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1. Definitions and preliminary results. Throughout this paper R will be an
associative ring with unity and all /?-modules are unitary. The right (resp. left) annihilator
in R of a subset X of a module is denoted by r(X) (resp. \(X)). The Jacobson radical of R
is denoted by J(R), the singular ideals are denoted by Z(RR) and Z{RR) and the socles by
Soc(RR) and Soc(RR). For a module M, E(M) and PE(M) denote the injective and
pure-injective envelopes of M, respectively. For a submodule A^M, the notation
A c® M will mean that A is a direct summand of M.

A module MR is called p-injective if for every a e R, every 7?-linear map from aR to
A/ can be extended to an ^-linear map from R to M. R is called right p-injective if RR is
p-injective. Recall that a module MR is called uniserial if its submodules are linearly
ordered by inclusion and serial if it is a direct sum of uniserial submodules. A ring R is
right uniserial (serial) if RR is uniserial (serial).

We record some well-known results on serial and p-injective rings.

LEMMA 1.1 [5,6]. Let R be any ring.
(1) R is right p-injective if and only if\(r(a)) = Ra for every a e R.
(2) IfR is right p-injective then J(R) = Z(RR).
(3) If R is left uniserial then R is right p-injective if and only ifJ(R) = Z(RR).
(4) If R is right p-injective and A,BU. • • ,Bn are two-sided ideals of R then

A n (£, ©... ®Bn) = (A n B,) e . . . © (A n Bn).

LEMMA 1.2 [11, p. 200, Theorem 3.3]. Let R be a serial ring, P a finitely generated
projective R-module, and M a finitely generated submodule of P. Then there is a
decomposition P = P} © . . . © Pn with indecomposables Pt such that

The next two statements are proved using model theory for modules.

LEMMA 1.3 [3]. Let R be an arbitrary ring and M a finitely presented module over R.
Then PE(M) is indecomposable if and only if M has a local endomorphism ring.

LEMMA 1.4 [7]. Let R be a serial ring and M a pure-injective indecomposable module
over R. Then either M is injective or, for every primitive idempotent e e R and every
nonzero element m E Me, there exists an element r e R such that m e E(M)re and
m $ Mre.

LEMMA 1.5 [5, Corollary 2.2, Theorem 2.3]. Let R be a semiperfect right p-injective
ring with Soc(RR) essential as a right ideal in R. Then Soc(RR) = Soc(RR) is essential as a
left ideal and Z(RR) = J(R) = Z(RR).

Recall that a right /?-module M is called fp-injective if every R-linear map from a
finitely generated submodule of a free ^-module F to M can be extended to an R-linear
map from F to M. Evidently every fp-injective module is p-injective and the converse is
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true for some classes of rings including serial rings, see [8]. In the serial ring case we give
a short proof of this fact using the above cited Warfield's result.

LEMMA 1.6. Every right p-injective module M over a serial ring R is fp-injective.

Proof. Let N be a finitely generated submodule of a free module P of finite rank and
/ a homomorphism from N into M. In view of Lemma 1.2 we may assume that N is a
finitely generated submodule of an indecomposable projective module eR for some
primitive idempotent e e R. Since eR is uniserial, it follows that N is cyclic. Now the
existence of the desired extension follows from p-injectivity of M.

2. Serial p-injective rings. Now we formulate our criteria for serial rings to be right
p-injective.

THEOREM 2.1. For a serial ring R with a complete set of primitive orthogonal
idempotents {eu..., en) the following conditions are equivalent:

(a) R is right p-injective;
(b) R is right fp-injective;
(c) J(R) = Z(RR);
(d) for any pair of indices i,j^n and any r e R with 0 7^e,rey eJ(Rej) there exist

s e R and k<n, such that ejSek ¥=• 0 and eireisek = 0.

Proof. The equivalence between (a) and (b) follows from Lemma 1.6 and the
implication (b)=^(c) follows from Lemma 1.1.

(c) ̂ > (d). If 0 ¥=• e,rey e J(Rej) then e,re, e J(R) = Z(RR), hence r(e,rey) is essential in
RR and r(e,-rey) n efR T4 0. It follows that e,-reyj = 0 for some nonzero eys e ey7?. Since e,/? is
uniserial and essR = e^se^R + . . . + ejsenR we obtain ejSR = ejSekR for some k and ejSek is
the desired element.

