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Abstract

We identify a large class of rings over which locally free modules are determined by their endomor-
phism rings. We characterize these endomorphism rings and consider under what circumstances the
conditions on the locally free modules can be relaxed, for example by requiring that only one of the
rings need be in the special class, or by replacing "free' by "projective".

1980 Mathematics subject classification (Amer. Math. Soc): 16 A 65.

1. Introduction

The ring ED(V) of linear operators on a finite-dimensional vector space V over a
division ring D can be characterized in purely ring-theoretical terms by the
Wedderburn-Artin Structure Theorem [8, page 39]: a ring E is isomorphic to
ED(V) for some D and V if and only if £ is a simple ring with descending chain
condition on right ideals. The parameters D and V can be recovered from E as
follows: D s eEe for any primitive idempotent e of E, and Ksffi.D, where n is
the length of any maximal chain of right ideals of E. A consequence of this result
is that if ED(V) =s ED.(V), then D s D' and V s V. Moreover, as Baer showed
in [1, page 183], every ring isomorphism of ED(V) onto ED.(V) is induced by a
semi-linear isomorphism of VD onto V'D,.

There have been several extensions of these results from finite-dimensional
vector spaces to wider classes of modules. It is convenient to classify these
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[21 Endomorphism ring of a locally free module 309

theorems into two types, corresponding respectively to the Wedderburn-Artin and
the Baer Theorems.

Let 91 be a class of rings, and 9It a class of modules over rings in 91.
(1) Characterization Problem: describe in ring-theoretic terms ER(M) for all

R £9UndAfR £ 9H.
(2) Uniqueness Problem: prove or disprove that any ring isomorphism of

ER(M) onto ES(N) is induced by a semi-linear isomorphism of MR onto Ns for
all R, S £ 91 and MR, Ns £ <31t. These problems are very difficult if 911 is allowed
to be at all general, even for very restricted classes 91 [2, 6, 7, 10, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 24]. In this paper, we restrict 9H to consist only of free or
"almost free" modules, but we allow as much freedom as possible in the choice of
91.

The first result of this nature was obtained by Baer's student Wolfson, who in
his 1953 doctoral dissertation [25] solved both the Characterization and the
Uniqueness Problems for vector spaces of arbitrary dimension over division rings.
In 1962 Wolfson [26] also solved the Uniqueness Problem for free modules over
complete discrete valuation rings, and in the same year [27] for free modules over
not necessarily commutative principal left ideal domains. In 1963 [28], he ex-
tended the same results to locally free modules.

In 1973, Hauptfleisch [7], as part of a more general study, solved the Unique-
ness Problem for locally free modules over subrings of the rationals, and in 1975
Metelli and Salce [21] completely solved the Characterization Problem for this
class of modules. Important advances were made by Liebert, who in 1974 [18]
solved the Characterization Problem for free modules over principal ideal do-
mains and in doing so, introduced a topological method that has proved exceed-
ingly fruitful, not only in solving problems of this type, but also in characterizing
endomorphism rings for classes of modules which are not locally free.

In Sections 3 and 4 of this paper we solve both problems for locally free
modules over the largest class of rings for which the uniqueness property holds
and which contains all the rings described above. We describe this class in Section
2, the simplest description being that it is the class of all rings R for which a
summand of a free module is indecomposable if and only if it is isomorphic to
RR.

In Section 5 we extend the uniqueness results in several ways. For example, we
consider what happens if only one of R, S is required to be in this class, or if only
one of MR, Ns is required to be free or locally free. We also consider whether
"free" can be replaced by "projective".

Finally, in Section 6 we examine what happens if the Uniqueness Condition

"every isomorphism of ER(M) onto ES(N) is induced by a semilinear
isomorphism of MR onto Ns"
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is replaced by

"if ER(M) is isomorphic to ES(N) then there exists a semilinear
isomorphism of MR onto Ns".

We show that the second conditon is stronger than the first if and only if
ER(M) admits an automorphism which is not inner. We then exhibit examples of
free modules with this property.

We use the standard notation of ring and module theory, as found for example
in [4, 5, 9, 10]. In particular, scalars act on the right and homomorphisms on the
left; all rings have an identity and all modules are unital; some important
concepts mentioned above which may not be familiar are:

(1) A module is locally free if each finite subset is contained in a free direct
summand.

(2) If MR is an /^-module and Ns an S-module, a semi-linear homomorphism
a: MR -> Ns is a pair (<£, 0) in which #: R -» 5 is a ring isomorphism, and
6: M -» N an additive homomorphism such that for all r G R and m G M,
0{mr) = 0(m)4>(r).

(3) If a : MR -» Ns is a semi-linear isomorphism, a induces a ring isomorphism
</>: ER(M) - ES(N) if for all/ G ER(M), * ( / ) = afa\

2. The class of IF-rings

In his paper [18] characterizng the endomorphism ring of a free module over a
not necessarily commutative principal ideal domain, Liebert pointed out that this
ring property, like those used by Wolfson in his papers [27, 28] of 1962 and 1963
could be replaced by the weaker conditions:

PF : All projective modules are free; and
IBN : R has Invariant Basis Number.
It was proved by Leavitt [11] that for any ring R, if Rm s R" for some

cardinals m ¥= n, then m and n are both finite. Furthermore, for all 0 < m < n,
there exist rings R for which Rh ss Rk with h < k if and only if m < h and k = h
(mod n — m). Thus the following condition is strictly weaker than IBN:

WIBN : (Weak invariant basis number) If R = R", then n — 1. Franzsen, in his
1981 Honours Dissertation proved that if R has PF and WIBN, then free
.R-modules satisfy the Uniqueness Problem.

