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Abstract. We will summarize results of relativistic calculations of the 
eigenfunctions and eigenfrequencies of modes of oscillation trapped within 
the inner region of thin accretion disks by non-Newtonian gravitational 
properties of a black hole (or a compact, weakly-magnetized neutron 
star). The focus will be on the most observable, robust, and best-studied 
class: the analogue of (internal) gravity modes in stars. The frequen­
cies of the corresponding peaks in the power spectrum of the resulting 
luminosity modulations depend almost entirely upon only the mass and 
angular momentum of the black hole. The frequency width also depends 
upon the viscosity parameter of the disk. Searches for such features are 
being carried out by the RXTE satellite. 

1. Introduction 

Presently, evidence for the existence of black holes is based almost entirely upon 
observations which indicate that a certain amount of mass is contained within a 
region of a certain radius. However, a black hole is a region of spacetime governed 
by the Kerr metric of general relativity. We are aware of only three proposals 
for the observation of black hole signatures that could be definitive. The first 
involves the effect of the Kerr metric on the polarization of radiation emitted 
near the black hole (Connors, Piran, & Stark 1980). The second involves the 
frequency and time dependence of emission line profiles (e. g., Fabian et al. 1989). 
The third is what we shall describe below. 

Our group has been investigating consequences of the realization [by Kato 
and Fukue (1980)] that general relativity can trap normal modes of oscillation 
near the inner edge of accretion disks around black holes. The strong gravita­
tional fields that are required can also be produced by neutron stars that are 
sufficiently compact (requiring a soft equation of state) and weakly magnetized 
that there is a gap between the surface of the star and the innermost stable 
orbit of the accretion disk. Although we shall not explicitly consider such neu­
tron stars here, the results obtained will also apply to them to first order in the 
dimensionless angular momentum parameter a = cJ/GM2, since their exterior 
metric is identical to that of a black hole to that order. It should be noted that 
a < 0.2 for most models of rotating neutron stars. 

These modes of oscillation provide a potentially powerful probe of both 
strong gravitational fields and the physics of accretion disks, since: 

• They do not exist in Newtonian gravity 
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• Their frequencies depend upon the angular momentum as well as the mass 
of the black hole 

• The fractional frequency spread of each mode is proportional to a, the 
viscosity parameter of the accretion disk. 

2. Adiabatic Oscillations 

Following exploratory calculations by Kato (1980), Okasaki et al. (1987), and 
Kato (1989), we also employed a modified Newtonian potential to calculate 
the adiabatic eigenfunctions and eigenvalues of the lowest acoustic (p) modes 
(Nowak & Wagoner 1991) and internal gravity (g) modes (Nowak & Wagoner 
1992, 1993). This was extended to full general relativity by Perez (1993), who 
also included the corrugation (c) modes studied by Kato (1990, 1993) and Ipser 
(1994, 1996). The g-modes have been analyzed more extensively by Perez, 
Silbergleit, Wagoner, & Lehr (1997), and we shall also summarize their key 
results below. 

We have applied the general relativistic perfect fluid perturbation formal­
ism of Ipser and Lindblom (1992) to thin accretion disks in the Kerr metric. 
The radial component of the velocity of the fluid is neglected, which has little 
effect on the modes for these thin models. Neglecting the gravitational field of 
the disk (also a good approximation), the adiabatic oscillations of all physical 
quantities can be expressed in terms of a single scalar potential SV(r, z) gov­
erned by a second-order partial differential equation. The stationary (d/dt = 0) 
and axisymmetric (d/d(f> = 0) unperturbed accretion disk is specified by the 
relativistic a-disk model (Novikov and Thorne 1973, Page and Thorne 1974). 

All fluid perturbations are of the form f(r, z) exp[i(at + m,(j))]. With angular 
velocity fi, the comoving frequency is u(r) = a + m£l(r). It is sufficient to con­
sider eigenfrequencies a < 0 and axial mode integers m > 0. Nonaxisymmetric 
modes (m ^ 0) should produce relatively little luminosity modulation, unless 
the disk is viewed close to edge-on. In general, the vertical extent of the modes 
within the disk is restricted by the requirement that |u>| be greater than the 
buoyancy frequency. Numerical results have been obtained for accretion disks 
which are barotropic (e. g., isentropic) on scales of order their thickness, in which 
case this restriction is not operative since the buoyancy frequency vanishes. 

The effective radial wavelengths are significantly smaller than r, allowing 
a WKB expansion of the problem and approximate separation of the governing 
equations. The key ingredient is the relativistic behavior of the radial epicyclic 
frequency n(r), shown in Figure 1 with other important orbital frequencies. 
As usual, K is the frequency of radial perturbations of circular orbits of a free 
particle, while Qj_ is the same for vertical perturbations. 