(d)^>(a). Suppose that RR is not p-injective. Then e,7? is not p-injective as a right
7?-module for some ;'. Let M be the pure-injective envelope of ey7?. Since ejR has a local
(in fact uniserial) endomorphism ring it follows from Lemma 1.3 that M is an
indecomposable pure-injective module. Now if M is injective, it will follow that ey7? is
jp-injective since it is a pure submodule of M, a contradiction. By Lemma 1.4, applied to
the element ey e Me;, we can find an element r s R such that e; € E(M)rej and ey g Mrej. If
re; g J(Rej) then trej = ey for some t e R. Now, e-l e efR £ M implies e, = ey(. rey E Mrej, a
contradiction. Hence we may assume re, e J(Rej). Since i?e,re; = /?rey, for some /', it
follows e,rey E J(Rej) and hence by assumption etrejSek = 0 for some k and some s e R.

Since ey E E(M)rej we obtain e; = mrej for some m e £(M). Multiplying this equality
by ejSek from the right side we obtain ejSek = mrej. ejSek = 0, a contradiction.

COROLLARY 2.2. Lef R be a serial right p-injective ring with essential right socle. Then
R is left p-injective with essential left socle.

Proof. From Lemma 1.5 we obtain Z(RR)=J(R)-=Z(RR) and the socle of R is
essential in RR. From Theorem 2.1 it follows that R is left p-injective.

EXAMPLE 2.3. Let F be an arbitrary field and consider the ring

F Fl

.0 FY

Then R is a (two-sided) serial artinian ring which is neither left nor right p-injective.
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Proof. We check this for the right side only. We have e12 eJ(Re2)r\eiRe2 and
e12s # 0 for every nonzero element s e e2R which contradicts (d) of Theorem 2.1.

Next we provide an example of a ring R which is a right uniserial right artinian right
duo left p-injective ring which is neither right p-injective nor left uniform. Also every
non-invertible element of R has an essential left and right annihilator. Recall that a ring R
is right duo if every right ideal of R is two-sided.

EXAMPLE 2.4. Let K be a field and K(x) the field of rational functions over K. Let a
be an endomorphism of K(x) which sends x to x2. Clearly the image of a is K(x2). Let R be
a matrix ring of the form

Clearly
ro K(x)i
Lo o J

is the unique non-trivial right ideal of R. If we view K(x) as a vector space over K(x2) then
every proper left ideal of R has the form

ro in
Lo oJ'

where V is a subspace of K(x). It is easy to check that for every a &J, the Jacobson radical
of R, r(a) = l(a) = J. Clearly R is right artinian right uniserial right duo and not left
uniserial. It follows from Lemma 1.1 that R is left p-injective and not right p-injective.

3. Semiperfect p-injective rings. In this section we show that semiperfect right
p-injective right duo rings are right continuous. Recall that a module MR is called
continuous if it satisfies the following two conditions: (Cl) every submodule of M is
essential in a direct summand, and (C2) if A and B are submodules of M with A = B and

In [5, Theorem 1.2], it was shown that if RR is right p-injective then RR satisfies the
C2-condition. In particular, if A and B are right ideals of R with A ^®RR, B ̂ ®RR and
AD B = 0 then A®B £®RR. If R is right duo we have the following more general result
which is of independent interest.

THEOREM 3.1. Let R be a right p-injective right duo ring. If A and B are right ideals of
R with Ac®RR and B <=® RR then (A n B) £® RR and (A + B) <=®RR.

Proof. Write R=A@Al = B@B^iox some right ideals Ax and Bi of R. By Lemma
1.1, B=BH(A0i4O = (BnA)®(BDAl). Hence

R = (B DA)@ (B D Ax)@Bx

and so (A D B) ^®RR. Also

A + B = A + ((B DA)®(B DA])) = (A + (B DA))®(B nAt) = A@(B nAx).
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Since both A and (B DA^) are summands of RR, it follows from the remark preceding the
theorem that A(B(B DAi) is a summand of RR and so A + B is also a summand of RR.

LEMMA 3.2. Let R be a local right p-injective ring. Then for any non-zero {two-sided)
ideals I and J of R, IHJ ¥=0.

Proof. Suppose that / D J = 0 and let 0 ¥= u e I, 0 ¥= v e J. Define the map

<p:{u + v)R—*R, {u + v)n->ur.

Clearly <p is a well defined /?-homomorphism. By right p-injectivity, <p is given by left
multiplication by an element t e R. Hence t(u + v) = u, and so (1 - t)u = tv = 0. Since R
is a local ring it follows that u = 0 or v = 0, a contradiction.

COROLLARY 3.3. Suppose R is a local right p-injective right duo ring. Then R is right
uniform.

REMARK 3.4. Note that without the condition "right duo" the above result is not true.
The ring R given in Example 2.4 is a local left p-injective ring which is not left uniform.

THEOREM 3.5. Suppose R is a semiperfect right duo right p-injective ring. Then R is
right continuous.

