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Abstract. We present an analysis of the reliability of computation of maximum Characteristic
Exponents of Lyapunov from the numerical integrations of asteroid orbits over finite intervals
of time. We used two complementary approaches - a comparison of the LCE estimates from the
backward and forward integrations of orbits, and a comparison of the estimates coming from
the integrations of the same initial conditions over different time spans. The main conclusion is
that for a vast majority of asteroids (> 80%) the results can be considered as reliable enough
to reveal the very nature and basic properties of the motion.
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1. Introduction
Chaotic dynamics in the real systems can be quite complex, thus giving rise to very

different diffusion times and macroscopic effects. In order to assess the stochastic motion,
to identify and quantitatively describe the chaos, one usually computes some sort of
indicator or measure, which reveals the very character of the motion, or distinguishes
between phenomena related to the chaotic dynamics.

The most commonly used measure of chaos is the so-called maximum Lyapunov Char-
acteristic Exponent (LCE). It measures the rate at which two initially nearby orbits
diverge with respect to each other, in terms of some convenient metrics in the phase
space of state vectors (Milani & Mazzini 1997). The stronger the chaos, the faster the
divergence and the larger the LCE, so that a large, positive LCE typically means that
the corresponding orbit is strongly chaotic.

By definition, Lyapunov exponents are all the real numbers obtained from a limit:

χ(X0, V0) = lim
t→∞

γ(t)
t

; γ(t) = loge

|V (t)|
|V0|

. (1.1)

Given the dynamical system Ẋ = F (X) and its general solution Φt(X0) = X(t) in the
form of an integral flow, V (t) is found as a solution (with initial condition V0) of a
variational equation (with respect to the orbit with initial condition X0):

V̇ =
∂F

∂X
(X(t))V , (1.2)

associated with the dynamical system.
In practice, however, we are more often using the Lyapunov time TL = 1/χ, which

is defined as a simple inverse of the LCE. Lyapunov time is easier to comprehend and
interpret, in particular when discussing the dynamical mechanisms at work, or when we
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are to compare the chaotic behavior of different bodies. Obviously, TL represents the
time needed to increase the distance between the orbits exp(1) times.

Many alternative methods to identify and quantify chaos and to distinguish between
phenomena related to chaotic dynamics - invariant tori, islands of libration, chaotic zones,
etc., have been proposed over the last 15 years, like the frequency map analysis and the
related sup-map analysis (Laskar 1990; 1993), the short-time measures like the local Lya-
punov characteristic numbers (Froeschlé et al. 1993), or stretching numbers (Voglis &
Contopoulos 1994), helicity and twist angles, azimuthal and rotation angles (Contopou-
los et al. 1997), the so-called fast Lyapunov indicators (Froeschlé et al. 1998), etc. A
comprehensive review of various methods can be found in Knežević (2000).

For the purpose of this paper, however, we stick with the LCE only. In Section 2 we
describe the specific problem we are dealing with and the methods used to tackle it, in
Section 3 we give and discuss the results, and in Section 4 we offer some conclusions.

2. Computation of maximum LCEs for asteroids
In the case of solar system bodies, like planets or asteroids, the dynamical system is

well-known to be non integrable, so that an exact computation of LCE for t → ∞ is not
possible. The simplest way to get an approximate, temporary estimate of the value of
maximum LCE is by monitoring the variation of γ(t) with time, computed on-line, in the
course of the numerical integration of the orbit itself; if this variation has an asymptotic
character, the slope of the variation gives the estimated value of the maximum LCE.

In order to compute an estimate of the maximum LCE reliably, one has to integrate
the orbit for at least 6-10 times TL or even longer (Froeschlé et al. 1998); in the case of
weak, slow chaos this can become quite a formidable task and a very time-consuming
procedure. On the other hand, a single integration of a strongly chaotic orbit does not
posses any predictive value; only a large ensemble of integrations with the same or similar
initial conditions, integration methods and platforms can supply us with a valid indication
on the nature and characteristics of the chaotic motion; again this is a time-consuming
procedure, applicable only in some special cases.