The radial dependence of the fluid perturbations are governed by the WKB 
relation 

(K2 - u2)W = 0 , (1) 

where grr is a Kerr metric component, Ul is the four-velocity component dt/dr, 
cs(r, z) is the speed of sound, and \P(r) is the slowly-varying separation function. 
The eigenfunction W(r) is related to a radial derivative of the potential 5V, and 

d2W | gr 

dr2 c- :(r,0) 
* nL 
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Figure 1. The radial dependence of the square of the fundamental 
free-particle frequencies that govern the modes of the disk: Keplerian 
(ft), and radial (K) and vertical (ftj.) epicyclic. Three values of the 
black hole angular momentum parameter a = cJ/GM2 are chosen. 
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is proportional to the radial component of the fluid displacement. From equation 
(1), we can see where the modes are trapped (W~1d2W/dr2 < 0), as follows. 

The g-modes [defined by <P(fij_/w)2 > 1] are trapped where u>2 < K2. This 
occurs between the radii r_(a) and r+(<r), illustrated in Figure 2 and plotted 
in Figure 3. The lowest modes (fewest number of radial and vertical nodes 
in their eigenfunctions) have approximately vertical displacements, and have 
eigenfrequencies \a\ which are close to the maximum possible, am = n(rm) + 
mQ(rm). Also shown in Figure 2 and plotted in Figure 4 is this radius rm to 
which r_ and r+ converge as the frequency is raised to this maximum. 

The p-modes [defined by ^(Q±/co)2 < 1] are trapped where u2 > K2. The 
radial (m = 0) p-modes that are trapped within the inner radius of the disk 
(r,) and r_ have very little radial extent, and thus will produce negligible direct 
luminosity modulation, although they will modulate the accretion onto the black 
hole (or neutron star). The highest frequency modes that are trapped within 
r+ and the outer radius of the disk (r0) will modulate a significant fraction of 
the disk where the luminosity per unit radius is highest. However, since their 
wavelength A(r) ~ c3/u> will be relatively short, the net luminosity modulation 
will be reduced. We have not yet investigated this outer branch of p-modes 
because of the uncertain physics and location of the outer radius. 

The c-modes [defined by \P(fij_/u>)2 = 1] are typically nonradial (m = 1) 
incompressible (and therefore less modulating) waves that slowly precess around 
the angular momentum of the black hole. The ones that we have studied have 
a maximum frequency proportional to a3, only becoming comparable to the g-
mode frequency am when a -> a(max) = 0.998. They also tend to exist very 
close to the inner edge of the disk. 

The frequencies of all of these modes are proportional to 1/M, but their 
dependence on the angular momentum of the black hole is quite different (Perez 
1993). However, we now turn our attention to the g-modes, which are the most 
robust and observable of those classes that we have investigated. 

The dependence of the maximum g-mode frequencies on the angular mo­
mentum of the black hole is illustrated in Figure 5. For instance, the lowest 
radial (m = 0) g-modes have a frequency / = —a/2n given by 

/ = 714(1 - enj)(M@/M)F(a) Hz , enj * (^~f) ^ • (2) 

The properties of the accretion disk enter only through the small term enj, which 
involves the disk thickness 2h(ro) and the radial (n) and vertical (j) mode num­
bers, with 6 ~ 1. Typically h(ro)/ro ~ Q.lL/LEdd for a radiation-pressure 
dominated optically thick disk region. F(a) is the upper function plotted in 
Figure 5. From Figure 5, we also see that the higher axial modes have a some­
what different dependence upon the black hole angular momentum, which in 
principle would allow its determination as well as that of the mass. 

The effective fractional width [Ar(/) /rm] of the lowest eigenfunction (out­
side of which it becomes evanescent) is shown in Figure 4. Although the ap­
proximate center of the eigenfunction (located at rm) is close to the temperature 
maximum of the disk, its relatively small width appears to limit the luminosity 
modulation to at most a few percent. 
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Figure 2. The functions which determine the radii r_(c) and r+(<r) 
between which the eigenfunctions are concentrated. Also indicated is 
the maximum value om of the eigenfrequency |«r|, and the inner radius 
rt- of the disk. For this plot, we choose a — 0.5 and m = 1 (with the 
case m = 0 corresponding to use of the dashed horizontal lines). 

https://doi.org/10.1017/S0252921100042779 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100042779


Relativistic Diskoseismology 305 

10* 

±L 10' =-

10' 

1 ' ' ' ' ' 
- -<-• . . a = 0 
•=- — ^ L * -

^ % > ~^*^^ * 
• * • * • * — « ^ ^ •* ^ 

""-—--— ""° " ° ^ ^ \ : -
~~ ~~ l̂iî ^ \̂--

- ^ -^"N- -"' -
: m=̂ ) m=l m=2 

i i • . . . 

-

: 
: 

-

0.001 0.01 0.1 
|o| [c3/GM] 

10< 

& io1 =. 

