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Z E R O S E T S — C O N S E Q U E N C E S F O R P R I M I T I V E N E A R - R I N G S
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(Received 30th June 1980)

Throughout this paper all near-rings will be left distributive. We shall denote the
zero-symmetric part of a near-ring N by No. The fact that the near-rings under
consideration may not be zero-symmetric has important consequences for what follows,
particularly the results of the last section.

Let N be a near-ring and V an N-group. With a non-empty subset S of N we may
associate the zero subset Z(S) of V. Z(S) is simply the set of all uin V such that va = 0
for all o- in S. If S consists of a single element y, Z(S) will be written as Z(y). A subset
A of V will be called a zero subset or Z-closed, if there exists a non-empty subset S of
N such that Z(S) = A.

In the first section of this paper we investigate zero subsets of an arbitrary N-group
V. In the second section it is shown that for 2-primitive non-rings the Z-closed subsets
yield a topology (c.f. the topology for N defined by Betsch [3, p. I l l and p. 116]). In
the final section these notions are used, in the 2-primitive case, to study compatible
near-rings and TV-groups.

1. Z-closed subsets of an N-group

In this section some of the basic properties of zero subsets are developed. For
example, a Galois correspondence between these subsets and annihilating right ideals is
established.

Proposition 1.1. Let V be an N-group. If Sh i el, is a family of non-empty subsets of
N, then

(
Mel

Corollary 1. Any intersection of Z-closed subsets of V is Z-closed.

Corollary 2. // Sl and S2 are subsets of N such that Sj s S2, then Z(SJ 2 Z(S2).

Proposition 1.2. A Z-closed subset Z1 of an N-group V has the property that

Proof. Clearly Z, • (0: Zt) = {0}, and Z1 c Z[(0: Z,)]. However Zj = Z(S), where S
is a non-empty subset of N. Thus Z^S = {0}, and S s (0: Zx). From Corollary 2 of 1.1,
Z(S) = Z,2Z[(0: Zt)]. The proposition follows.

Corollary 1. If S is a subset of V such that (0: ZJ^®: S), then S s Zt .
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Proof. By Corollary 2 of 1.1, Z[(0: Z,)]2Z[(0: S)], and since S-(0:S) = {0},
S c 2 [ ( 0 : S)]. By 1.2, Z[(0: Z J ^ Z j and the result follows.

Corollary 2. / / Z t and Z2 are bofh Z-closed subsets of V, then Zx = Z2 i/, and onfy
if, (0:Z1) = (0:Z2).

This follows since, if (0: Zt) = (0: Z2), then by 1.2, Zx = Z[(0: Zx)] = Z[(0: Z2)] = Z2.
Corollary 2 puts zero sets and their annihilators in one-one correspondence. The

next proposition shows this correspondence is lattice inverting.

Proposition 1.3. Let Zx and Z2 be Z-closed subsets of an N- group V • Zxc Z2 if,
and only if, (0: Zx)^(0: Z2).

Proof. Clearly if Zt<=Z2, then (0: Zx)^(0: Z2). If (0: Zx)^(0: Z2), then
Z[(0: Z i ) ] s Z[(0: Z2)], By Corollary 2 of 1.1. From 1.2, Z[(0: Zt)] = Zt for i = 1, 2,
and the proposition holds.

Let AT be a near-ring, V an N-group, A a subset of V and a an element of N. As in
the case of functions we denote the sets {va: v e A} and {v e V: va e A} by Aa and
Aa"1, respectively.

Proposition 1.4. 7/ V is an N-group, then Zxa~l = Z[a(0: Z^], /or any Z-closed
subset Zx o/ V and a in the zero-symmetric part of N.

Proof. As Zxa~x contains {0} it is non-empty. If v is in Zxa~l, then va is in Zx and
ua(0: Zt) = {0}. Thus u is in Z[a(0: Zt)]. If on the other hand v is in Z[«(0: Z^], then
ua(0: Zt)={0}, (0: Zj)^(0: ua) and va is in Zi by Corollary I of 1.2. Thus v is in
Zja"1 and the proposition follows.

2. Z-topologies

Let V be an N-group. By Corollary 1 of 1.1 the zero subsets of V are closed with
respect to intersections. Also the zero 0s of No maps all elements of V to {0} and
therefore V is a zero set. From now on we shall regard the empty set 0 as a zero
subset of V. With this addition the zero subsets of V will form a topology (called the
Z-topology) provided they are closed with respect to finite unions.

