)
∈R.

The formula above then becomes

u(γ(x, y), n) = det((γi,j)16i,j6n). (14.2)

Using the Lewis Carroll identity [CR08], we deduce easily from this a formula for composition
series of ends of complementary series. Such a formula was obtained previously by Tadić [Tad95]
using partial results of Sahi [Sah95], but the proof was complicated. For an easy formula, set

γ(x, y) = δ(β, r)

with r = x− y and 2β = x+ y.

Proposition 14.1. With the above notation, for n> 2 we have

ν−
1
2u(δ(β, r), n)× ν

1
2u(δ(β, r), n) = u(δ(β, r), n+ 1)× u(δ(β, r), n− 1)

+ u(δ(β, r + 1), n)× u(δ(β, r − 1), n). (14.3)

14.2 A= R
Let η(x, y) be an essentially square integrable modulo center representation of GL(2, R), with
x, y ∈ C such that x− y = r ∈ N×. Since

u(η(x, y), n) =−R̂R
q C

(u(γ(x, y))),

we get from (14.1) that

u(η(x, y), n) =−
∑
w∈S n

(−1)l(w)
n∏
i=1

R̂R
q C

(
γ

(
x+

n− 1
2
− i+ 1, y +

n− 1
2
− w(i) + 1

))
.

We observed from the proof of Lemma 13.5 that −R̂R
q C

(γ(x− n, y + n)) is a coherent
family of representations of GL(2, R) such that −R̂R

q C
(γ(x− n, y + n)) = η(x− n, y + n) when

x− n > y + n. Set η̃(x− n, y + n) =−R̂R
q C

(γ(x− n, y + n)). Then we get

u(η(x, y), n) = (−1)n+1
∑
w∈S n

(−1)l(w)
n∏
i=1

η̃

(
x+

n− 1
2
− i+ 1, y +

n− 1
2
− w(i) + 1

)
.

Set

η̃i,j = η̃

(
x+

n− 1
2
− i+ 1, y +

n− 1
2
− j + 1

)
.

The formula above becomes

u(η(x, y), n) = (−1)n+1 det((η̃i,j)16i,j6n). (14.4)

Again by using the Lewis Carroll identity [CR08], we deduce easily a formula for composition
series of ends of complementary series.
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Proposition 14.2. With the above notation, for n> 2 and x− y > 1 we have

ν−
1
2u(η(x, y), n)× ν

1
2u(η(x, y), n)

= u(η(x, y), n+ 1)× u(η(x, y), n− 1)
+ u(η(x+ 1

2 , y −
1
2), n)× u(η(x− 1

2 , y + 1
2), n). (14.5)

If x= y + 1, recalling the convention that

η(x− 1
2 , x−

1
2) = δ(x− 1

2 , 0)× δ(x− 1
2 , 1),

we get

ν−
1
2u(η(x, x− 1), n)× ν

1
2u(η(x, x− 1), n)

= u(δ(x, x− 1), n+ 1)× u(η(x, x− 1), n− 1)
+ u(η(x+ 1

2 , x−
3
2), n)× [u(δ(x− 1

2 , 0), n)× u(δ(x− 1
2 , 1), n)]. (14.6)

Remark 14.3. We cannot deduce by our method the composition series of the ends of comple-
mentary series for u(δ, n) when δ ∈D1. There is still a formula for the character of u(δ, n), since
u(δ, n) = δ ◦ det is a one-dimensional representation (Zuckerman); but there is no interpretation
for the right-hand side of this formula as a determinant, so we cannot apply the Lewis Carroll
identity.

14.3 A= H
The discussion is similar to that in the real case for u(η′(x, y), n) when x− y > 2.

Proposition 14.4. With the above notation, for n> 2 and x− y > 2 we have

ν−
1
2u(η′(x, y), n)× ν

1
2u(η′(x, y), n)

= u(η′(x, y), n+ 1)× u(η′(x, y), n− 1)
+ u(η′(x+ 1

2 , y −
1
2), n)× u(η′(x− 1

2 , y + 1
2), n). (14.7)

If y = x− 1, we get the same kind of character formulas but for the ū(η′(x, y), n) instead:

ū(η′(x, x− 1), n) = (−1)n+1 det((η̃′i,j)16i,j6n), (14.8)

where η̃′i,j = η̃′(x+ (n− 1)/2− i+ 1, y + (n− 1)/2− j + 1) and η̃′ denotes the coherent family
coinciding with η when x− y is positive, as in the real case.