However, an analysis of the proofs of Wolfson, Liebert and Franzsen show that
these conditions are only used to establish:

IF : A non-zero summand of a free /i-module is indecomposable if and only if
it is isomorphic to RR.
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This ring condition seems to be the minimum required to solve both the
Characterization and Uniqueness Problems for free modules of arbitrary cardinal-
ity. Certainly all the methods which have been discovered so far require it.

Because of its importance for algebraic geometry, much research has been
devoted to the condition PF for commutative rings; in the non-commutative case,
the subject has hardly been touched [23]. The condition has a useful counterpart
for locally free modules.

SLF: (Strongly locally free) All summands of any locally free module are
locally free.

Similarly, the condition IF has an analogue for locally free modules:

LIF : A non-zero summand of a locally free /^-module is indecomposable if and
only if it is isomorphic to RR.

It is known (see for example [8, Theorem 17] and [28, Lemma 1.2]) that all five
properties hold for principal ideal domains.

A property strictly weaker than PF which has proved useful in several contexts
is:

FGPF: All finitely generated projective modules are free. The relationship
between these six properties is described by the following:

PROPOSITION 2.1. For any ring R,
(1) SLF => FGPF =» WIBN;
(2) SLF =» LIF ^IF^ WIBN;
(3) PF => IF.

PROOF. (1) SLF => FGPF: Let M be a finitely generated projective module.
Then M is a summand of a free, so locally free module. Hence M is locally free.
But any finitely generated locally free module is free.

FGPF => WIBN : Suppose R has FGPF but not WIBN, say RR = R"R for some
n. Then R = ER(M) s ER(R") = Mn(R) as rings, and B = euMn(R) is a projec-
tive Mn(R) module, where en is the matrix unit having 1 in the (1,1) position, 0
elsewhere. By FGPF, B is free, and there is a projection of B onto R ((1,1)
component) with kernel K = [° RR R].

Thus B = R © K, so K is projective and therefore free. Let a : K -> Mn(R) be a
projection, and let a(x) = 1 where x = (*,-_,•) £ K. Then xeu = 0, and 0 =
a(xen) = a(x)en = eu, a contradiction.

Hence R has WIBN as required.
(2) SLF => LIF: Let M be an indecomposable summand of a locally free

module. By SLF, M is indecomposable and locally free s o M s f i , .
Conversely, let M = R R be a summand of a locally free module and suppose

M = E © F. Then E and F, being homomorphic images of RR are finitely
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generated summands of a locally free module, so by SLF they are free. By (1),
SLF implies R has WIBN so one of E or F is zero.

LIF =» IF : Let M be a non-zero summand of a free ^-module F. Then F is
locally free, so M is indecomposable if and only if it is isomorphic to RR.

IF =» WIBN : Suppose R = R"; by IF, R" is indecomposable, so n = 1.
(3) PF =» I F : Let M be an indecomposable summand of a free module, so M is

free and hence M s RR. Conversely, let M == RR be a non-zero summand of a
free module, and suppose M = E ® F. Then each of £ and F is free. Since
PF => FGPF =» WIBN by (1), one of E or F is zero, so M is indecomposable.

3. The characterization theorem

In his characterization of the endomorphism ring of a free module over a
principal ideal domain [18], Liebert used a combination of algebraic and topologi-
cal conditions which involve an intrinsic characterization of the finite topology
[5]. These conditions can be described as follows:

A finite idempotent in a ring E is an idempotent which is a sum of finitely many
orthogonal primitive idempotents. For any finite idempotent e, let eL = {x €E
E: xe — 0} be the left annihilator of e. The set of left annihilators of finite
idempotents is a neighborhood basis of 0 for a linear topology on E if and only if
for all finite idempotents e and / there is a finite idempotent u such that
ul C eL n fL. If this condition on E is satisfied, we call the resultant topology the
L-topology.

A module is called separable if every finite subset is contained in a direct
summand which is a direct sum of indecomposable submodules. It is well known
(see for example [5, Section 107]) that for any ring R and /{-module M, the
L-topology exists on ER(M) and is equivalent to the finite topology if and only if
M is separable. In this case ER{M) is a complete Hausdorff topological ring in
which the left ideal generated by the finite idempotents is dense.

Using our notation and the results above, we can paraphrase Liebert's Theorem
[18] as follows:

Let E be a unital ring. There is an IF-ring R and a free R-module F such that
E s ER{F) if and only if E satisfies the following four conditions:

(1) For all primitive idempotents e, eEe is an IF-ring.
(2) For all primitive idempotents e andf, Ee = Ef as left ideals.
(3) E is Hausdorff and complete in the L-topology.
(4) E contains an orthogonal set I of finite idempotents such that the left ideal of E

generated by the finite idempotents is © e G / e £ .
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It is clear that the characterization depends on the fact that E has an ample

supply of idempotents. We shall now establish a similar theorem for locally free

modules which also have enough idempotents, and for this we need the following

lemma also due to Liebert:

LEMMA 3.1. Let e, f be idempotents in a ring E. IF Ee = Ef, then fEe is a free
right eEe module generated by f, and EfEe = Ee.