A near-ring N is 2-primitive on V if No is 2-primitive on V and a non-ring if No is a
non-ring (see [3, p. 102]).

The next proposition makes use of the notion of abelian submodules and will be used
to show that, for 2-primitive non-rings, a finite union of closed subsets is closed.

A submodule W of an N-group V will be called abelian if W+ is commutative and
(wj + w2)a = wxa + w2a for all tv;, i = 1, 2, in W and a in No (the zero-symmetric part
of N).

Proposition 2.1. Suppose an N-group V is a direct sum Vx 0 V2, of submodules Vx

and V2, where the submodule V2 is minimal (as an N-submodule) and non-abelian (as
an No-submodule). If W is any submodule of V, then either V22i W or W ^ Vx.
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Proof. Assume W^ Vu and V2 £ W. As V1 is a maximal submodule (N-
submodule) of V, W+ V, = V. By [3, 2.23, p. 48],

[(V! + W)n(V2+ W)]/W(=(V2+ W)/W)

is abelian. Since V2 is minimal V2D W = {0} and (V2+W)/W is N0-isomorphic to V2.
This contradiction to V2 being non-abelian completes the proof.

Theorem 2.2. Suppose a near-ring N is 2-primitive on V and No is a non-ring, then
if Zl and Z2 are Z-closed subsets of V so is Z1U Z2.

Proof. As the result is trivial if either Z1 or Z2 is empty we may assume this is not
the case. Take R = (0: Z t )n(0: Z2). Clearly R=(0:Z 1 UZ 2 ) and if it is shown that
Z(R) = Z1UZ2, the result will follow. Since (ZlUZ2) • R = {0}, Z1UZ2^Z(R). As-
sume v is in Z(R). As vR ={0}, R ^=(0: v). We may assume, (0: Zx)^(0: u), otherwise
by Corollary 1 of 1.2, v is in Zx. Since N/(0: u) is N-isomorphic to V, (0: u) is a
maximal right ideal of N and, N = (0: v) + (0: Zj). Let T = (0: Z:) n (0: u). The JV-group

can be written as a direct sum

But (0: ZJ/F is N-isomorphic to

which in turn is N-isomorphic to vN(=V). Since No is a non-ring, (0: Zx)/T, is a
non-abelian minimal submodule (N-submodule) of N/T. By 2.1, either

or
(

It follows that either

r + (0:Z2)s(0:Zj) or (0: v)^T + (0: Z2).

If r + (0:Z2)g(0:Zi), then
(0: Zj) D (0: v) + (0: Z2) g (0: Zx)

and
(0: Z ^ = (0: Zj) D (0: «) + (0: Z2) n (0: Z^.

But (0: Zx)n(0: Z2) = R, and as R g ( 0 : u), (0: Zt)s(O: u). In this case it follows from
Corollary 1 of 1.2 that v is in Zx. It can therefore be assumed that, (0: u ) ^ T + (0: Z2).
Consequently (0: u)^(0: Z2), and in this case v is in Z2. The proof is complete.

It follows from this theorem that for 2-primitive non-rings the Z-topology exists.

Theorem 2.3. // the non-ring N is 2-primitive on V, then the maps of V into V
induced by elements of N are continuous with respect to the Z-topology.
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Proof. If a is an element of TV, then the map of V into V induced by a is
continuous if ZxcTx is closed for any Z-closed subset Zx of V. As in 1.4, Zla~1 =
Z[a(0: ZX)] and the theorem follows.

3. Primitive compatible near-rings

Let TV be a zero-symmetric near-ring with identity and V a unitary TV-group. The
TV-group V is said to be compatible if, for any v in V and a in TV, there exists K in TV
such that (v + w)a — V<X = WK for all win V (see [4, §6]). Compatible near-rings are just
those zero-symmetric near-rings TV having an identity and a faithful compatible
TV-group. Examples of compatible TV-groups and near-rings are plentiful. If one takes
any group, V and S any semigroup of endomorphisms of V that contain the inner
automorphisms of V, then the near-ring TV(S) of maps of V into V generated by S, has
V as a faithful compatible TV(S)-group. Another example is to take an fl-group V, and
P0(V) the near-ring of zero-symmetric polynomial maps from V to V (see [4, §6] or [3,
pp. 215-216]). Alternatively one may start with a topological group V (additive but not
necessarily commutative) and consider C0(V), the near-ring of all continuous maps
from V to V taking 0 to 0. V is then a compatible C0(V) group. In the case where
V = U (the reals) the subnear-rings C£°(IR), or C^°\U), of those functions through (0, 0)
with continuous nth derivative, or which are infinitely differentiable, are again compati-
ble on U.

