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Introduction

The Cartan matrix C of a left artinian ring A, with indecomposable projectives
Pu...,Pn and corresponding simples Si = PJJPh is an nxn integral matrix with entries
Cjj, the number of copies of the simple Sj which appear as composition factors of Pt. A
relationship between the invertibility of this matrix (as an integral matrix) and the
finiteness of the global dimension has long been known: gldim/4<oo=>detC= ±1
(Eilenberg [3]). More recently Zacharia [9] has shown that gldim^^2=>detC = l, and
in fact no rings of finite global dimension are known with detC= —1. The converse,
detC=l=>gldim/l<oo, is false, as easy examples show ([1) or [3]). However if A is
left serial, gldim/l<ooiffdetC = l [1]. If A = @n^0An is Z-graded and the radical
J=0,io4> Wilson [8] calls such rings positively graded. Here there is a graded Cartan
matrix C with entries from Z[X] and gldim/4<oo=>detC= 1 and, hence, detC=l [8,
Prop. 2.2].

The purpose of this note is to investigate the converse of Wilson's result for 0-
relations algebras. Green, Happel and Zacharia [7] have devised a method for
calculating the global dimension of O-relations algebras by looking at how the relations
overlap along possibly infinite paths in the quiver. If the quiver of a O-relations algebra
A has s arrows then it is shown below that A has a natural positive ^-grading, where 'S
is the free group on s generators. This also gives a G-grading where G is the free abelian
group on s generators. The corresponding Cartan matrices, C and H, have entries in
Z<x1,...,xs> and Z[x1;. . . ,xs], respectively. It is shown that gldim^<oo iff C is
invertible, and that gldim^<oo=>det// = l. Unfortunately, while C is easy to find, its
invertibility is hard to test. It is conjectured that the converse of the latter result is true
and the remainder of the paper examines special cases. If the relations ideal giving A
can be generated by paths of length 2 and the Loewy length of A is ^ 3 , then
gldim/l<oo iff det// = l. This is shown to give all the O-relations algebras of Loewy
length ^ 3 when the quiver has ^ 3 vertices, but not for more vertices.

The author would like to thank K. R. Fuller and B. Zimmermann-Huisgen for
showing him some unpublished work on Cartan matrices and Z-graded rings, and
Fuller for some valuable discussions.

1.
We begin by recalling the outlines of the calculus in [7]. Given a quiver (directed

graph) Q and a field K, a path algebra KQ can be constructed (e.g. [5]). A O-relations
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algebra A is a finite dimensional quotient A = KQ/I, where / is generated by a collection
p of paths, called relations, of length ^ 2 . A generating set will always be taken to be
minimal, i.e., no proper subset of p will generate /.

A path in Q will always be oriented and repetitions of vertices or arrows are allowed.
Given a path P (possibly infinite)

the associated sequence of relations, R, is defined as follows [7, p. 184]: if no relation of
pnP has initial point i0, then R = <j>, if rtepnP and its initial point s(rl) = i0 then
rj eR; if some rep has s(r) <«{/!), end point of r, (the symbol " < " is read as "before")
then let r2 be one such with least initial point and then r2eR, if there is none such,
R = {rl}; if r1,...,rmeR and some repnP has e(rm_1)^s(r)<e(rm) then put rm+1 to be
the one with least initial point and rm+leR, if there is none such, R = {rlt..., rm).

Given a vertex i0, the projective dimension of the corresponding simple S,o is
suP/>e & {(cardinality of the associated sequence of P) + l} where 8? is the collection of
paths beginning at i0 [7, 1.2 and 2.3], if ^=/=0, otherwise S,o is projective.

Proposition 1.1 Let A = KQ/I be a O-relations algebra. Then if Q has s arrows A has
a ^-grading where 'S is the free group on s generators (in fact only non-negative exponents
are used so it could be considered a free monoid grading). This grading induces a G-
grading where G is the free abelian group on s generators.

Proof. A is spanned as a vector space by the non-zero paths of Q. A non-zero path
ait,..., a,m is decreed to be of degree x,t... xim. That this is a grading is obvious. •

If all the x, are sent to some new variable y, the above grading induces a Z-grading
on A which makes A positively graded in the sense of Wilson.

(A special case of the gradings investigated by Green [6] shows that every O-relations
algebra is graded by a free group which is the fundamental group of the quiver viewed
as an unoriented graph. In these gradings some radical elements may be of degree 1, the
neutral element of the group, and, hence, they serve less well for our calculations than
the gradings defined above.)

To each of these gradings of A there corresponds a Cartan matrix. For the ^-grading,
the entries of the Cartan matrix C are from the free ring Z<x1,...,xs>, while the G-
grading yields a Cartan matrix, H, with entries from Z[xj,...,xs]. If the vertices of Q
are labeled 1,2, ...,n then C is an n x n matrix with ij entry a sum of monomials, a
monomial x i t . . . xim appearing for every copy of the simple S, found in a graded
composition series for Ret in degree xf i . . . xim; H is defined analogously.

This is best illustrated by a simple example.

Example 1.2.

Q: i cT J > 2 ,p = {a1a2a1}.

https://doi.org/10.1017/S0013091500026742 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500026742


0-RELATIONS ALGEBRAS 353

A is spanned by {eu e2, au a2, aya2, a2au a2axa2). The ^-grading is: A1 = {Ke1+Ke2},
AXi = {Kai}, AX2 = {Ka2}, AXiX2 = {Kaia2}, A^^^a.aJ, AXiXiX2 = {Ka2aia2}. (The
G-grading would put AXiXj and AXjXi together.)

The Cartan matrices are:

1+X,X2 1 +XjX
2C= .

1+XjXz

It can be seen that C completely determines A.