Again from the Lewis Carroll identity, we deduce the following (with 2n in place of n):

ν−
1
2 ū(η′(x, x− 1), 2n)× ν

1
2 ū(η′(x, x− 1), 2n)

= ū(η′(x, x− 1), 2n+ 1)× ū(η(x, x− 1), 2n− 1)
+ ū(η′(x+ 1

2 , x−
1
2), 2n)× ū(η(x− 1

2 , x−
3
2), 2n). (14.9)

The representations ū(η′(·, ·), ·) in this expression can be expressed as products of u(η′(·, ·), ·)
explicitly in the following way:

ū(η′(x, x− 1), 2n) = u(η′(x+ 1
2 , x−

1
2), n)× u(η′(x− 1

2 , x−
3
2), n),

ū(η′(x, x− 1), 2n+ 1) = u(η′(x, x− 1), n+ 1)× u(η′(x, x− 1), n).

Substituting these into (14.9) and using the fact that the ring R is a domain, we get the following
result.
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Proposition 14.5.

ν−1u(η′(x, x− 1), n)× νu(η′(x, x− 1), n)
= u(η′(x, x− 1), n+ 1)× u(η′(x, x− 1), n− 1)

+ u(η′(x+ 1
2 , x−

1
2), n)× u(η′(x− 1

2 , x−
3
2), n). (14.10)

15. Compatibility and further comments

Let F be a local field (archimedean or non-archimedean of any characteristic), and let A be a
central division algebra of dimension d2 over F (if F is archimedean, then d ∈ {1, 2}). If g ∈GFnd
is a regular semisimple element, we say that g transfers if there exists an element g′ of GAn which
corresponds to g (see § 4). Then g transfers if and only if its characteristic polynomial decomposes
into a product of irreducible polynomials of degrees divisible by d. We say that π ∈R(GFnd) is
d-compatible if LJ(π) 6= 0. In other words, π is d-compatible if and only if its character does not
vanish identically on the set of elements of GFnd which transfer. This justifies the dependence of
the definition on d only (and not on D). We then have the following results.

Proposition 15.1. Let πi ∈ IrrFni , 1 6 i6 k, with
∑

i ni = n. Then π1 × π2 × · · · × πk is
d-compatible if and only if for all 1 6 i6 k, d divides ni and πi is d-compatible.

Proof. If an element g ∈GFn is conjugated with an element of a Levi subgroup of GFn , say
(g1, g2, . . . , gk) ∈G(n1,n2,...,nk) with gi ∈GFni , then the characteristic polynomial of g is the
product of the characteristic polynomials of the gi. It follows that if g is semisimple regular,
it transfers if and only if d|ni for all i and each gi transfers.

It is a general fact that for a fully induced representation of a group G from a Levi
subgroup M , the character is zero on regular semisimple elements which are not conjugated
in G to some element in M . Moreover, one has a precise formula for the character of the fully
induced representation in terms of the character of the inducing representation (see [Har70]
and [Clo84, Proposition 3] for non-archimedean F and [Kna01, § 13] for archimedean F ). The
proposition follows. 2

We now define an order � that is finer than the Bruhat order < on IrrAn . If π =
Lg(δ1, δ2, . . . , δk) and π′ = Lg(δ′1, δ

′
2, . . . , δ

′
k′) are in IrrAn , we set π� π′ if

Lg(C−1(δ1),C−1(δ2), . . . ,C−1(δk))< Lg(C−1(δ′1),C−1(δ′2), . . . ,C−1(δ′k′))

in IrrFnd.

Proposition 15.2. Let δi ∈DF
ni for 1 6 i6 k. Assume that for all 1 6 i6 k we have d|ni, and

set δ′i = C(δi) ∈DA
ni/d

. Then Lg(δ1, δ2, . . . , δk) is compatible and one has

LJ(Lg(δ1, δ2, . . . , δk)) = (−1)nd−nLg(δ′1, δ
′
2, . . . , δ

′
k) +

∑
j∈J

mjπ
′
j ,

where J is empty or finite, mj ∈ Z∗, π′j ∈ IrrA∑ ni/d
and π′j � Lg(δ′1, δ

′
2, . . . , δ

′
k) for all j ∈ J .