For authors of asteroid catalogs which include hundreds of thousands of bodies, where
LCEs are provided with other orbital information, the essential becomes to know a priori
whether the effort of computing all these estimates is really meaningful, that is, whether
the Lyapunov Characteristic Exponents can at all be reliably determined from the in-
tegrations covering only a limited time span. For users of these catalogs the question is
whether they can believe and apply these estimates at face value, or, at least, what is the
probability that the computed values are indeed indicative of the true nature of motion.

We used in our analysis the data obtained as part of the regular updates of the AstDyS
database†, but also a large sample of integrations adapted to and carried out specifically
for the purpose of this study.

We employed two different, but complementary approaches: (i) the comparison of the
LCEs derived separately from two integrations, starting from the same initial conditions,
using the same method, code and machines, and covering the same interval of time
with the same step size, but once with the negative step (that is, propagating orbit
into the past) and the other time with the positive step (propagating into the future);
(ii) the comparison of the LCEs derived from the integrations starting again from the
same initial initial conditions, using the same method, code and machines, but this time
covering different intervals of time and integrating either forward or backward in time.

† http://hamilton.dm.unipi.it/astdys
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Figure 1. Asteroid 20497. A smooth variation of γ(t). Maximum LCE can be estimated in a
reliable manner. Orbit is moderately chaotic with TL ≈ 83 000 yr.
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Figure 2. Maximum LCE estimate for asteroid 14722. Corresponding Lyapunov time is
TL ≈ 75 000 yr. Note abrupt changes of the slope of γ(t), including episodes of strong chaos
(TL ≈ 26 000 yr). This orbit passes through different dynamical regimes in the course of time,
and the estimate of the corresponding LCE in this case critically depends on the integration
time span.

In the first set of experiments we in fact varied the configuration of the dynamical
system and thus the circumstances of the determination of corresponding LCEs. We used
integrations of asteroid orbits covering 1 Myr in the past and 1 Myr in the future. The
LCEs were determined from the two integrations separately and then simply compared,
assuming the values to be the same if the difference was less than 10−5 yr−1 (this values
corresponds to TL > 100 000 yr, i.e. to a somewhat conservative requirement that for
reliable computation of LCEs we need integrations covering at least 10TL).
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0 50 100 150 200 250
0

200

400

600

800

delta LCE

Differences of LCE less than 250 yr−1

0 200 400 600 800 1000 1200
0

10

20

30

40

50

delta LCE

Differences of LCE larger than 100 yr−1

Figure 3. Number frequency distributions of differences of maximum LCEs in units of 10−6.
Above: asteroids with differences < 250 yr−1. Below: the large differences tail of the distribution.

In the second set of experiments we were repeating computations over intervals of
time spanning the two orders of magnitude. More precisely, we compared the outcomes
of integrations covering 2, 10 and 100 Myr. The problem we are dealing with in this case
is illustrated with the examples of the computation of γ(t) given in Figs. 1 and 2.

3. Results
All the computations in this study were performed by using the public domain software

packages OrbFit and Orbit9, available from the aforementioned AstDyS site. In partic-
ular, we made use of the Orbit9e integrator and of the software to compute synthetic
proper elements, described in more detail in Knežević & Milani (2000).

Summarizing the results of the first set of experiments, let us repeat that we compared
two estimates of the maximum LCEs obtained from the forward and backward 1 Myr
integrations for a total of 23767 asteroids. Out of these, for 19371 (or 81.5%) the dif-
ferences of LCEs were � 10−5 yr−1, that is below the adopted accuracy threshold for
reliable LCE computation. Thus, for the vast majority of asteroids the results derived
from two integrations can be considered the same and safely used as indicator of the true
nature of motion.
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Figure 4. Differences of maximum LCE vs. one of the estimates for 183 objects with largest
LCE differences (left). Relative difference vs. the other estimate for the same objects (right).
All quantities are in units of 10−6.