PROOF. [18, Lemma 2.3].

The proof of the following theorem uses also techniques due to Metelli and
Salce [21] and to Fuchs and Schultz [6].

THEOREM 3.2. Let E be a unital ring. There is an LIF-ring R and a locally free
R-module M such that E s ER(M) if and only if E satisfies the following five
conditions:

(1) For all primitive idempotents e, eEe is an LIF-ring.
(2) For all primitive idempotents e, Ee is a locally free eEe-module.
(3) For all primitive idempotents e andf, Ee = Ef as left ideals.
(4) E is Hausdorff and complete in the L-topology.
(5) The left ideal of E generated by the finite idempotents is dense in E in the

L-topology.

PROOF. A. The five conditions are necessary:
Let R be an LIF-ring. M a locally free /{-module and E = ER(M). If e is a

primitive idempotent in E, then e(M) is an indecomposable summand of M, so
isomorphic to RR by the LIF condition. Say e(M) = aR, with e(a) = a.

Define a mapping <>: eEe -» R as follows: for TJ £ E, let erj(a) = arn for some
rn £ R. Then <f>: e-qe \~* r r It is routine to check that <j> is a ring isomorphism, so
(1) is satisfied.

Now define 0: EeeEe -> MR by 6 : r\e t-* rj(a). Since e(a) — a, Tj(a) = 0 implies
r)e(M) = 0, so 6 is an additive monomorphism. Lety G M\ since

M = e(M) © (1 - e)(M) = aR®{\ - e)(M),

there exists an .R-homomorphism n such that n(a) = y and /x(l — e\M) = 0.
Hence 0(ixe) = y so 6 is surjective. Next, for any 17, jn e E,

6(ne)0(e-qe) = n(a)rv = jm(ar,) = e(fieife),

so (<J>, 0) is a semi-linear isomorphism. Consequently Ee is a locally free eEe-mo<i-
ule, as required.
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Now Ee is also a left £-module, and for all TJ, H G E, 0(/x7je) — n(-q(a)) —
/x0(Tje), so 6 is also a left £-homomorphism. Hence if / is any other primitive
idempotent in E,

EEf = EM =EEe as left £-modules.

Every finite subset of M is contained in a finitely generated free direct
summand. But by the LIF property, RR is indecomposable, so M is separable.
Hence E admits the L-topology and is Hausdorff and complete by [5, Section
107]. By the same result, the left ideal generated by the finite idempotents is
dense.

B. The five conditions are sufficient:
Let £ be a ring admitting the L-topology and satisfying the five conditions. In

particular, E has primitive idempotents. Let / be the set of primitive idempotents
and £ 0 the left ideal generated by /.

Let e G /, R = eEe and M = Ee; define <j>: E -» ER(M) by <J>(Tj)(/te) = Tj/xe,
so <j> is a ring homomorphism. Suppose <j>(-q) — 0; then TJ is in the left annihilator
of Ee. By Lemma 3.1, for any finite idempotent / in E, Ef= EeEf, so TJ/ = 0.
Hence TJ is in the left annihilator of every finite idempotent in E. Since E is
Hausdorff in the L-topology, TJ = 0, so <J> is injective.

Now M — Ee is a left ideal in £ ; we now want to show that <j>(M)is a left ideal
in ER(M). L e t / G ER(M) and suppose/(e) = ae for some a G E. Then for all
)8 EE,

<t>(f(e))(Pe) = f{e)- fie = ae/Se = ae • epe = f(e)- e/ie

since M is an eEe-module and / is an eEe-homomorphism. Thus

= (/o*(*))(/8e) for all 0 G E, so

= / ° *(<?)•

Hence for all/ G £*(M) and j8 G £,

= <t>(f(Pe))
so ER(M)<j>(M) C <>(Af) as required.

From now on we shall consider <j> as an embedding of £ in ER(M), so
M = Ee <Z ER(M)e. We have just shown that conversely ER(M)e C ER(M)M C
£<?.

Now let ¥: Ef -> Ee be an isomorphism postulated by condition 3, and
suppose ¥ ( / ) = TJ(/, e)e for some TJ(/, e) G £, and ^'\e) — Tj(e, / ) / for some
Tj(e,/) G £. Since * and * " ' are £-homomorphisms, f - ^'^(f) =
Tj(/,e)T,(e,/)/. Define ^ : ER{M)f ^ ER(M)e by *(«/) = gT,(/, e)e_for all
g G ER(M). This definition makes sense since ER(M)e — Ee. Clearly ^ is an
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^(Afyisomorphism with inverse ¥" ' : hei-*hr\(e, f)f for all h G ER{M). It
follows that for all g £ ER(M),

gf— ^-'(gTj(/, e)e) = y~\ae) for some a G E

Hence for all/ E / , ER(M)f C £/ C ER(M)f, so ER(M)E0 = Eo.
Next we show that M = ( fM: / G / ) as right /?-modules. Now Af = eM ©