Proof. Apply Proposition 6.1 and induction on the number of representations smaller than
Lg(δ1, δ2, . . . , δk). See [Bad07, Proposition 3.10]. 2
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Proposition 15.3. If δ ∈DF
n , set deg(δ) = n and let l(δ) be the length of Supp(δ) (note that

l(δ) divides deg(δ)). Then the following hold.

(a) u(δ, k) is d-compatible if and only if either d|deg(δ) or d|(k deg(δ)/l(δ)).
(b) There exists kδ ∈ N∗ such that u(δ, k) is d-compatible if and only if kδ|k; moreover, kδ|d.

Proof. The proof of (a) is in [Bad08, § 3.5] for the non-archimedean case. In the archimedean
case it follows from Theorem 13.8.

Assertion (b) follows easily from (a). For the archimedean (non-trivial, i.e. A= H) case, d= 2
and the transfer theorem, Theorem 13.8, shows that:

– if deg(δ) = 2, then u(δ, k) is 2-compatible for all k (hence kδ = 1);
– if deg(δ) = 1, then u(δ, k) is 2-compatible if (and only if, because of the dimension of GFk )
k is even (hence kδ = 2). 2

Let γ be an irreducible generic unitary representation of GFn . As γ is generic, it is fully
induced from an essentially square integrable representation (see [Zel80] for non-archimedean
fields and § 8 for archimedean fields). Then as γ is unitary, thanks to the classification of
the unitary spectrum (see [Tad86, Vog86] and § 8 of the present paper), γ is an irreducible
product σ1 × σ2 × · · · × σp × π1 × π2 × · · · × πl, where for 1 6 i6 p, σi ∈Du,F , and for 1 6 j 6 l,
πj = π(δj , 1; αj) for some δj ∈Du,F and some αi ∈ ]0, 1/2[.

Using the Langlands classification, it is easy to see that the representation

ν(k−1)/2γ × ν(k−1)/2−1γ × · · · × ν−(k−1)/2γ

has a unique quotient u(γ, k), and one has

u(γ, k) = u(σ1, k)× u(σ2, k)× · · · × u(σp, k)× π(δ1, k; α1)× π(δ2, k; α2)× · · · × π(δl, k; αl)

(see, for instance, [Bad07, § 4.1]). The local components of cuspidal automorphic representations
of GLn over adeles of global fields are unitary generic representations [Sha74]. According to
the classification of the residual spectrum [MW89], it follows that local component of residual
automorphic representations of the linear group are of type u(γ, k).

Proposition 15.4. Let γ be a unitary generic representation of GFn for some n ∈ N×. There
exists kγ such that u(γ, k) is d-compatible if and only if kγ |k. Moreover, kγ |d.

Proof. The (easy) proof given in [Bad08, § 3.5] for non-archimedean fields works also for
archimedean fields. If

u(γ, k) = u(σ1, k)× u(σ2, k)× · · · × u(σp, k)× π(δ1, k; α1)× π(δ2, k; α2)× · · · × π(δl, k; αl),

then u(γ, k) is d-compatible if and only if all the u(σi, k) and u(δj , k) are compatible
(Proposition 15.1). Then Proposition 15.3 implies Proposition 15.4. If F = R, then kγ = 1 if
and only if all the σi and δj are in D2. If not, then kγ = 2. 2

16. Notation for the global case

Let F be a global field of characteristic zero and let D be a central division algebra over F of
dimension d2. Let n ∈ N∗. Set A=Mn(D). For each place v of F , let Fv be the completion of F
at v and set Av =A⊗ Fv. For every place v of F , Av is isomorphic to Mrv(Dv) for some positive
integer rv and some central division algebra Dv of dimension d2

v over Fv such that rvdv = nd.
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We fix once and for all an isomorphism Av 'Mrv(Dv) and identify these two algebras. We say
that Mn(D) is split at a place v if dv = 1. The set V of places where Mn(D) is not split is finite.
For each v, dv divides d and, moreover, d is the smallest common multiple of the dv over all the
places v.

Let G′(F ) be the group A× = GLn(D). For every finite place v of F , set G′v =A×v = GLrv(Dv).
For every finite place v of F , set Kv = GLrv(Ov) where Ov is the ring of integers of Dv. Let A
be the ring of adeles of F . We define the group G′(A) of adeles of G′(F ) to be the restricted
product of the G′v over all of the v, with respect to the family of open compact subgroups Kv

with v finite.