Of particular interest are, however, objects for which large differences of LCE estimates
were found. There were 4396 asteroids with difference > 10−5 yr−1(the number frequency
distribution of the differences of maximum LCEs up to 2.5 × 10−4 yr−1 is given in the
upper panel of Fig. 3), out of which 183 with difference > 10−4 yr−1 (see the distribution
in lower panel of Fig. 3), and 40 with difference > 2.5×10−4 yr−1. The median difference
for all 4396 asteroids with LCE differences above the accuracy threshold is found to be
≈ 1.9×10−5 yr−1. Thus, even if the maximum LCEs for these bodies have been estimated
with lower accuracy, there is still a good fraction of objects for which this estimate reliably
reflects at least the very nature of the motion (e.g. strongly vs. moderately chaotic).

In order to identify the “troublemakers”, in Fig. 4 we plotted the differences of the esti-
mates against the estimates themselves, both in absolute and relative terms. We expected
to find correlation in the sense - more chaotic the motion, less reliable the computation
of the corresponding LCE; this sort of correlation appears quite obvious in the left panel,
showing the absolute values of the differences vs. differences themselves. The result in
the right hand side panel, showing the relative differences vs. differences themselves, in-
dicates, however, that comparatively more important appear to be differences for the
moderately chaotic orbits. For the asteroids with such differences computation of the
maximum LCE is unreliable and the obtained values cannot be considered useful.

In Table 1 we give asteroids from our sample of 183 bodies with significant differences
of LCE that have largest absolute and relative differences of the computed LCEs. In
the first three columns we list asteroid number, maximum LCE as computed from the
forward integration, and the corresponding LCE difference for 12 asteroids for which this
difference was found to be larger then 4× 10−4 yr−1. In the remaining three columns we
show again asteroid number, but with maximum LCE as computed from the backward
integration, and the corresponding relative LCE difference for 9 asteroids for which this
difference was larger then 3.

Repeating now more-or-less the same exercise for the second set of experiments, we
begin with comparison of the LCEs computed from the integrations covering 2 and
10 Myr. Let us emphasize that asteroids for which we extend integrations from 2 to
10 Myr in the regular AstDyS database updates are those for which some sort of problem
has been detected in the shorter integration; typically this might have been either the
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Table 1. Asteroids from our sample of 183 bodies with largest absolute and relative
differences of the computed LCEs

Asteroid LCE+ Abs. Diff Asteroid LCE− Rel. Diff
×10−6 yr−1 ×10−6 yr−1 ×10−6 yr−1

22541 1198 673 22269 29 4.2
29180 480 418 22272 18 6.7
37152 742 456 22378 68 6.0
42485 557 478 22383 65 11.4
42600 415 422 22467 10 6.8
43946 558 415 22502 10 6.9
49737 989 455 22543 37 3.7
53463 1844 927 22553 10 4.3
58949 2465 1147 22582 13 5.3
72205 811 498
75246 1251 499
80143 99 584

poor accuracy of the resulting synthetic proper elements, or large positive LCE indicating
strongly chaotic orbit. It is thus no surprise that out of a total of 5768 asteroids considered
in the second set of experiments, in only 3663, or 63.5% of the cases, we found good
agreement of the estimates of maximum LCE from the two integrations. In the remaining
2105 cases the difference was larger than 5×10−6 yr−1, which was in this case the accuracy
threshold for the shorter integration. Nevertheless, the number of significantly different
estimates was not very high, just 113 objects with differences > 10−4 yr−1 and 17 objects
with differences > 2.5×10−4 yr−1 ; median for objects with difference above the accuracy
threshold was ≈ 2.2 × 10−5 yr−1. Fig. 5, analogous with Fig. 3, shows the same number
frequency distributions as in the previous case.