(1 — e)M as /^-modules, and eM is rank 1; say, eM — aR. Let z G M, say
z = ar + g where r G R, g G (1 - e)M. Then M = (a + g)# © (1 - e)M, since
both a and (1 — e)M are contained. In this submodule, and the sum is direct for
if as + gs G (1 - e)M, then as = e(as + gs) — 0, so s = 0. Let /* G ER(M) be
the projection onto (a + g)/?along(l — e)M,andlet/= he. Since ER(M)e = Ee,
f E E. Furthermore

f(l - e)M = he(l - e)M = 0 and

/(a + g) = he(a + g) - h(a) = h(a + g - g) - a + g,

so/G / .

Hence z = ar + g - a{r - 1) + a + g) = e(a(r - 1)) + f(a + g) G eM +
fM, so M = ( / M : / G / > as required.

Now we can show that the L-topology on ER(M) restricted to E is the
L-topology on E. One way is trivial: if a is a finite idempotent in E, the left
annihilator of a in £ is the intersection of E with the left annihilator of a in
ER(M). Conversely, let / be a primitive idempotent in ER(M), and suppose
f(M) = yR. By the previous paragraph,

y = e]g] + ••• +engn

for e , , . . . ,en G / and g,,...,g,, G M. Hence the annihilator of / in E is the
annihilator of y in £ , which contains the intersection of the annihilators of the e{

in £ . Now let /? be any finite idempotent in ER(M), say /? = / , + f2 + • • • +fk,
where the fk are primitive idempotents in ER{M). Then fiL C\ E contains the
intersection of the annihilators of the / in £ , and hence the intersection of basic
neighbourhoods of the L-topology on E.

Thus £ is closed in the L-topology on ER(M). By condition 5, £ 0 is dense in £ ,
so to complete the proof that e = ER(M) it remains to show that £ 0 is dense in
ER(M). Let n G ER(M) and let aL be a basic neighbourhood of 0 in ER(M).
Since £0 is dense in £, there is an TJ G Eo such that 1 — TJ G aL n E. But aL is a
left ideal in ER(M), so n — JUTJ = ju(l — TJ) G aL. Hence /ITJ G /t + aL, an open
neighbourhood of \i. Since ER(M)E0 = Eo, ny G £0 , so £ 0 is dense in ER(M)
and the proof is complete.
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4. Uniqueness

In common with all similar results, the characterization theorem just proved
does not contain even an implicit uniqueness statement; indeed the minimal
idempotent e was chosen arbitrarily (condition 3 of this theorem only requires
that Ee and Ef be isomorphic as ideals not as right eEe and fEf modules). In this
section two uniqueness results will be proved which will show that the characteri-
zations given in the previous section are essentially unique (that is, unique up to
semilinear isomorphism). First of all uniqueness for Theorem 3.2 will be proved,
and then the changes necessary to prove the corresponding result for Liebert's
characterization will be noted.

THEOREM 4.1. Let R and S be any two LIF-rings; then the pair (R, S) satisfes:
UL: If MR and Ns are any two nontrivial locally free modules such that

ER(M) = ES(N) then any isomorphism a: ER(M) -> ES(N) is induced by a
semilinear isomorphism of MR onto Ns.

PROOF, (i) Let MR, Ns and a be given, say a: TJ1-> TJ*. Since M =£ 0, M — mR
® M' for some m ¥= 0. Then a induces an isomorphism a' = a \E^mR),
a': ER(mR) -> ES(NO) where No — e*(N), e being the projection onto mR. R is
an IF-ring since LIF => IF so (mR)R is indecomposable. Hence No is indecom-
posable, and thus NOs= Ss, as S is an LIF-ring. Say No = nS,n ¥= 0.

(ii) (mR)R=RR and (nS)s = Ss so ER(mR) s ER(R) s R and similarly
Es(nS) = S. So, if Tj G ER(mR) then ?) has the form eXe for some X G R. Note
that as mRX C mR, eXe = Xe and similarly for Es(nS). Let X E R; then eXe G
ER(mR) so e*X*e* G Es(nS), so there is an ju G 5 such that e*X*e* = e*ju,e*.
Denoting /i by <j>"(X), we have defined a map <j>" : R -> S. Suppose e*/i'e* = e*jue*;
then £*(/*' - /x)e* = 0, that is, (/u - ju')e* = 0. Thus ju - ju' = 0 so /x = ju' and </>"
is well-defined. Clearly </>" is onto. For X G R, e*X*e* = 0 if and only if X — 0, so
<f>" is one-one. Let X, IT G R, say /x = <j>"(X), TJ = <j>"(ir). Then e*(Xir)*e* —

e*X*ir*e*; but ewe = vre so e*7r*e* = w*e*; thus e*(Xw)*e* = (e*X*e*)(e*7r*e*) (e*
is idempotent). Hence e*(Xir)*e* = e*jue*7je* = e*n-qe*, that is, <j>"(Xp) —
<f>"(X)<t>"(iT). Similarly <^"(^ + TT) = </>"(̂ ) + <$>"{TT). Hence <J>" is a ring isomor-
phism.