Let G′∞ be the direct product of G′v over the set of infinite places of F and let G′f be the
restricted product of G′v over the finite places, with respect to the open compact subgroups Kv.
The group G′(A) decomposes into the direct product

G′(A) =G′∞ ×G′f .

Fix maximal compact subgroups Kv at archimedean places v as before: Kv = O(n),U(n) or
Sp(n) according to whether G′v is GLn(R), GLn(C) or GLn(H). Let K∞ (respectively, Kf ) be the
compact subgroup of G∞ (respectively, of G′f ) which is the direct product of Kv over the infinite
places (respectively, finite places) v. Let K be K∞ ×Kf as a (compact) subgroup of G′(A). Let
g∞ be the Lie algebra of G∞.

An admissible G′(A)-module is a linear space V which is both a (g∞, K∞)-module and a
smooth G′f -module such that the actions of (g∞, K∞) and G′f commute and, for every irreducible
equivalence class of continuous representations π of K, the π-isotypic component of V is of finite
dimension. It is irreducible if it has no proper G′(A)-submodule and unitary if it admits a
hermitian product which is invariant under the actions of both (g∞, K∞) and G′f .

If V is an irreducible admissible G′(A)-module, then V is isomorphic to a tensor product
V∞ ⊗ Vf , where V∞ is an irreducible (g∞, K∞)-module and Vf is an irreducible smooth
representation of Vf .

If (π, H) is a unitary irreducible admissible Gf -module, then π decomposes into a restricted
tensor product

⊗
v finite πv where πv is a unitary irreducible representation of G′v (see [GGP90,

JL70, Lan80] or [Fla79]). For almost all v, πv has a fixed vector under the maximal compact
subgroup Kv. Such a representation is said to be spherical. The πv are determined by π.
Such a πv is called the local component of π at the place v. The set of local components πv
determines π.

Let Z(F ) be the center of G′(F ) and, for each place v, let Zv be the center of G′v. Then
we identify the center Z(A) of G′(A) with the restricted product of the Zv, with respect to the
open compact subgroups Zv ∩Kv at finite places. For any finite v, we fix a Haar measure dgv
on G′v such that the volume of Kv is one and a Haar measure dzv on Zv such that the volume
of Zv ∩Kv is one. The set of measures {dgv}v finite induces a well-defined Haar measure on the
locally compact group G′f , and the set {dzv}v finite induces a well-defined measure on its center
(see, for instance, [RV99], where measures on restricted products are explained).

For the archimedean groups we choose Duflo and Vergne’s normalization, which is defined
as follows. Let G be a reductive group (complex or real), and pick a G-invariant, symmetric,
non-degenerate bilinear form κ on the Lie algebra g. Then g will be endowed with the Lebesgue
measure dX such that the volume of a parallelotope supported by a basis {X1, . . . , Xn} of g is
equal to |det(κ(Xi, Xj))|1/2, and G will be endowed with the Haar measure tangent to dX. If G′
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is a closed subgroup of G such that κ is non-degenerate on its Lie algebra g′, we endow G′ with
the Haar measure determined by κ as above. This gives measures on G′∞ and its center.

We now fix the measure dg on G′(A) =G′∞ ×G′f (respectively, dz on Z(A)) to be the product
of measures chosen previously for the infinite and finite parts. We fix a measure on Z(A)\G′(A),
i.e. the quotient measure dz\dg.

We view G′(F ) as a subgroup of G′(A) via the diagonal embedding. As G′(F ) ∩ Z(A)\G′(F )
is a discrete subgroup of Z(A)\G′(A), dz\dg defines a measure on the quotient space
Z(A)G′(F )\G′(A). The measure of the space Z(A)G′(F )\G′(A) is finite.

Fix a unitary continuous character ω of Z(A) that is trivial on Z(F ).
Let L2(Z(A)G′(F )\G′(A); ω) be the space of classes of functions f defined on G′(A) with

values in C such that:

(i) f is left invariant under G′(F );
(ii) f satisfies f(zg) = ω(z)f(g) for all z ∈ Z(A) and almost all g ∈G′(A);
(iii) |f |2 is integrable over Z(A)G′(F )\G′(A).

Let R′ω be the representation of G′(A) in L2(Z(A)G′(F )\G′(A); ω) by right translations.
As explained in [BJ79], each irreducible subspace of L2(Z(A)G′(F )\G′(A); ω) gives rise to a
unique unitary irreducible admissible G′(A)-module. We call such a G′(A)-module a discrete
series of G′(A).

