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Abstract. We investigate the reaction of a coronal loop in the case of
repetitive flares, with a power-law distribution in energy, injected into a
rigid magnetic loop. Emission measure distributions and temperature-
dependent modulations of the radiation are briefly discussed.

1. Introduction and Methods

There is increasing evidence that a large number of flares play an important
role in solar and stellar coronal heating. A superposition of unresolved events
may be the cause for the enhanced, quiescent stellar coronal activity, leading to
increased statistical fluctuations in hotter plasma components and to character-
istic emission measure distributions (Giampapa et al. 1996; Giidel 1997).

Hydrodynamic simulations can ideally be used to model stochastic flares.
Kopp & Poletto (1993) applied a simplified point model approach, while Cargill
(1994) used semi-analytic formulae. The results shown here use a 1-D hydrocode
(Boris & Book 1976) that includes treatment of radiative and conductive losses
(including conduction saturation) in a circular, symmetric loop (half-length L ==
2 X 109 em and loop-top temperature Tt op = 1.5 x 106 K). The lowest f"V 4 x 108 em
contains dense chromospheric gas at T == 8000 K, with corrections for optical
depth effects (Nagai 1980). The simulations start with a loop in hydrostatic
equilibrium (Serio et al. 1981; Peres et al. 1982). Time-dependent "flare" energy
is deposited around the loop top (Gaussian heating profile). The energy input
function is composed of a stochastic series of flares; their number distribution
in energy E is a power-law, dN IdE ex E-O: for a given Q. The flare duration d
follows roughly d ex E 1/ 2 (derived from a sample of solar hard X-ray flares).

2. Results and Outlook

The most important parameters for the present flare simulations are Q and the
flare rate above a given lower energy threshold. Figure 1 shows an example
for Q == 1.9. The stochastic heating increases T to a "background" of 5-6 MK,
while the stronger flares superimpose a modulated time profile. The modulation
pattern has been investigated in terms of a modulation depth of radiation from
plasma at different temperatures, defined as the ratio between the standard de-
viation and mean of the luminosity time series, both referring to plasma within
a given temperature interval. Observationally, such results can be compared
to statistical fluctuations in line emission. The modulation depth obviously
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Figure 1. Stochastic flare simulation. Upper left: heat input func-
tion. Lower left: reaction of loop top temperature. Upper right: aver-
age emission measure distribution. Lower right: modulation depth at
different temperatures. Parameters: Q = 1.9, flare rate 0.75 s-l.

increases toward hotter plasma, due to the sparse coverage with sufficiently en-
ergetic flares. Giampapa et al. (1996) find that the hotter plasma component in
stellar ROSAT observations varies systematically more than the cooler compo-
nent. Watanabe et al. (1995) interpret rapid fluctuations in the high-T S xv line
as evidence for numerous small-scale flare events. Larger samples of simulations
will be computed for a systematic study and applications to such observations.
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