For a G M, there is an 17 G ER(M) such that a — T/(W) (for example take TJ
mapping wr to ar and annihilating M'). Define <f>': M ^> N by <f>'(a) = TJ*(«). If
a = r\\m), then (TJ' - TJ)(W) = 0 so (TJ' - TJ)E = 0 and (TJ'* - Tj*)e* = 0. Hence
TJ*(«) = T)'*{n) and <$>' is well-defined. Similarly <j>'(a) = 0 if and only if a — 0 so
</>' is one-one. The steps in the definition of <f>' can be easily reversed to show that
<j>' is onto. Let a, b G M, say a = TJ(W), b = fi(m); then(rj + ju)(m) — a + b, so
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<j>'(a + b) = (T, + M ) * ( « ) = (*)* + f * > = T,*(«) + M * ( « ) = * ' («) + *'(&)•

Hence <(>' is a group isomorphism.
It remains to show that <j> = (<!>', </>") is a semilinear isomorphism which induces

a. Let a E M, \ E R, a — TJ(OT) where TJ e ER(M); then aX = i](m)A = i)(mX)
= ( T ) A ) ( W ) = (7}Xe)(w) = (?)(eAe))(m). So f ( m X ) = (T)eXe)*(«) =
(TJ*4>"(A)e*)(n) = Tj*(«<f>"(\)) = 7)*(n)</>"(A) = 4>'(a)4>"(A) so <f> is a semilinear
isomorphism. Furthermore, if £ €E ER(M), c E TV say c = TJ*(«) with T/ E ER(M),

then T(c) = |*T,*(«) = fttvim)) = *'«i?(«)) = < W ( c ) . Thus |* = ^ ^ ' '
and hence </>' induces a.

REMARKS. (1) The proof has been split into two parts because part (ii) can be
used in every situation where M s RR® M' and 7V0 can be shown to be
isomorphic to 5S. So from now on whenever this can be established we will refer
back to part (ii) above for the remainder of the proof.

(2) It can be seen from the proof that it is sufficient to assume R and S are
IF-rings and at least one of them is an LIF-ring so given E in Theorem 3.2, once
MR is constructed, there is no other locally free module Ns over an IF ring with

(3) Lemmas 1.1 and 1.2 of Wolf son [28, page 591] show that any left pid is an
LIF-ring, so Wolfson's Theorem A of the same paper is a corollary to the above.

THEOREM 4.2. If R and S are any two IF rings, then {R, S) satisfies:
UF: as for UL with "free" replacing "locally free".

PROOF. Let MR, Ns and a be given, then M — mR © M' for some m ^ 0 and
N — No® N' with ER(mR) s ES(NO). R is an IF ring so (mR)R is indecompos-
able, and hence JV0 is indecomposable. Thus 7V0 s 5S as S is an IF-ring. The rest
follows as above.

REMARK. It is sufficient to assume that S is a PF-ring.

5. Extensions of the uniqueness results

In the last section it was proved that if MR is a locally free module over an
LIF-ring then there is essentially no other such module whose endomorphism ring
is isomorphic to ER(M). But the question still remains, is MR the only locally free
module with ER(M) as its endomorphism ring? In general the answer is no.
Showing exactly when MR is unique is the first aim of this section. We will then
consider the property UF from the point of view of finding conditions on (R, S)

https://doi.org/10.1017/S1446788700027002 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700027002


318 W. N . Franzsen and P. Schultz [ 11 ]

forcing it to satisfy UF. Some comments about various generalizations of UF will
then be made.

PF-rings will play a major role in this section, so let 9 denote the class of all
such rings (that is, R £ "J if and only if R is a PF-ring).

THEOREM 5.1. Let K be a ring satisfying the conditions in Theorem 3.2, say MR is
a locally free module over an LIF-ring, such that ER( M) = K. Then up to
semilinear isomorphism MR is the only locally free module (over any ring) with
endomorphism ring isomorphic to K if and only if K is an LIF-ring.

PROOF. (=>) If K is not an LIF-ring, then K ^ R, so there is no semilinear
isomorphism of KK onto MR; but EK(K) s= K.

(<=) Let 5 be any ring with 1 and Ns any locally free 5-module such that
ES(N) s K. Now EK(K) s= K and K is an LIF-ring so KK is indecomposable.
Since ES(N) s K =s EK(K), Ns is indecomposable. Let 0 ^ n E N; N is locally
free so there is a nonzero free module F such that n G F and N = F © N'. But N
is indecomposable and F ¥= 0, so N' = 0; that is, Ns is free and thus has rank 1.
Thus Ns s Ss, so ES(N) s S implies K ss S. There is a semilinear isomorphism
from KK to Ss induced by this ring isomorphism so there is a semilinear
isomorphism from KK to Ns. In particular there is one from KK to MR and hence
from MR to Ns.

COROLLARY 5.2. The locally free module MR constructed in Theorem 3.2 is not in
general unique up to semilinear isomorphisms.

PROOF. Theorem 5.1 shows it to be unique only in the case where MR is free of
rank 1.

Before continuing we will need the following results.

LEMMA 5.3. / / R is any ring with 1 and MR is any free R-module with an infinite
basis, then MR has a well-defined rank.