Every discrete series of G′(A) with central character ω appears in R′ω with a finite
multiplicity [GGP90].

Let R′ω,disc be the subrepresentation of R′ω generated by the discrete series. If π is a discrete
series, we call the multiplicity with which π appears in R′ω,disc the multiplicity of π in the
discrete spectrum.

Notation. Fix n and D as before. The same constructions work, starting with A= GLnd(F )
instead of A= GLn(D). We denote by G(A) the group of invertible elements of A and modify
all the notation accordingly.

17. Further insight into some local results

We would like to point out that some of the archimedean results presented in this paper can
be proved by global methods and local tricks as in the non-archimedean case [Bad07, Bad08],
avoiding any reference to cohomological induction. These are hypothesis U(1) for GL(n,H), the
fact that products of representations in UH are irreducible, and the Jacquet–Langlands transfer
of unitary representations (using U(0) for GL(n, R), see [Bar03], but not for GL(n,H)). Here we
sketch these proofs.

17.1 Hypothesis U(1) and the transfer of u(δ, k)
Let LJ :RR

2n→RH
n be the morphism between Grothendieck groups extending the classical

Jacquet–Langlands correspondence for square integrable representations (§ 4). We give here an
alternative proof of the following result.

Proposition 17.1.

(a) If χ ∈D1, then LJ(u(χ, 2n)) = χ′n.

(b) If δ ∈D2 and δ′ = C(δ), then LJ(u(δ, n)) = (−1)nū(δ′, n).
(c) Hypothesis U(1), i.e. the statement that the u(δ′, n) are unitary, holds for GL(n,H).
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Assertion (a) is obvious since u(χ, 2n) = χ2n and the equality of characters can be checked
directly. To prove (c), recall that we have

LJ(u(δ, n)) = (−1)n
(
ū(δ′, n) +

k∑
i=1

aiui

)
, (17.1)

where the ui are irreducible non-equivalent representations of GL(n,H) that are non-equivalent
to ū(δ′, n) and the ai are non-zero integers (Proposition 15.2).

We now claim that all the irreducible representations on the right-hand side of the equality
are unitary and that the ai are all positive. One may proceed as in [Bad07]: choose a global field F
and a division algebra D over F such that if G′(A) is the adele group of D×, then G′v = GLn(H)
for some place v. As δ ∈D2, there exists a cuspidal representation ρ of G(A) = GL2n(A) such
that ρv = δ. According to the classification of the residual spectrum for G(A) (see [MW89]),
there exists a residual representation π of G(A) such that πv = u(δ, n). Comparing the trace
formula from [AC89] (or the simple trace formula from [Art88]) for G(A) and for G′(A), one
obtains, using standard simplifications and multiplicity one on the G(A) side, a local formula
LJ(u(δ, n)) =±

∑k
j=1bjwi where the bj are multiplicities of representations, hence positive, and

the wj are local components of global discrete series, hence unitary. By linear independence of
characters on GL(n,H), this formula is the same as (17.1), which implies, in particular, that
ū(δ′, n) is unitary (see [Bad07, Corollary 4.8(a)]). This gives the assertion U(1), because when δ′

is not a character one has ū(δ′, n) = u(δ′, n), whereas when δ′ is a (unitary) character we know
that u(δ′, k) is the unitary character δ′ ◦ RN. So (c) is proved.

We now prove (b). We want to show that on the right-hand side of (17.1) there is just
one term, ū(δ′, n). If π is an irreducible unitary representation of GL(n, R), we say that π
is semirigid if it is a product of representations u(δ, k). We already showed in the previous
paragraph that all these representations u(δ, k) correspond via LJ to zero or a sum of
unitary representations. As LJ commutes with products and a product of irreducible unitary
representations is a sum of irreducible unitary representations, it follows that any sum of
semirigid irreducible unitary representations of some GL(2n, R) correspond to either zero or
a sum of unitary representations of GL(n,H). The relation (17.1) now shows that for all
α ∈ R, LJ(π(δ, n; α)) = ν ′α(

∑k
i=0 aiui)× ν ′−α(

∑k
i=0 aiui), where a0 = 1 and u0 = ū(δ′, n). When

α= 1/2, on the left-hand side of the equality we obtain a sum of semirigid unitary representations
(see Proposition 14.5 for the precise formula), so on the right-hand side we should have a sum
of unitary representations. But this is impossible as soon as the sum