Let TVX be a zero-symmetric near-ring and V a unitary faithful /Vx-group. Let TV be
the near-ring of maps of V to V generated by N1 and the constant maps of V to V. V
is a compatible TV!-group precisely when TV0 (the zero-symmetric part of TV) coincides
with TVj i.e. compatible near-rings are just those zero-symmetric near-rings to which
the constants may be adjoined without the zero-symmetric part changing or, alterna-
tively, they are zero-symmetric parts of unitary near-rings admitting all constants.

Let TV be a near-ring (necessarily zero-symmetric with identity) which has a faithful
compatible TV-group V (necessarily unitary). As the TV-subgroups of V are precisely the
TV-submodules, TV is 0-primitive on V if, and only if, it is 2-primitive. Accordingly, in
this case, we say V is minimal and call TV a primitive compatible near-ring. Also, if TV is
a non-ring, then by Theorem 2.2 the Z-closed subsets of V form a topology on V. This
topology has the disadvantage that the zero of V is contained in every closed subset.
However, we may adjoin the constants to TV to obtain a near-ring TV' with N'o = TV. The
zero sets of V obtained from TV' give rise to a new topology (such closed subsets will be
called Z'-closed). Also as TVs TV', it follows from 2.3 that the elements of TV are
continuous with respect to this topology. If A is a Z'-closed subset of V, then as
p = l + kv (for given v in V, ^ is defined as the element of TV' with the property that
uX^ = v for all u in V) is in TV', Ap"1 is, by 2.3, .Z'-closed i.e. A-u = {u — v: ueA} is
Z'-closed for any v in V. Thus right translations (also left) of Z'-closed subsets are
Z'-closed and a similar statement is true for the Z'-open subsets of V. If v is taken to
be in A, then {0} is contained in A — v. Now A — v = Z(S), where S is a non-empty subset
of TV' (A= 0 excluded). By 1.1

i s l
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where yt, i e I, are the elements of S. Thus each yt is such that 07; = 0, and in the
zero-symmetric part N, of N'. It follows that A — v is Z-closed and right (or left)
translations of the Z-closed subsets of V are precisely the Z'-closed subsets of V. Also,
the above argument shows that whenever a Z1-closed subset A of V contains {0}, it is
Z-closed. Furthermore as 1 is in N' (or N) and Z(l) = {0}, {0} is a Z'-closed (and
Z-closed) subset of V. Also, if T is Z'-closed, then T(-l) = {-v: v e V}, is Z'-closed and
the group V with the Z'-topology is not far from being a topological group (transla-
tions and inversion being continuous functions) and in particular a T0-group ({0} being
closed).

From now on we shall be dealing with zero-symmetric near-rings with identity and,
as we are considering only the case of V a minimal compatible N-group, the
Z'-topology may be used together with the property that Z'-closed subsets containing
{0} are Z-closed.

Proposition 3.1. If N is a non-ring and V a faithful compatible minimal N-group,
then for every v in V, {v} is Z'-closed and any finite subset of V is Z'-closed.

Proof. As {0} is Z-closed, u + {0} = {u} is also. A finite union of closed subsets is
closed and the proposition holds.

If under the conditions of 3.1 the Z'-topology is discrete N is said to be discrete.
That this is indeed a property of N follows from the next proposition.

Proposition 3.2. If a primitive compatible non-ring N is discrete, then it has a
minimal right ideal.

Proof. Let V be a minimal compatible N-group in which the Z'-topology is
discrete. If v is a non-zero element of V, then Av = V\{u} is a Z'-closed subset of V
containing {0}. Thus Â  is Z-closed. The right ideal (0: A,,), of N is non-zero as
Z({0})= V but Z[(0: AJ] = A,, by 1.2. If a is in (0: w)n(0: AJ, then as A, U{u}= V,
Va ={0}, and a = 0. It follows that the map of (0: Av) onto V taking p in (0: A,,) to up,
is an N-isomorphism and (0: A )̂ is a minimal right ideal of N.