Proof. By Corollary 3.3, clearly R is a direct sum of local right uniform rings /?,-.
By [5, Theorem 1.2], any right p-injective ring satisfies the C2-condition. We only need
to show that RR satisfies the Cl-condition. Let A be a non-zero right ideal of R
and write R = Rt ffi... €BRn. By Lemma 1.1, without loss of generality we may write
A = (AnR})®...®(AC\Rk), for some k<n with ADR^O, l</<jfc. Since
each A PIT?, is essential as a right ideal in Rh 1 < /<&, it follows that AR is essential in
A) © . . . © Rk C RK,

REMARK 3.6. Note that the ring R given in Example 2.4 is a left p-injective right
artinian ring which is not left finite dimensional. Hence R can not be left continuous.

4. Completely p-injective rings. A ring R is called completely right p-injective {right
cp-injective) if every ring homomorphic image of R is right p-injective. R is called
cp-injective if it is both left and right cp-injective. In this section, for right duo rings, we
give a characterization for serial rings with nil Jacobson radical in terms of cp-injectivity.
Recall that a module M is said to be distributive if its lattice of submodules is distributive:
for all /I, B, C a M, A n {B + C) = A n B + A n C.

THEOREM 4.1. Let R be a right cp-injective ring. Then the lattice of two-sided ideals of
R is distributive.

Proof. Suppose the lattice of two-sided ideals of R is a non-distributive (modular)
lattice. It follows from [2, Theorem 2] that it contains a minimal non-distributive modular
sublattice consisting of five elements. Hence we can find three noncomparable two-sided
ideals 1,J and K in R such that inJ = ir\K=JDK and I + J = I + K = J + K. Then
factorizing by the common intersection we may suppose that all these sums are direct and
all these intersections are zero. Now by Lemma 1.1 it follows that 0^ I = / C\{J®K) =
(/ n / ) © (/ n K) = 0, a contradiction.

COROLLARY 4.2. Every right duo right cp-injective ring is right and left distributive.
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Proof. The right distributivity follows from the above theorem and we can apply the
following result from [9, Corollary 2.10]: every right distributive right p-injective ring is
left distributive.

Recall that a ring R is strongly regular if for every a e R there exists b e R such that
a = ba2.

LEMMA 4.3. For a ring R the following are equivalent:
(a) R is strongly regular;
(b) R is right p-injective with no non-zero nilpotent elements;
(c) R is a semiprime right p-injective right duo ring.

Proof, (a) ̂ > (b), (c) is standard.
(c)=^>(a). We adopt the argument given in Example 6 of [5]. Let a e R and set

T = aR n r(a). Then clearly T is a two-sided ideal of R with T2 = 0. Since R is semiprime,
T = 0 and hence t(a2) = r(o). By Lemma 1.1 we get Ra = Ra2 and hence R is (strongly)
regular.

(b)^(a) . Note that in rings without non-zero nilpotent elements for every a e R,
r(a) = \(a). Now the same argument as before applies

REMARK 4.4. More results of the type given in Lemma 4.3 may be found in some of
Yue Chi Ming's work on p-injectivity (e.g. [14]).

A ring R is n-regular if every descending chain of the form aR 2 a2R 2 . . . becomes
stationary.

LEMMA 4.5. Let R be right duo and right cp-injective. Then R is n-regular.

Proof. Let a e R and consider the following ascending chain of right annihilators

r(fl) 9 r(a2) £ Let / = U r(a') and consider the ring R = R/I. Clearly r^(a) = 0 and

hence it follows from Lemma 1.1 that Ra = R. So 1— sa e r(am) for some s s R and
m > 0. Since R is right duo there exists / E R such that sa = at and hence am = am+U from
which we infer that R is ^-regular.

THEOREM 4.6. For a right duo ring R the following conditions are equivalent:
(a) R is right cp-injective with no infinite set of orthogonal idempotents;
(b) R is cp-injective with no infinite set of orthogonal idempotents;
(c) R is a finite direct sum of (two-sided) uniserial rings with nil Jacobson radical.

Proof, (a) =>(<:). By Lemma 4.5, R is ^--regular and hence J(R) is a nil ideal and so
idempotents can be lifted modulo J(R). By assumption and Lemma 4.3, it follows that
R/J(R) is semisimple artinian and hence R is semiperfect. Hence R = /?, © . . . ©/?„ where
each Rj is a local ring which is left and right distributive by Corollary 4.2. Since local right
distributive rings are right uniserial we are done.

(c) ̂  (b). We may assume that R is uniserial with nil radical J. Let / be any
(two-sided) ideal of R and consider the ring R = R/I. Clearly, every element of J(R) has a
nonzero left and right annihilator. Hence by [6, Lemma 1], R is right and left p-injective.

(b) =$> (a) is trivial.
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Notice that any von Neumann regular ring which is not right noetherian is
cp-injective with an infinite set of orthogonal idempotents.
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