∑k
i=1 aiui contains a

representation u1, since then the mixed product ν ′−1/2u0 × ν ′1/2u1 would contain a non-hermitian
subquotient (the ‘bigger’ one for the Bruhat order, for example). This shows that there is only
one ui, with i= 0, and so LJ(u(δ, n)) = (−1)nū(δ′, n). 2

17.2 Irreducibility and transfer of all unitary representations

We now know that the representations in UH are all unitary. To show that their products remain
irreducible, we can use the irreducibility trick in [Bad08, Proposition 2.13], which reduces the
problem to showing that u(δ′, k)× u(δ′, k) is irreducible for all discrete series δ′ of GL(1,H)
and all k ∈ N×. Let δ be a square integrable representation of GL(2, R) such that LJ(δ) = δ′.
It follows that LJ(u(δ, k)× u(δ, k)) = ū(δ′, k)× ū(δ′, k). On the left-hand side we have the
irreducible representation M = u(δ, k)× u(δ, k). On the right-hand side we have a sum of unitary
representations, the product M ′ = ū(δ′, k)× ū(δ′, k) (we already know that ū(δ′, k) is unitary),
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which we want to show has actually only a single term. Apply the same α trick as before: we
know that π(M, α) corresponds to π(M ′, α). For α= 1/2, the first representation decomposes
into a sum of semirigid unitary representations, while the second is a sum containing non-unitary
representations unless M ′ contains a single term. Notice that the Langlands quotient theorem
and hypothesis U(4) guarantee that M ′ has a subquotient which appears with multiplicity one,
so either M ′ is a sum containing two different terms, or it is irreducible. So the square of ū(δ′, k) is
irreducible for all k. If δ′ is not a character, then u(δ′, k) = ū(δ′, k) and so the square of u(δ′, k)
is irreducible. If δ′ is a character, then we have seen that ū(δ′, 2k + 1) = u(δ′, k)× u(δ′, k + 1),
so the result again follows.

This implies that if u is an irreducible unitary representation of GL(2n, R), then LJ(u) is
either zero or plus or minus a irreducible unitary representation of GL(n,H).

The proofs here are based on the trace formula and do not involve cohomological induction.
However, the really difficult result is U(0) on GL(n,H), which does rely on cohomological
induction.

18. Global results

For all v ∈ V , denote by LJv (respectively, |LJ|v) the correspondence LJ (respectively, |LJ|), as
defined in §§ 4 and 13, applied to Gv and G′v.

If π is a discrete series of G(A), we say that π is D-compatible if for all v ∈ V , πv is
dv-compatible. Then LJ(πv) 6= 0 and |LJ|v(πv) is an irreducible representation of G′n.

Here are the Jacquet–Langlands correspondence, multiplicity-one and strong multiplicity-one
theorems for G′(A) (already known for G(A); see [Pia79, Sha74]).

Theorem 18.1.

(a) There exists a unique map G from the set of discrete series of G′(A) into the set of discrete
series of G(A) such that G(π′) = π implies |LJ|v(πv) = π′v for all places v ∈ V and πv = π′v
for all places v /∈ V . The map G is injective and onto the set of D-compatible discrete series
of G(A).

(b) The multiplicity of every discrete series of G′(A) in the discrete spectrum is one. If two
discrete series of G′(A) have isomorphic local components at almost every place, then they
are equal.

The proof is the same as that of [Bad08, Theorem 5.1], with the following minor changes.
[Bad08, Lemma 5.2] is obviously still true when the inner form is not split at infinite places, using
Proposition 15.1. For the finiteness property quoted in [Bad08, p. 417] as [BB], one has to replace
this reference by [Bad05], which addresses the case of an inner form ramified at infinite places.
We do not need here the claim (d) in [Bad08, Theorem 5.1], which is now a particular case of
Tadić’s classification of unitary representation for inner forms. At the bottom of [Bad08, pp. 417
and 419], the independence of characters on a product of connected p-adic groups is used. Here
the product also involves real, sometimes non-connected, groups such as GL(n, R). The linear
independence of characters on each of these GLn is enough to ensure the linear independence
of characters on the product, as at infinite places representations are Harish-Chandra modules
so that for all these groups, real or p-adic, irreducible representations correspond to irreducible
modules on a well-chosen algebra with idempotents.