The most interesting in this context are, however, the results of comparison with in-
tegrations covering 100 Myr time span. Here we compared our estimates of LCE for a
specially selected group of asteroids belonging to Veritas asteroid family; these asteroids
exhibit very different dynamical behaviors, ranging from very stable to strongly chaotic
(Knežević et al. 2002). We collected all the interesting results in Table 2. We mixed dif-
ferent integrations here, in order to check all possible outcomes and to partly compensate
for a small number of experiments performed in this case. Thus we compare estimates
of maximum LCE from short integrations, covering either 2 or 10 Myr, with 100 Myr
forward or backward integrations. As one can easily see, even under these “extreme”
circumstances the results in most cases agree quite well (note that in columns 4 and 5 all
the printed figures are significant). In each of the several cases in which the agreement
was found not to be that good, the comment “chs” indicates that the body changed the
dynamical state during the interval of time covered by the integration, and that therefore
we detected a significant change of slope of γ(t) like in the example shown in Fig. 2.

4. Conclusions
We have conducted a comprehensive analysis of the reliability of computation of max-

imum Characteristic Exponents of Lyapunov from the numerical integrations of asteroid
orbits covering finite intervals of time. We used two complementary approaches - a com-
parison of the results coming from the backward and forward integrations of orbits,
and similar comparison of the results coming from the integrations of the same initial
conditions, but over very different time spans.
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Figure 5. Number frequency distributions of differences of maximum LCEs in units of 10−6

obtained from integrations covering 2 and 10 Myr. Above: asteroids with differences < 250 yr−1.
Below: the large differences tail of the distribution.

The main conclusion which can be drawn from this analysis is that for a vast majority
of asteroids (> 80%) the results of the computation, even if stochastic by definition,
can be considered as reliable enough to reveal the very nature and basic properties
of the motion. For chaotic bodies the LCE estimates are also in most cases (> 60%)
precise enough at least to clearly distinguish between different dynamical regimes (weak
to moderate vs. strong chaos). Still, we recommend to always take the computed values of
LCEs with some caution, in particular when dealing with outcomes of short integrations
or with strongly chaotic motion. Even in the case the computed values indicate very stable
motion, they should not be taken uncritically and at face value, but always bearing in
mind their probabilistic definition and interpretation.
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Table 2. Asteroids in Veritas asteroid family exhibit very different dynamical behavior – from
very stable to strongly chaotic. In the first column we give asteroid number, maximum LCE in
the second column was obtained from the integration covering a time span indicated in the third
column (negative time refers to the backward integration), LCEs as obtained from the forward
and backward integrations are shown in the fourth and fifth columns, respectively; the comment
is added in the final column (“chs” stands for the “changing state”).

Asteroid LCE ∆T LCE+100 LCE-100 Comment
×10−6 yr−1 Myr ×10−6 yr−1 ×10−6 yr−1

490 98 10 112.8
1086 5 -2 0.2
2147 7 -2 8.1
2428 5 -2 2.9
2934 5 -2 3.7
3090 5 -2 0.6
3542 105 10 107.7
5594 29 -2 22.6
6374 5 -2 0.0
7231 5 -2 0.0
7612 30 -2 18.6
7626 5 -2 4.5
8726 107 10 98.5
9715 5 -2 0.6
10120 114 10 91.9
10414 5 -2 0.9
10793 37 -2 22.5
13537 12 -2 11.1
14722 39 -2 13.2
19280 31 -2 20.1
20497 9 -2 12.2
21454 98 10 93.2
24718 105 10 79.5 chs
32416 95 10 91.8
38447 112 10 103.0
39290 108 10 111.2
42218 110 10 106.4
43095 35 10 102.2 chs
45623 106 10 103.0
46105 110 10 82.9 chs
51136 104 10 14.9 chs
54869 108 10 93.0 chs
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