PROOF. See Cohn [4, volume 2, page 102].

LEMMA 5.4. Let MR and NR be nontrivial modules such that at least one is free.
Then there is a semilinear isomorphism of MR onto NR if and only if there is an
isomorphism of MR onto NR.

PROOF. (<=) any isomorphism is semilinear.
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(=>) We may assume MR — © RR is free. Let
(a) <f> = (<£', <J>"): A^ - » ® y R R be the semilinear isomorphism,
(b)y,: i?^ - » © Y / ? R be the / th injection.

For all i let N, = <j>'~li-(RR). It is easily seen that NR = © Â  . So it is sufficient
to show A*, s RR for all /. Let n, = ^> '"! /X1R) an<^ suppose x G A^, then </>'(*) —

//,-^""'(r) G «,/?. Thus Nt C w,-/? C A7, so A1, = «,/? and it is easily seen that
ntR = i?^. Hence NR s © / ? R .

Thus:

COROLLARY 5.5. / / Af̂  w / ree of infinite rank then V/i G Z + there is no
semilinear isomorphism of MR onto © " RR.

It can be seen as a corollary to Theorem 5.1 that even for locally free modules,
ER(M) s ES(N) does not necessarily imply that there is a semilinear isomor-
phism of MR onto A .̂ So it is not the case that every pair of rings (R, S) has UL
or even UF.

DEFINITION. For any infinite cardinal Y» My(R) is the ring of column finite
Y X Y matrices with entries from R.

LEMMA 5.6. If(R, S) has UF then (R, S) satisfies
W: (a) IfR = M'{S) then y < oo, and

(b) JfS = M^{R) then 17 < 00.

PROOF, (a) Suppose R = Mc
y(S), then ER(R) =s Es(®yS) but:

(i) if R ^ S then there is no semilinear isomorphism of RR onto ©y5's which is
a contradiction as (R, S) has UF, so we can assume

(ii) R as 5. Then there is a semilinear isomorphism of Ss on RR so there is a
semilinear isomorphism Ss -> RR ^>©ySs. Thus by Corollary 5.5 v < 00 and
similarly for (b).

Hence:

COROLLARY 5.7. / / R is any ring with 1 then there is a ring S with 1 such that
(R, S) does not have UF.

PROOF. Let Y be infinite and S = My(R). Then by Lemma 5.6 (R, S) cannot
have UF.
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There are numerous other examples of such pairs of rings. One of the more
important examples was given by Cohn [3, page 255] where he constructs
nonisomorphic rings R and 5 with Mn(R) = Mn(S) for some n E Z + .

As seen earlier R and S being IF-rings is a sufficient condition for (R, S) to
have UF. But this condition is not necessary. Clearly if there are no free modules
MR and Ns with ER(M) s ES(N) then (R, S) has UF but there is no reason why
R or 5 should have IF. Excluding this case, however, what can be said is the
following:

LEMMA 5.8. If(R, S) has UF and there exist free modules with ER(M) s ES(N)
then R and S have WIBN.

PROOF. Suppose ER(M) s ES(N). Then there is a semilinear isomorphism of
MR onto Ns as (R, S) has UF. In particular R s S. Suppose R did not have
WIBN. Then Example 2 of Section 6 shows that there is a free module MR and an
automorphism of ER(M) which is not induced by a semilinear "automorphism".
This contradicts UF, so R has WIBN.

Unfortunately this procedure does not show IF to be necessary in this case. But
for R and S in 9 it is possible to give necessary and sufficient conditions of the
type mentioned in Lemma 5.6.

THEOREM 5.9. If R, S G 9, then (R, S) has UF if and only ifR = M'(S) implies
y = 1, and S = M'(R) implies y - 1.

PROOF. (̂ >) Suppose R = M'(S). Then

so by UF, RR is decomposable into y summands. Since R £ <?, its summands are
free, so y is finite. But by Proposition 2.1, R has WIBN, so y = 1.

A similar argument works for S.
(«=) Suppose MR, Ns and an isomorphism a : ER(M) -» ES(N) are given. Then

as in Theorem 4.1, M = mR ® M' and N = iV0 © N' with R = ER(mR) s ES(NO).
But since S G9,N0 is free, so R s= M$(S) for some y.

Since y = 1, No s 5S, and the rest follows as in part (ii) of the proof of
Theorem 4.1.

If R and S are no longer assumed to be in P̂ then the situation becomes less
clear, but much can still be said. In this case it is natural to widen the class of
modules involved. Consider the following property.
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UFP: as for UF with "projective modules with at least one free" replacing
"free modules".

THEOREM 5.10. (R, S) has UFP if and only if(R, S) has UF and satisfies:
(P): IfPR (Qs) is projective but not free then ER(P) s* S (ES(Q) as R).

PROOF. ( ^ ) Clear.

(<=) (i) Let MR, Ns and a be given. Without loss of generality we may assume
MR is free, so MR = mR © M' and N — No® N' as before. No is projective and
(R, S) has P so ES(NO) s R shows that No is free. The rest follows as in the proof
of Theorem 5.9.

REMARKS. (1) UFP implies UF but the converse is not true in general, for
example let R = Z2, S - Z2 © Z3.