As in [Bad08], the core of the proof is the powerful equality [AC89, (17.8)] (comparison of
trace formulas for G(A) and G′(A)).
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Let us now show the classification of cuspidal representations of G′(A) in terms of
cuspidal representations of G(A). Let ν (respectively, ν ′) be the global character of G(A)
(respectively, G′(A)) given by the product of local characters as before (i.e. the absolute
value of the reduced norm). Recall that, according to the Moeglin–Waldspurger classification,
every discrete series π of G(A) is the unique irreducible quotient of an induced representation
ν(k−1)/2ρ× ν(k−3)/2ρ× · · · × ν−(k−1)/2ρ where ρ is cuspidal. Then k and ρ are determined by π,
so π is cuspidal if and only if k = 1. We set π = MW(ρ, k).

Proposition 18.2.

(a) Let n ∈ N× and let ρ be a cuspidal representation of Gn(A). Then there exists kρ such that
if k ∈ N×, then MW(ρ, k) is D-compatible if and only if kρ|k. Moreover, kρ|d.

(b) Let π′ be a discrete series of G′(A) and let π = G(π′). Then π′ is cuspidal if and only if π
is of the form MW(ρ, kρ).

(c) Let ρ′ be a cuspidal representation of some G′n(A). Write G(ρ′) = MW(ρ, kρ) and set
νρ′ = νkρ . For every k ∈ N×, the induced representation

ν
(k−1)/2
ρ′ ρ′ × ν(k−3)/2

ρ′ ρ′ × · · · × ν−(k−1)/2
ρ′ ρ′

has a unique irreducible quotient which we will denote by MW′(ρ′, k). It is a discrete series,
and all discrete series are obtained from some cuspidal ρ′ in that way. If G(ρ′) = MW(ρ, kρ),
we have G(MW′(ρ′, k)) = MW(ρ, kkρ).

Proof.

(a) This follows from Proposition 15.4 and the fact that for all v ∈ V, dv|d.
(b) This is [Bad08, Proposition 5.5], with ‘cuspidal’ in place of ‘basic cuspidal’, thanks to

Grbac’s appendix. Both the proof of the claim and the proof in the appendix work the
same way here.

(c) When G′n(A) is split at infinite places, this assertion is claim (a) of [Bad08, Proposition 5.7].
We follow the same idea of reducing the problem to a local computation. As [Bad08] makes
use of Zelevinsky involution, we have to provide here a proof for the archimedean case (in
which the involution doesn’t exist). First, to show that the induced representation

ν
(k−1)/2
ρ′ ρ′ × ν(k−3)/2

ρ′ ρ′ × · · · × ν−(k−1)/2
ρ′ ρ′

has a constituent which is a discrete series, we will show directly that G−1(MW(ρ, kkρ)),
which is indeed a discrete series, is a constituent of

ν
(k−1)/2
ρ′ ρ′ × ν(k−3)/2

ρ′ ρ′ × · · · × ν−(k−1)/2
ρ′ ρ′.

We will show this place by place, local component by local component. Fix a place v and let γ
be the local component of ρ at the place v. It is an irreducible unitary generic representation,
and we know that u(γ, kρ) transfers. Set π = LJ(u(γ, kρ)). What we want to prove
is that LJ(u(γ, kkρ)) is a subquotient of νkρ(k−1)/2π × νkρ(k−3)/2π × · · · × νkρ(−(k−1)/2)π.
The unitary generic representation γ may be written as γ = (×i σi)× (×j π(τj , 1, αj)),
with σi and τj being square integrable representations and αj ∈ ]0, 1/2[. So it is enough
to prove the result for when γ is a square integrable representation. Let us suppose
that γ is square integrable. To prove that π = LJ(u(γ, kρ)) implies that LJ(u(γ, kkρ)) is
a quotient of νkρ(k−1)/2π × νkρ(k−3)/2π × · · · × νkρ(−(k−1)/2)π, we would like to show that
the essentially square integrable support of the representation LJ(u(γ, kkρ)) is the union
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of the square integrable support of the representations {νkρ((k−1)/2−i)π}i∈{0,1,...,k−1}. Then,
as the essentially square integrable support of ×k−1

