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1. Introduction

R denotes always a radical algebra over a field @. A left ring ideal of R which
is also a subvector space over @ is called a left algebra ideal of R. R is said to be
left algebra noetherian if it satisfies the ascending chain condition for left algebra
ideals. If dim R < o0, then

(i) R is finitely generated
(il) R is left algebra noetherian
(iii) R is algebraic.

Since the radical of an algebraic algebra is nil ([4] P. 19), conditions (i), (ii), (iii)
are also sufficient for R to be finite-dimensional.

Amitsur has conjectured that the radical of a finitely generated P-algebra is
nil (see [1]). This brings finitely generated radical @-algebra close to being nil-
potent and hence of finite dimension. We are therefore led to restrict our inves-
tigation to radical algebras and to various'conditions that imply that dim R < co.
It seems probable that the following conjecture is true:

R is finite-dimensional radical algebra if and only if (i) R is finitely generated
and (ii) R is left algebra noetherian.

Observe that the Levitzki theorem ““in a left noetherian ring any nil left ideal
is nilpotent” may be extended to algebras, namely, if R is a left algebra noethe-
rian algebra over @, then every nil left algebra ideal is nilpotent (see [3]). Using
this result we can easily see that the conditions of the conjecture cannot be
weakened. An example is given by Golod (see [2]) of a finitely generated nil
algebra over any field ¢ which is not of finite dimension.

The purpose of this paper is to prove the conjecture under some additional
assumptions on the radical algebra R.

2. Preliminaries

A left algebra ideal L of R is said to be finitely generated if there exists a finite
number of elements u,, - - -, u, such that
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L = ®du,+Ru;+ -+ +du,+Ru,.

LemMA 2.1. Let R be a radical ®-algebra and L be a non-zero left algebra ideal
generated by a finite number of elements. Then RL & L.

ProOF. See [4] p. 200.

THEOREM 2.2. Let R be a radical, finitely generated and left algebra noetherian
over ®. If R satisfies a polynomial identity then dim R < .

Proor. It is known that the radical of a finitely generated algebra satisfying
a polynomial identity is nil (see [1]). So R is nilpotent. Since R is also finitely
generated, dim R < co.

CoRrOLLARY 2.3. If R is a commutative, finitely generated radical algebra and
if R is left algebra noetherian then dim R < oo.

NoOTATION. If S < R then by (S)' we mean the left annihilator ideal of S.
Similarly (S) is defined.

3.

In all the theorems of this section, except 3.1, let R be a radical algebra
satisfying the following conditions:

(i) Ris finitely generated
(i) R is left algebra noetherian

If the field & is non-denumerable then (i) and (ii) are sufficient for R to be finite-

dimensional. Thus the remainder of the paper is only of interest for countable
fields.

TBEOREM 3.1. Let

(1) R be a radical algebra
(2) R = &(x,, x,)
(3) x3 = x5 =0 and (x,) n (x,) # 0.

Then dim R < oo.

PrROOF. Let y = x;x,. We show that y is nilpotent. Note that x; y = yx, =0
and every element of R has the form

z = P(y)x; +%,Q(0) + %2 S(¥)x, +yT(¥)

where P, Q, S, T are polynomials with coefficients in @ and their constant terms
need not be zero. It follows that
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X12X1 X = X1 X%, Q(V)x X = J’ZQ(}’)
x12%; = X, %, 8(p)x, %, = y*S(y)

X1 X22X1 X3 = Xy X, yT(y)x, X5 = y3Ty)
Xy X,2X%y = X, X, P(y)x1 X2 = y*P(p)

forze R. If ze (x;) N (x,), z # 0, then above observation implies that

a Y da, Y4 o oyt =0

where 2 £ k, <k, < -+ < k,. Soif
o - o _
x=__2ykz kx,,.__sykrkx
oy oy
then
K k
yl_ylx

So y*' = 0, because x is a quasi-regular element. So dim R < co, because the
set x;, X;X;, X;X; X, * ** is a finite set.

THEOREM 3.2. Ifx,, - - -, x, are generators of R such that

(1) x; is nilpotent for all i
(2) x;R(or Rx;) is an ideal for all i then dim R < 0.

ProoF. It suffices to show that R is nil. Suppose @ is a non-nilpotent element in
R. Let S = {B; Bis an ideal of R such that a*¢ B for all k = 1}. Then S has a
maximal element, say C. Since C is a prime algebra ideal of R, R = R/C is a non-
zero prime, finitely generated and left algebra noetherian radical algebra over @.
Can assume R = ¢(X,, -+, X,) where m < n. If X,R = 0 for all i then X; = 0
for all i, because R is a prime ring. This is a contradiction, because C # R. Let
T = X;R # 0 for some i. If X; is of index k then X*~'T = 0 which is a contradic-
tion. This completes the proof.

ExAMPLE 3.3. Let R be the ring of all polynomials without constant terms,
in two indeterminates x and y, over a field @ of the form

Zaixi+ Z ail“.'_kxhyizxia cee Z Ot,-,...j,yj‘szyja .

i1,i2#0 J1, j2#0
subject to the following conditions:
(1) x*y' = y'** forall I > 2and x = 1 or /= 1 and k = 2 and xyx = x%y
and

(2) x™ =0, (xy)" =0, and xy™ = O for all m = n whenn isfixed and n = 3.