If the conditions of 3.2 hold then, up to TV-isomorphism, V is unique for being a
compatible minimal N-group. This follows from the fact that any two minimal N-
groups are N-isomorphic to (0: Au). It therefore makes sense to say N is discrete.
Furthermore (0: AM) exists for any u ^ 0 in V and the sum £uev* (0: A,,), where
V* = V\{0}, is direct (note that if u ^ 0 in V is such that (0: Au) = (0: AJ then, by 1.2,
Au = Av and u = v).

Corollary. // a primitive compatible non-ring N is discrete and has maximal condi-
tion on right ideals, then V is finite.

This follows from the fact that the direct sum XueV* (0: AJ, is finite and (0: Au) =
(0: Ar), if, and only if u = v. Furthermore, in this case N = M0(V). This is so, since for
each vj=Q in V, (0: A,,) has order |V|, the order of the direct sum is IV^1"1, and being
faithful on V, N represents all functions of V to V fixing 0.
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Theorem 3.3. A primitive compatible non-ring N is discrete if, and only if, it has a
minimal right ideal.

Proof. Suppose N is primitive on the compatible AT-group V. The fact that N has a
minimal right ideal, when N is discrete, follows directly from 3.2.

Suppose N has a minimal right ideal R. Now R$k(0:v), for some v^O in V
(otherwise R={0}). As (0: v) is a maximal right ideal of N (c.f. [3, 7.22, p. 199])
N = R + (0: v), and, since R is minimal, this sum is direct. Also vR = vN(=V), and
since (0: v) D R = {0}, R is N-isomorphic to V from the isomorphism theorems. Thus
N = (0: u)©R, where R is a minimal non-abelian submodule of N. Let u^O be an
element of V. It follows readily from 2.1 and the maxhnality of (0: u) that either
(0: u) = (0: v), or R g ( 0 : u). Suppose (0: u) = (0:u). By 3.1 A^jO, u} and A2 = {0, v}
are Z'-closed subsets of V. Both Ax and A2 contain {0} and are therefore Z-closed.
Furthermore (0: Ax) = (0: A2) and by 1.2

A1)] = Z[(0:A2)] = A2

which means u = v. Thus R^(0:u), for all u ^ u and Z(R) = V\{v}. As Z(i?) is
Z-closed it follows that {v} is Z-open (and therefore Z'-open). Any translation of a
Z'-open subset of V is Z'-open and thus all one element subsets of V are Z'-open. As
a non-empty subset of V is a union of such, it is Z'-open. The theorem follows.

For a non-ring N which is compatible and primitive on V, it frequently happens that
the Z'-open subsets of V (other than 0 ) are dense in V. A topology having this
property we shall call sparse.

Theorem 3.4. Suppose the non-ring N is primitive and compatible on V. If N is
simple, then the Z'-topology is either sparse or discrete.

Proof. First suppose there exists a proper Z'-closed subset A of V containing a
Z'-open subset F, with {0}cT, and where any finite intersection of the form

with a l 5 . . . ,ar, elements of N, differs from {0}. We shall show that if this is so, then JV
cannot be simple. First note that since {0} is in T and 0af =0, i = 1 , . . . , r, a finite
intersection as above must contain {0} as a proper subset. Take a / 0 in (0: A). This is
possible since A contains {0}, is Z-closed, and (0: A)>(0: V)(={0}) by 1.3. Now, the
subset Na( = {7)a: 7]eN}) of N has the property that the right ideal R(Na) of N
generated by Na is an ideal. But

R(Na)= £ R(T ,« ) ,
•neN

where R{r)a) is the right ideal of N generated by the element rja. If A is in R(Na),
then A = Aj +. .. + Ak, where Af is in Ri^a), for some rjj, i = 1 , . . . , k, in N and positive
integer k. But

A i 1 r 1 A { 0 }
and therefore
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for i = 1,. . . , k. Hence ATJ^1 A, = {0}, for i = 1 , . . . , k. If
1 n . . . n AT^ \

then as Ax is contained in each Arjj 1, i = 1 , . . . , k, A1Ai={0} for i = 1 , . . . , k, and
A,A={0}. Now

is, by 2.3, a Z'-open subset of V and from our assumptions Fj c Aj, and I \ contains {0}
as a proper subset. Since FiA={0}, A has zero values on a subset of V properly
containing {0}. Clearly R(Na) ^{0} (a is in Na) and, since N is simple, R(Na) = N. On
taking A = 1 we arrive at a contradiction viz. 1 takes zero values on a subset of V
properly containing {0}. It follows that either:

(a) no proper Z1-closed subset A of V contains an open subset containing {0}; or
(b) if such an open subset F of V exists some finite intersection

is zero.
Suppose (a) holds. If A2 is a proper Z'-closed subset of V containing a non-empty

Z'-open subset F2, then for v in F2, -u + F2 is a Z'-open subset of V containing {0},
-v + A2 is a proper Z'-closed subset and - u + F 2 £ - u + A2. This contradicts (a). In this
case it follows that the smallest closed subset of V containing F2 is V and Z' is sparse.