i=0 [νkρ((k−1)/2−i)π] is in standard order,
LJ(u(γ, kkρ)) will be the unique quotient of the product.
If γ lives on a group of a size such that it transfers to some C(γ), then π = ū(C(γ), kρ)
and LJ(u(γ, kkρ)) = ū(C(γ), kkρ) (see [Bad08, Proposition 3.7(a)] and the second case
of transfer in Theorem 13.8 of this paper), hence the result is straightforward. If not,
then u(γ, kρ) satisfies the ‘twisted’ case of transfer [Bad08, Proposition 3.7(b)] for a non-
archimedean field or the first case of Theorem 13.8 for an archimedean field. In the
non-archimedean case, one may compute more explicit formulas for the transfer (see [Bad08,
(3.9)]) and verify that it works. In the archimedean case, γ is a character of GL1(R), so
π = γ ◦ RNkρ/2 and LJ(u(γ, kkρ)) = γ ◦ RNkkρ/2. 2

Let us recall the uniqueness of the cuspidal support for automorphic representations.
According to a result of Langlands [Lan79] specialized to our case, we know that any automorphic
representation of G′(A) is a constituent of an induced representation of the form ν ′a1ρ1 × ν ′a2ρ2 ×
· · · × ν ′akρk, where the ai are real numbers and the ρi are cuspidal representations. In [JS81] it
was proved that, for G(A), the pairs (ρi, ai) are unique. In [Bad08] it is shown that the result
is true (more or less by transfer) for the more general case G′(A), if the inner form is split
at infinite places. Using the previous results, the same proof now works with no condition on the
infinite places.

19. L-functions, ε-factors and transfer

The fundamental work of Jacquet, Langlands and Godement on L-functions and ε-factors of
linear groups over division algebras easily implies the following theorem. What we call ε′-factors,
following [GJ72], are sometimes called γ-factors in the literature. The value of all functions
depends on the choice of some additive non-trivial character ψ of R which is not relevant to the
results.

Theorem 19.1.

(a) Let u be a 2-compatible irreducible unitary representation of GL2n(R) and u′ the irreducible
unitary representation of GLn(H) such that LJ(u) =±u′. Then the ε′ factors of u and u′

are equal.

(b) Let δ ∈D2 and set δ′ = C(δ). Then for all k ∈ N× the L-functions of u(δ, k) and ū(δ′, k) are
equal and the ε-factors of u(δ, k) and ū(δ′, k) are equal.

(c) If χ is a character of GL(2n, R) and χ′ = LJ(χ), then the ε′-factors of χ and χ′ are equal.

Proof. If we establish (b) and (c), then (a) follows from [GJ72, Corollary 8.9] and the
classifications of unitary representations in Tadić’s setting as explained earlier in this paper.

Statement (b) is proved in [JL70] for k = 1. As a particular case of [Jac79, (5.4), p. 80], the
L-function (respectively, ε-factor) of a Langlands quotient u(δ, k) is the product of the L-functions
(respectively, ε-factors) of representations νi−(k−1)/2δ, 0 6 i6 k − 1. The same proof given there
for GL2n(R) works for GLn(H) as well, so the k = 1 case implies the general case.

Assertion (c), when χ is the trivial character, is just [GJ72, Corollary 8.10, p. 121]. The
general case follows easily by torsion with χ (or by reproducing the same proof). 2
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Bad08 A. I. Badulescu, Global Jacquet–Langlands correspondence, multiplicity one and classification

of automorphic representations, Invent. Math. 172 (2008), 383–438. With an appendix by
Neven Grbac.

BHLS A. I. Badulescu, G. Henniart, B. Lemaire and V. Sécherre, Sur le dual unitaire de GL(r, D).
Amer. J. Math., to appear.

BR04 A. I. Badulescu and D. A. Renard, Sur une conjecture de Tadić, Glas. Mat. Ser. III 39 (2004),
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(4) 22 (1989), 605–674.

Pia79 I. I. Piatetski-Shapiro, Multiplicity one theorems, in Automorphic forms, representations and
L-functions (Oregon State University, Corvallis, OR, 1977), Part 1, Proceedings of Symposia
in Pure Mathematics, vol. XXXIII (American Mathematical Society, Providence, RI, 1979),
209–212.

Pie82 R. S. Pierce, Associative algebras, Graduate Texts in Mathematics, vol. 88 (Springer,
New York, 1982).

RV99 D. Ramakrishnan and R. J. Valenza, Fourier analysis on number fields, Graduate Texts in
Mathematics, vol. 186 (Springer, New York, 1999).
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