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1. Introduction

R denotes always a radical algebra over a field <P. A left ring ideal of R which
is also a subvector space over <P is called a left algebra ideal of R. R is said to be
left algebra noetherian if it satisfies the ascending chain condition for left algebra
ideals. If dim R < oo, then

(i) R is finitely generated

(ii) R is left algebra noetherian

(iii) R is algebraic.

Since the radical of an algebraic algebra is nil ([4] P. 19), conditions (i), (ii), (iii)
are also sufficient for R to be finite-dimensional.

Amitsur has conjectured that the radical of a finitely generated ^-algebra is
nil (see f 1 ]). This brings finitely generated radical ^-algebra close to being nil-
potent and hence of finite dimension. We are therefore led to restrict our inves-
tigation to radical algebras and to various*condjtions that imply that dim R < oo.
It seems probable that the following conjecture is true:

R is finite-dimensional radical algebra if and only if (i) R is finitely generated
and (ii) R is left algebra noetherian.

Observe that thel-evitzki theorem "in a left noetherian ring any nil left ideal
is nilpotent" may be extended to algebras, namely, if R is a left algebra noethe-
rian algebra over $, then every nil left algebra ideal is nilpotent (see [3]). Using
this result we can easily see that the conditions of the conjecture cannot be
weakened. An example is given by Golod (see [2]) of a finitely generated nil
algebra over any field <P which is not of finite dimension.

The purpose of this paper is to prove the conjecture under some additional
assumptions on the radical algebra R.

2. Preliminaries

A left algebra ideal L of R is said to be finitely generated if there exists a finite
number of elements M, , • • •, «„ such that
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L = <Pu1+Ru1 + • • • +<Pun + Run.

LEMMA 2.1. Let Rbe a radical ^-algebra and L be a non-zero left algebra ideal
generated by a finite number of elements. Then RL ^ L.

PROOF. See [4] p. 200.

THEOREM 2.2. Let Rbe a radical, finitely generated and left algebra noetherian
over 0. If R satisfies a polynomial identity then dim R < oo.

PROOF. It is known that the radical of a finitely generated algebra satisfying
a polynomial identity is nil (see [1]). So R is nilpotent. Since R is also finitely
generated, dim R < oo.

COROLLARY 2.3. If R is a commutative, finitely generated radical algebra and
if R is left algebra noetherian then dim/? < oo.

NOTATION. If S c R then by (S)1 we mean the left annihilator ideal of S.
Similarly (S)r is defined.

3.

In all the theorems of this section, except 3.1, let R be a radical algebra
satisfying the following conditions:

(i) R is finitely generated

(ii) R is left algebra noetherian

If the field <P is non-denumerable then (i) and (ii) are sufficient for R to be finite-
dimensional. Thus the remainder of the paper is only of interest for countable
fields.

THEOREM 3.1. Let

(1) R be a radical algebra

(2) R = <P(Xl,x2)

(3) x\ = x\ = 0 and (xj n (x2j * 0.

Then dim R < oo.

PROOF. Let y = x1x2. We show that y is nilpotent. Note that x^y = yx2 = 0
and every element of R has the form

z = P(y)x1+x2Q(y)+x2S(y)x1+yT(y)

where P, Q, S, T are polynomials with coefficients in $ and their constant terms
need not be zero. It follows that
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x1zxlx2 = x1x2Q(y)x1x2 = y2Q(y)
xrzx2 = x1x2S(y)xlx2 = y2S(y)

xix2zx1x2 = x1x2yT(y)x1x2 = y3Ty)
xtx2zx2 = x1x2P(y)x1x2 = y2P(y)

for zeR. If ze (xt)
r n (x2)r, z # 0, then above observation implies that

+ • •• + a 5 / ' = 0

where 2 ̂  &j < k2 < • • • < ks. So if

then
= /'x.

So yki = 0, because x is a quasi-regular element. So dimi? < oo, because the
set xf, xtXj, xtXjXk, • • • is a finite set.

THEOREM 3.2. Ifx^ ,•••, xn are generators ofR such that

(1) X; is nilpotentfor alii

(2) xtR(or RXj) is an idealfor alii then dim R < oo.

PROOF. It suffices to show that R is nil. Suppose a is a non-nilpotent element in
R. Let S = {B; B is an ideal of R such that o*0 B for all k ^ 1}. Then S has a
maximal element, say C. Since C is a prime algebra ideal of R, R = R/C is a non-
zero prime, finitely generated and left algebra noetherian radical algebra over <P.
Can assume R = ^{Xi, • • •, xm) where m ̂  n. If XjiJ = 0 for all i then xt = 0
for all i, because .R is a prime ring. This is a contradiction, because C # R. Let
J = x ;# # 0 f or some /. If x; is of index k then x*~ JT = 0 which is a contradic-
tion. This completes the proof.

EXAMPLE 3.3. Let R be the ring of all polynomials without constant terms,
in two indeterminates x and y, over a field <P of the form

il,'2*0 jl,J2*0

subject to the following conditions:

(1) x*/ = j'x* for all / ^ 2 and x ^ 1 or / ^ 1 and k 2; 2 and xjx = x2j

and

(2) xm = 0, (xy)m = 0, and xy™ = 0 for all m ^ « when «is fixed and n ̂  3.

i? is an algebra over <P with {x, •xV, y'x1, yixjyk}itJtk= i,...,B-i as a set of
generators. Moreover, if t is a generator then tR is an ideal of R.
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REMARK. Conditions (1) and (2) in theorem 3.2. can be replaced by

(1)' afj- = XtXj—XjXi is nilpotent for all i and/

(2)' oifjR (or RtXij) is an ideal for all i and /.