R is an algebra over @ with {x, x'»/, y/x', yix/y*}, 1 1oy, ... ,—1 as a set of
generators. Moreover, if ¢ is a generator then ¢R is an ideal of R.
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REMARK. Conditions (1) and (2) in theorem 3.2. can be replaced by

(1) a;; = x;x;—x;x; is nilpotent for all i and j

(2) a;; R (or Ra;;) is an ideal for all i and j.

ProoF. If we assume that R is not nil then let R be as in theorem 3.2. If all
&;R = O then a;; € C for all i and j. Then R is a commutative ring. Use Corollary
2.3 to get R is of finite dimension which implies that R is nilpotent. But this is a

contradictionto C # R.So T = &; ,-R # 0 for some i and j. The same argument as
in theorem 3.2. leads to a contradiction. Hence dim R < 0.

THEOREM 3.4. Let R = &(x,," -, x,) and let a;; = x;x;—X;X;.
Assume Rua;; (oro;;R) is nil for all i and j. Then dim R < oo.

PROOF. Let N be the sum of all nilpotent algebra ideals of R. Then N is the same

as the sum of all nilpotent ring ideals of R. Since Ra;; = N, we get &;; =0 in

R = R/N for all i and j. Hence R is commutative. We apply Corollary 2.3 to get
R = N. Thus R is niipotent and hence fiite-dimensional.

LeMMA 3.5. If R is a ring, a€ R, a®> = 0 and xa—ax is niipotent fof all x in
R, then aR is nil.

PROOF. a(xa—ax)'x = (ax)**! for xe R,k =1,2,---.

LeMMA 3.6. If R is a ring, a, b€ R, a*b = 0 and ya—ay is nilpotent for all y
in bR, then abR is nil.

PROOF. a(bxa—abx)bx = (abx)‘*! for any xeR, k=1,2,--".

LeEMMA 3.7. If R is a ring and a € R such that a and xa—ax are nilpotent for
all x in R, then aR is nil.

PROOF. Suppose aR is not nil, then there is an integer m such that g™ R is nil,
but @™ 'Ris not. Let b = @™~ % and apply lemma 3.6. to get a contradiction.

THEOREM 3.8. Let R = ®(xy, ", X,), a;; = X;x;—x;x; and let o;; and
xa;;—o;; X be nilpotent for all i and j and for all x € R. Then dim R < .

PROOF. Lemma 3.7. implies that «;; R is nil. Now we apply theorem 3.4.

THEOREM 3.9. Let R = ®(x,, " -. x,). Assume that x; and xx;—X;x are nil-
potent for all i and all x in R. Then dim R < .

PrOOF. Lemma 3.7. implies that x; R is nil for all i. Since ;R =0in R =
R/N, where N is the nilpotent radical of R, we get X; = 0 and hence R = N.

THEOREM 3.10. Let R satisfy the following two conditions:

(1) oy is a right zero divisor for all i and j
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(2) If I is the intersection of all non-zero left algebra ideals of the form Rx or
(@) for x in R and a in R then I # 0.

Then dim R < 0.

ProoF. If a is a right zero divisor then 0  (a)’ 2 I. So a € (I). In particular
N, the nilpotent radical of R, is contained in (I)": We show that (I) = N.

If 0 # te Iand x € (I) then tx = 0. The chain (x)' = (x*>)} < - - - terminates.
So there exists a positive integer m such that (x") = (x*) for all s = m. If
Rx™ # 0 then ¢ = yx™ for some y in R. Since tx = 0 we get yx™*! = 0 and
hence y e (x"*') = (¥™). So r = yx™ = 0 which is not the case. So Rx™ = 0 and
hence x is nilpotent. So N = (I). This shows that R = R/N is a commutative
ring. We use corollary 2.3. to get R = N. This completes the proof.

CoOROLLARY 3.11. If a;; is a right zero divisor for all i and j and if the intersec-
tion of all non-zero left algebra ideals is not zero then dim R < o0.

LemMA 3.12. Let R be a ring satisfying the ascending chain condition for left
annihilators. Then for any element a € R there exists a positive integer k > 1 such
that (a) n Rad* = 0.

Proor. See [5] p. 297.

THEOREM 3.13. Let R = &(x,, * * +, x,) satisfy the followings:

(1) For some maximal algebra ideal T of R there exists an element a € R such
that T = Ra.

(2) x; is nilpotent for all i.

Then dim R < 0.

PRrOOF. As before we show that R is nil. Suppose z € R is a non-nilpotent
element of R. Let C be a prime ideal of R which is maximal with respect to z* ¢ C
for all k = 1. Lemma 2.1 implies that 0 # R* Z R. If R*> ¢ T, then 0 # (R/T)?
Z (R/T), by lemma 2.1,. which is a contradiction to maximality of . So R*> = T
and hence R? = T = Ra. Since R = R/C is a prime ring and R?> = Ra we get
(@) = 0.1If (a) # O then (@) n Ra* = 0 for some k = 1, because of the lemma
3.12. But R@* = R* # 0 and hence Ra* is essential left ideal of R. This contradic-
tion shows that (@)’ = 0 and hence a is a regular element of R. Clearly for some i,
%;¢ R?. So #x;4+ R*> = R and &x,+®x,a+ Ra? = R. This implies that there exist
®,fe® and FeR such that a> = aX;+px,a+7a>. If a # 0 then X;e R% So
o = 0 and a = BX;+Fa, by regularity of a. If X, is of index k then y = ry where
j =axt"!. So y = 0, because F is a quasi-regular element. This contradiction
completes the proof.
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