10u 

0.001 0.01 0.1 
Id [CVGM] 

10z 

i i 10' r 

10" 
0.001 0.01 0.1 

W [cVGM] 

Figure 3. The radii between which a g-mode eigenfunction is con­
centrated is plotted versus its eigenfrequency. 
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Figure 4. (a) The black hole angular momentum dependence of the 
radius rm to which r_ and r + converge as \a\ —»• <jm. Also shown 
is the radius r; of the inner edge of the disk, (b) The dependence 
of the fractional effective width of the lowest eigenfunction, Ar / r m = 
[r+(«r) — r_(o-)]/rm, on the angular momentum of the black hole. The 
same values of m are chosen as in (a). The accretion disk model is 
specified by T = 4/3, a locally isentropic equation of state, and speed 
of sound corresponding to a luminosity L = 0.lL,Edd from a radiation-
dominated disk. 
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Figure 5. (a) The dependence of the maximum radial (m — 0) 
eigenfrequency on the black hole angular momentum parameter a = 
cJ/GM2, relative to its value at a — 0. (b) The ratio of the maximum 
eigenfrequency of some higher m modes to that of the radial mode. 
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3. Frequency Width and Amplitude of the Oscillations 

Nowak and Wagoner (1992) have estimated the damping (or growth) rates of p 
and g-modes due to isotropic and anisotropic turbulent viscosity and gravita­
tional radiation reaction. Although the gravitational radiation instability will 
cause the modes to grow for M ^> 1O8M0, we have recently found that isotropic 
viscosity will always produce damping. With j and n of order the number of ver­
tical and radial nodes in any particular eigenfunction, its corresponding quality 
factor Q is given by 

VQin ~ \j2 + (h/r)n2]a , (3) 

where the viscosity parameter is thought to lie in the range 10 - 2 < a < 1. 
However, the effective width A / of the g-mode feature will also be determined 
by what range of mode numbers j and n are sufficiently excited [with each mode 
broadened by (Af/f)jn f» 1/Qjn]. 

An estimation of the amplitude of the oscillations, and the resulting frac­
tional modulation of the disk luminosity, was also obtained by Nowak and 
Wagoner (1993). They found approximate equipartition between the energy 
of the lowest modes and the energy of the largest turbulent eddies [presum­
ably driven by the Velikov-Chandrasekhar-Balbus-Hawley magnetic instability 
[for recent numerical results, see Stone et al. (1996)]. This produces maxi­
mum fir-mode displacements of order the thickness of the disk, which should 
produce maximum luminosity modulations SL^/L^ ~ 10- 2 , if the photon fre­
quency v > h~lkT(max). 

If turbulence drives these oscillations, it should also contribute to the fluc­
tuation power in a broad range of frequencies. Nowak and Wagoner (1995) 
have computed the resulting power spectral density, and found that it could 
match that of the best-observed black hole candidate Nova Muscae (Miyamoto 
et al. 1993), but only at frequencies / > 10 Hz. The power is predicted to drop 
rapidly (oc /~5) above a frequency given approximately by equation (2). 

4. Observations 

These modes of oscillation should modulate the quasi-thermal emission from 
accretion disks in the ultraviolet for supermassive black holes and at soft x-ray 
energies for stellar mass black holes. 

R. Wagoner, M. Nowak, and W. Zhang have been granted target of oppor­
tunity time with the RXTE satellite to obtain power spectra (from 0.001 to 2000 
Hz) of the black hole candidate GX 339-4 and a transient such as GS 1124-68 
(Nova Muscae), during a 'high quiet' state dominated by a thermal disk energy 
spectrum. This was chosen to reduce the possibility of demodulation of the disk 
emission by a halo. Simulations indicate that a g-mode feature in the power 
spectrum with amplitude greater than 1% (for Q ~ 3) should be detectable with 
a few hours integration. 

Recently, Morgan et al. (1996) have detected a feature at / — 67 Hz with 
Q « 20 in the black hole candidate GRS 1915+105 with RXTE. What distin­
guishes this peak from others that have recently been detected at high frequen­
cies is the fact that it did not change its frequency as the source luminosity 
varied. During the time that the feature was detectable, the source varied from 
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1-2 Crab but the frequency changed by less than 3%. This is clearly predicted 
by equation (2). The amplitude of the peak was greatest (~ 6%) at the highest 
x-ray energies. 

If this feature is produced by a g-mode oscillation, equation (2) predicts 
a black hole mass of 10.6M© if it is nonrotating to 36.3M© if it is maximally 
rotating. Other aspects of this identification are explored by Nowak et al. (1996). 
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Discussion 

R. Nelson: Rotating fluids can support negative energy modes. In the presence 
of dissipation, these modes will grow. This is the so-called Friedmann-Schuty 
instability in rotating General Relativistic stars, although Relativity is not re­
quired - only dissipation. Do you all find any unstable negative energy modes 
in your disks? 

R. Wagoner: Yes, we do have negative energy modes, for axial quantum numbers 
m > 0. We [Nowak and Wagoner, ApJ 393, 697 (1992)] have calculated the 
growth rate of m = 2 modes due to the CFS gravitational radiation instability, 
and find that it is less than that due to a-viscosity for all black hole masses 
M < 109M@. 

R. Soria: Have you tried to extend your analysis of eigenfrequencies to the case 
of naked singularities (a > 1)? Could such a study provide an observational clue 
to distinguish between BH and naked singularity? 

R. Wagoner: Our analysis can be generalised to any time-independent, axially-
symmetric spacetime in which a disk of matter rotates in circular, stable orbits. 
The eigenfrequencies of the perturbations do strongly probe the structure of the 
gravitational field. 
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