PROOF. If we assume that R is not nil then let R be as in theorem 3.2. If all
auR = 0 then a.^ e C for all i and/. Then J? is a commutative ring. Use Corollary
2.3 to get R is of finite dimension which implies that R is nilpotent. But this is a
contradiction to C # R. So T = ottJR # 0 for some i and/. The same argument as
in theorem 3.2. leads to a contradiction. Hence dim R < oo.

THEOREM 3.4. Let R = ^(xlt • • •, xn) and let ai} = xtXj—XjXi.
Assume Ratj (ora^R) is nil for all i and j . Then dimJ? < oo.

PROOF. Let N be the sum of all nilpotent algebra ideals of R. Then N is the same
as the sum of all nilpotent ring ideals of R. Since Ratj s N, we get afj- = 0 in
R = R/N for all i and/. Hence R is commutative. We apply Corollary 2.3 to get
R = N. Thus R is nilpotent and hence finite-dimensional.

LEMMA 3.5. If R is a ring, ae R, a2 = 0 and xa—ax is niipotent for all x in
R, then aR is nil.

PROOF. a(xa-axfx = (axf+1 for xe R, k = 1, 2, • • •.

LEMMA 3.6. If R is a ring, a, be R, a2b = 0 and ya-ay is nilpotent for all y
in bR, then abR is nil.

PROOF. a(bxa-abxfbx = (abxf+x for any x e R, k = 1, 2, • • •.

LEMMA 3.7. If R is a ring and aeR such that a and xa—ax are nilpotent for
all x in R, then aR is nil.

PROOF. Suppose aR is not nil, then there is an integer m such that cFR is nil,
but am~1R is not. Let b = d"~2 and apply lemma 3.6. to get a contradiction.

THEOREM 3.8. Let R = $(xt, • • •, xn), aiy = xtXj — XjXt and let ay and
xtXij — ctijX be nilpotent for all i andj and for all xe R. Then dim R < co.

PROOF. Lemma 3.7. implies that 0LtJR is nil. Now we apply theorem 3.4.

THEOREM 3.9. Let R — <&{xv, • • •. xn). Assume that xt andxXi-XiX are nil-
potent for all i and all x in R. Then dim R < oo.

PROOF. Lemma 3.7. implies that xtR is nil for all j . Since xtR = 0 in R =
R/N, where N is the nilpotent radical ofR, we get x( = 0 and hence R = N.

THEOREM 3.10. Let R satisfy the following two conditions:

(1) txtj is a right zero divisor for all i andj
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(2) If I is the intersection of all non-zero left algebra ideals of the form Rx or
{a)1 for x in R and a in R then I # 0.

Then dim R < oo.

PROOF. If a IS a right zero divisor then 0 # (a)1 2 / . So a e ( / / . In particular
N, the nilpotent radical of R, is contained in ( / / : We show that ( / / £ N.

If 0 j= t e / and x e ( / / then tx = 0. The chain (*)' £ (x2)1 s • • • terminates.
So there exists a positive integer m such that (JC™)' = (JC4)' for all s ^ m. If
i?y" # 0 then t = j-x"1 for some y in i?. Since *x = 0 we get yx™*1 = 0 and
hence y e (x1"4' 1 ) i = (x™)'. So f = j f = 0 which is not the case. So Rx" = 0 and
hence x is nilpotent. So N = (If. This shows that R = R/N is a commutative
ring. We use corollary 2.3. to get R = N. This completes the proof.

COROLLARY 3.11. If(xtJ is a right zero divisor for all i andj and if the intersec-
tion of all non-zero left algebra ideals is not zero then dim R < oo.

LEMMA 3.12. Let R be a ring satisfying the ascending chain condition for left
annihilators. Then for any element ae R there exists a positive integer k ^ 1 such
that (a)1 n Ret = 0.

PROOF. See [5] p. 297.

THEOREM 3.13. Let R = $(*! , • • •, xn) satisfy the followings:

(1) For some maximal algebra ideal T of R there exists an element ae R such
that T = Ra.

(2) X; is nilpotent for all i.

Then dim R < oo.

PROOF. AS before we show that R is nil. Suppose z e R is a non-nilpotent
element of R. Let C be a prime ideal of R which is maximal with respect to z* £ C
for all k ^ 1. Lemma 2.1 implies that 0 ^ R2 ^ R. If R2 $ T, then 0 # (J?/r)2

J (R/T), by lemma 2.1,. which is a contradiction to maximality of T. So R2 ^ T
and hence R2 = T = Ra. Since .R = R/C is a prime ring and R2 = .Ra we get
(a)' = 0. If (a)' # 0 then (a)1 n Rak = 0 for some k ^ 1, because of the lemma
3.12. But Rak = Rk ^ 0 and hence Ra* is essential left ideal of R. This contradic-
tion shows that (a)' = 0 and hence a is a regular element of R. Clearly for some i,
Xi$R2. So $Xj+R2 = R and <Px, + <Pxta + Ra2 = R. This implies that there exist
<x,Pe<P and feR such that a2 = aJCj+/?3c,.5+ra2. If a ^ 0 then XjeR2. So
a = 0 and a = fiXf + fa, by regularity of a. If xf is of index k then y = fy where
y = ax\~l. So 3* = 0, because f is a quasi-regular element. This contradiction
completes the proof.
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