If (b) holds, then as the Fa^1 are, by 2.3, Z'-open subsets of V, {0} is open..
Translation will yield the fact that any one element subset of V is open. Any subset
(being a union of such) is therefore open. The theorem follows.

If N is simple and satisfies the conditions of 3.4 and has maximal condition on right
ideals, it follows by the Corollary of 3.2 that either V is finite (and N = M0(V)) or Z' is
sparse. However, the next theorem shows a stronger result than this is possible.

Theorem 3.5. Suppose the non-ring N is primitive and compatible on V. If N has
maximal condition on right ideals, then either V is finite (in which case N = M0(V)) or
the Z'-topology is sparse.

Proof. The proof is in some respects similar to that of 3.4. Suppose there exist
proper Z'-closed and open subsets A and F of V having the properties stated in the
proof of 3.4. As any finite intersection

(1)

(af i = l , . . . , k, elements of N) contains

(2)

which in turn properly contains {0}, it follows that a finite intersection of the form (1)
cannot be zero. However, if u ^ 0 is in

A c ^ n A a ^ D . . .nAar 1 (=A, say),

then vN = V and there exists ar+1 in N such that var+1 = w, where w£ A. If Aa~+j 2 A,,
then as

A 2 (Aa7+\)ar+1 2
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and w is in Ajar+1, it would follow that w is in A. Thus

Aar1 n A«2 * H . . . n Aa"1 n Aa7+\ (=A2 say)

is a proper subset of Ax. Repeating this process with Aj replaced by A2 we obtain a
proper subset A3 of A2 which is again an intersection of the form (1). Also A1; A2 and A3

contain an intersection of the form (2), containing {0} properly. In this way we construct
Z ' -closed subsets

where the inclusions are proper and each Ai; i = 1, 2 , . . . , contains zero (the Af being
Z'-closed by 2.3). As the Af, i = 1, 2 , . . . , contain {0} they are Z-closed and, by 1.3,

From this contradiction to the maximal condition it follows that either (a) or (b) of the
proof of 3.4 holds. From which, as in 3.4, we conclude that either Z' is discrete or
sparse. The result can now be deduced from the Corollary of 3.2 and the comment
following it.

An example will now be given illustrating the applicability of the preceding results.

Example. Let V be a simple H-group (written additively) and k a positive integer,
then we may form polynomials (xu x2,..., xk)a over V in k indeterminates. k such
polynomials au ..., ak, determine a map of V © V © . . . © ( = W), taken k times, into
W. This map is simply given by

..,ak) = ( ( « ! , . . . , vk)au ..., (vu ..., v k ) a k ) ,

for («!,. . . , vk) in W (see [2, Ch. 3, p. 75]). Furthermore two such maps (au .. ., ak)
and (/31 } . . . , (ik) may be composed according to the formula

(<*!,..., ak)(pu . . . , /3k) = ( («! , . . . , ak)pu ..., ( « ! , . . . , ak)/3k)

with addition simply given by

Thus a near-ring JV' is obtained having W as an N'-group. The zero-symmetric part JV
of N' has W as a faithful compatible N-group and the simplicity of V ensures that W is
minimal. As this near-ring is frequently a non-ring e.g. if V is a field, the polynomial
maps yield a non-ring (see also [4, Thm 8.4]), and the results of this section are
applicable. The Z'-topology is therefore available for W. In the case of polynomials
over a field this is none other than the usual Zariski topology (see [5, Ch. 8] also [1, p.
132]). Moreover, if this near-ring satisfies maximal condition, as is the case of
polynomials over a field, then by 3.5 it follows that either W and therefore V is finite,
or the Z'-topology is sparse.

I would like to take this opportunity to express my thanks to those mathematicians at
Auckland and the 1980 near-ring conference at Oberwolfach, who have taken an
interest in the development of these results. Special thanks are due to Drs M. K.
Vamanamurthy and D. Smith of Auckland and Dr R. Hofer of New York.
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