(2) It is expected that relaxing the requirement in UFP that one of MR and Ns

be free will lead to a considerably more difficult problem, that is, when does
(R,S) satisfy:

UP: as for UF with "projective" replacing "free".
What can be said is that UP implies UFP but again the converse is not necessarily
true (for example R = Z2 © Z3, S = Z2 © Z5), and the following:

PROPOSITION 5.11. / / (R, S) has UFP and one of R or S satisfies:
P,: Every projective has a free summand, then (R, S) has UP.

(It is not known whether P, is necessary for UP or whether the class of rings
with P, is disctinct from 9.)

6. Semilinear isomorphisms

At first glance, the statement of the Uniqueness Problem seems somewhat
unnatural. Why insist on each ring isomorphism being induced (by a semilinear
isomorphism) when the results might be found more easily by just proving the
existence of some semilinear isomorphism? In this section we will first look at
whether dropping this restriction can lead to any great improvement in the
results. Then we shall look for modules MR and Ns which are such that there is an
isomorphism a : ER(M) -» ES(N), which is not induced, even though there are
semilinear isomorphisms of MR onto Ns. Consider the following properties.

WUF: as for UF but a need not be induced;
WUFP: as for UFP but a need not be induced.
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The following lemma shows that no gain at all is made by considering WUFP
instead of UFP.

LEMMA 6.1. (R, S) has WUFP if and only if(R, S) has UFP.

PROOF. (<=) clear.

(=>) Suppose (R, S) has WUFP. If there are no projectives MR, Ns with
ER(M) s ES(N) then (R, S) has UFP. So suppose there are MR, Ns with
a : ER(M) -» ES(N) an isomorphism. We may assume MR is free. So M = mR ©
At', and N = N0®N' with ES(NO) s ER(mR). (R, S) has WUFP, No is projec-
tive and mR is free so there is a semilinear isomorphism of mRR ->• No . In
particular R = S, thus there is a semilinear isomorphism Ss -> RR -> No , that is,

Part (ii) of 4.1 can now be used to construct the required semilinear isomor-
phism.

The case including UF and WUF is not quite as general, however.

THEOREM 6.2. If{R, S) has P (see Theorem 5.10), then (R, S) has UF if and
only if {R, S) has WUF.

PROOF. (=>) clear.

(<=) Follow the steps for (=>) in 6.1 but notice that No is free as (R, S) has P.

We will now search for free modules MR, Ns with the properties:
(1) there is a semilinear isomorphism of MR onto Ns;
(2) there is an isomorphism a : ER{M) -* ES(N) which is not induced by any

semilinear isomorphism.
By considering the proof of Theorem 4.1 we are lead to the following:

LEMMA 6.3. Suppose MR, Ns are nontrivialfree modules. Let a : ER(M) -> ES(N)
be a ring isomorphism. Say M = mR ® M', e : M -» mR a projection, so N — No ©
N' where No = a(e)(N). Then

(i) a induces a ring isomorphism a ' : ER(mR) -» ES(NO) and
(ii) a is induced by a semilinear isomorphism of MR onto Ns if and only if a' is

induced by a semilinear isomorphism of mR onto No .

PROOF, (i) Let a' = a IE^M^
 t n e n a ' *s t n e required isomorphism,

(ii) (<=) Similar to (ii) in the proof of 4.1.
(=>) Suppose a is induced by <f> = (</>', <f>"): MR -» Ns;
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that is, a(rj) = rj* = ^'TJ^T1 VTJ G ER(M) SO T J V = <J>'TJ. Clearly 4>'(mR) - nS
where n = <j>'(m). As m — e(m), <t>'(m) = <j>'e(m) but e*<J>' = <#>'e so n — <$>'{m) =

e*«/>'(w) = e*(n) G No. Thus <j>'(mR) C AT0. Similarly No C <t>'(mR), tht is, <£'("*#)
= iV0. So <>0 = (<#>'L/o <t>") '• mRR — NOs is a semilinear isomorphism. Let ju' E
ER(mR) then /x' = ejue for some ju G ER(M), and it is easily checked that
a(ft') = (<*>' U ) M ' ( 4 > ' L«)" ' , that is, </>0 induces a'.

REMARK. This is in fact true for all idempotents e not just projections onto free
summands.

There is the following immediate simplification.

LEMMA 6.4. There are modules MR and Ns with the above properties if and only if
there is a module PT with an automorphism of ET(P) not induced by a semilinear
automorphism.

PROOF. (*=) Take MR = Ns = PT.
(=») Suppose there is a semilinear isomorphism 0: MR -> Ns and an isomor-

phism a : ER(M) -» ES(N) which is not induced. Then 8~l induces an isomor-
phism /?: ES(N) -» ER{M). So y = fla : ER{M) -» ER(M) is an automorphism
of ER(M). Suppose y is induced by <f> = (</>', <£"). Then VTJ G ER(M), Y(TJ) =
^TJ^" ' . But this implies that a(rj) = ( ^ ) T J ( ^ ) " 1 , SO that a is induced by the
semilinear isomorphism 6<j> which is a contradiction.

From now on, by an inner (outer) automorphism will be meant an automor-
phism induced (not induced) by a semilinear automorphism. So Lemma 6.4 shows
that we need only look for an outer automorphism.

Suppose we had an outer automorphism. Let e be a projection onto a rank 1
free summand mR; and Mo = a(e)(M). By Lemma 6.3, as a is not induced,
a' = a |£ (mR) cannot be induced by a semilinear isomorphism of mRR onto Mo .
There are two possibilities.

(1) Mo as RR (and hence a' defines an outer automorphism of ER(R)), or
(2)M0"R^RR.

Only case (2) can occur:

LEMMA 6.5. Let R be any ring with 1, then any automorphism of ER(R) is inner.

PROOF. Let a : ER(R) -» ER(R) be an automorphism of ER(R). ER(R) = R
under the isomorphism f: TJ -> T)(1R). Define </> = (<>', <#>"): RR -* RR by <j>' —
faf"', (j>" — faf"'. Clearly <f> is a semilinear automorphism of RR. Let TJ G ER(R),
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r E RR; then </>'T,^-'(r) = r(a(i?)(lf i)), but r ( a (T , ) (1 R ) ) = a(i)Xr), thus a(r,) =
and so a is inner.

Let us restrict our attention to those e whose image is isomorphic to RR. If we
are to find an outer automorphism then for all such idempotents e E ER(M),
e(M) as a(e)(M). There are 3 possibilities for a(e)(M):

( l ) a ( e ) ( A / ) s e 7 / ? R for some n G Z + \ { 1 } ;
(2) a(e)(Af) s ®yRR for some infinite y; or
(3) a(e)(M) is projective but not free.
As ER(e(MJ) = £R(a(e)(Af)) the following conditions on R are easily seen to

be necessary for each of the above to occur:
(1') there is a positive integer n with R = Mn(R), but RR 9* ©7 RR;
(2') there is an infinite y with R = M$(R);
(3') there is a non-free projective PR with /? s ER(P).

So if /? is a ring for which none of these hold then for a free /^-module MR all
automorphisms of ER(M) are inner, for example if R has P and WIBN. Even if
one of these occurs for a given ring it is not immediately apparent that an
example of an outer automorphism can be constructed. However, the following
two examples show that for any ring over which 1' or 2' occurs there is a free
module with an outer automorphism. Whether this is so in general for 3' is not
known, but the special case where R = Mn(R) for some n G Z+ will be treated.
Note that this special case includes all rings satisfying 1' or without WIBN (so the
proof of Lemma 5.8 will be complete.)

EXAMPLE 1. Let R = £z(©wZ); then R ss M^(R) so let a : R -> M^(R) by any
isomorphism. Then a': M^(R) ^ M^M^R)) given by a': (atJ) t-* (a(a,j)) is a
ring isomorphism (M^(S) is the ring of all w X « column convergent matrices,
that is, all the column finite matrices, and (a,- •) is column finite if and only if

(«K, ) ) is).
For n G Z + , let Xn be the set of positive integers divisible by exactly n distinct

primes (with the understanding that 1 GJC,). Then Z + = Uu Xn and \Xt\= u.
Thus (BURR =©u(©.v R)R under the map 0 : TJ -> -q* where T)*(/, 7) = -q(k)
with k the yth element (ordered by magnitude) of Xt. Then fi induces an
isomorphism 0': M^(R) -> M^M^R)).

Now y = j8'"V : M^(R) - M'(R) defines an automorphism y' of £R(©W /?).
Claim, y' is an outer automorphism of ER{®^ R). Now «: IR i-> 7U as a is a

ring isomorphism, so a':en-*Eu. Then we have y(en) = 2,-e*£,•,• but
e n (© u .R)s .R and Y(eM)(©„/?)= 0 ^ ^ ® , , / ! , which implies <?,,(©„/*) ^

/?). Thus by 6.3 Y' is not inner.

REMARK. This holds for any ring R a M$(R), y infinite.
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To give an example for the cases 1' and 3 ' we use the following fact.

COROLLARY 6.6 (to Proposition 2.1). Suppose R = Mn(R) for some n G Z + .
Then RR= © " Pt with Pt projective but not free and H o m ^ P , , Pj) = R.

PROOF. The proof of Proposition 2.1 showed that Mn(R)Mn{R) =®1 eHMn(R),
and H o m w w ( e , , M n ( / { ) , enMn(R)) s eiiMn(R)eJj = R. The "result follows from
the isomorphism R ss Mn(R).

Thus £ R ( © " P,-) = Mn(R), with <?,, corresponding to the projection onto Pv

EXAMPLE 2. Let R s Mn(/?) , n e Z + and put MR = © „ # * . Then £ R ( M ) =
MC

U(R). Define a : MC
U(R) - M^(Mn(R)) by inserting brackets appropriately. But

M^(Mn(R)) = ER(®U(@1 Pj)), so RR =®"PiR imphes that a induces an auto-
morphism a' of ER(M). Clearly a'(e"i) = Eu where e", is the matrix with 1 in the
(1, l)th place and zeros elsewhere and Eu has eu in the (1, l)th place and zeros
elsewhere. Thus eu(MR) s R g& Pt ss EU(M) = a ' (^nX^) s o a ' ' s outer.
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