An argument first used by Eilenberg [3] for ungraded algebras and adapted by
Wilson [8] to the positively graded case works equally well here. It is clear that the
simple modules, the indecomposable projectives and the radical of A are all gradable
modules, i.e., can be given the structure of ^ - or G-graded modules.

Proposition 1.3. Let A = KQ/I be a O-relations algebra graded by the free group <§
(free abelian group G). If gl dim A < oo then the ^-graded Cartan matrix is invertible over
Z<xl 5 . . . , xs> (the G-graded Cartan matrix has determinant 1).

The essence of the argument is given below in proving a converse in the ^-graded
case. The result [7, Theorem 2.3] can be translated into a statement about C. The <&-
graded projective resolutions of the simples (in degree 1) will always yield a left inverse
of C, but with entries in the ring of formal power series, Z « x 1 ; . . . , x s » . This occurs as
follows. Consider the following ungraded projective resolution of S,:

where the Qy are projectives. Since all the modules here are gradable, by taking the
indecomposable components of QtJ in appropriate degrees, (R) can be made into a
graded resolution. The formal left inverse of C is formed along the lines of Wilson's
computation. The resolution gives an alternating sum for each k=l,...,n; here Jt is the
set of elements of ^ formed from the x, (corresponding to the arrows a,) using only non-
negative exponents:

n

Z E E {-iyu(i,j,r,m)mcjk = dik,
reNy=l meuC

where u(i,j,r,m) is the number of occurrences in Qir of the indecomposable projective P ;

in degree m, and cjk is the jk entry of C. The y entry of the left inverse of C is thus

Now u(i,r, j,m)^0 iff Pj occurs in degree m in Qir iff (by [7, Proposition 1.1 and
Theorem 1.2]) there is a path from i t o ; in Q using the arrows ah...,at (in order),
where m = x f i . . . x, , whose associated sequence has r steps and ends in j .
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Now two distinct paths correspond to distinct monomials so there can be no
cancellation in the terms making up 2tJ. It follows that the left inverse matrix has entries
which are in Z<x1;..., xs> iff gl dim A < oo. This completes the translation.

Proposition 1.4. Let A = KQ/I be a O-relations algebra graded by the free group <§,
then gldim/4<oo iff the graded Cartan matrix C has a inverse with coefficients in

The difficulty here is that although it is easy to form C, it is not easy to test if it has
an inverse, although there are procedures for this. In the discussion above only a left
inverse for C is constructed, but since Z<x1;..., xs> can be embedded in a division ring
([2], Corollary p. 80 and p. 283]), left-invertibility and invertibility coincide. Moreover
the last step of the above argument does not apply to the G-grading; two distinct
paths may have the same G-degree. All the examples tested to date suggest that indeed
1.4 would remain true if ^ were replaced by G, C by H and the criterion by "DetH= 1".
The remainder of the paper shows this to be true for a special class of O-relations
algebras.

This section will close with a remark about artinian rings in general. It will be used in
the next section (2.8). The purpose is to show that for questions about the finiteness of
the global dimension, there is no loss in generality in supposing that the quiver is
strongly connected.

Definition 1.5. Let Q be a graph, (i) Q is said to be strongly connected if for any pair
of vertices i and j there is a path from i to j . (ii) There is an equivalence relation on the
set of vertices given by i ~j if there are paths from i to j and from j to i; the equivalence
classes are called the strongly connected components, (iii) A set of vertices S of Q is called
a sink if there is no arrow from a vertex in S to a vertex not in S.

Proposition 1.6. Let A be a basic left artinian ring and Q its left quiver. If S is a set of
vertices which is a sink, denote by elt...,em the primitive idempotents corresponding to the
vertices inS,e = e1+-+ em. Then gl dim A < oo iff gl dim eAe and gl dim (1 — e(A( 1 — e) < oo.

Proof. The result follows immediately from [4, Corollary 3.6] once one observes that
eA(l—e) = 0, and this is because A(l— e) contains none of the simples associated with
eu...,em as composition factors. •

Any graph Q must have a strongly connected component which is a sink, which
allows a reduction to the strongly connected case.

In this section we consider the graded Cartan matrix H. The aim is to show that for a
special class of O-relations algebras, det H = 1 implies finite global dimension. To begin
there are some general remarks.

Lemma 2.1. Let A be any O-relations algebras. For any subset S = {ari,...,a,k} of the
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set of arrows, form the O-relations algebra just using the arrows ofS and the relations from
p involving only these arrows; call it A'. Then the Carton matrix H' of A' is obtained from
H by setting to zero all the variables other than xn,...,xrt. Further, if delH = l then

Proof. The simple S, appears in Aex in degree x\'... xJJ" exactly when there is a non-
zero path from i to j using the arrow ar exactly pr times, r=\,...,m. The same is true
for A' with the arrows restricted to S. In other words, H' is obtained from H by setting
to zero all variables other than those corresponding to arrows in S. The last statement
is now obvious. •

Lemma 2.2. Suppose A = KQ/I is a O-relations algebras for which d e t i f = l . Then Q
has no loops.

Proof. Suppose there is a loop a corresponding to a generator x of G. If A' is the
algebra, as in (2.1), given by a alone, then H'= [\ + x + •• -+x*] for some fc^l. Clearly
det H' =£ 1, a contradiction by (2.1). •

We now restrict our attention to a special class of algebras where p consists of paths
of length 2. In this case the associated sequence of a path in Q has relations starting on
successive vertices, until it stops. That is, if we have a path

and the associated sequence has N steps, the relations in it have initial points
i0,iu...,!„_, and end points i2,i3,...,iN+1. This facilitates computations.

Lemma 2.3. Let A = KQ/I where I is generated by p, p a set of paths of length 2.
Then gl dim A = oo iff there is a path

with aTarp+1 = 0, p = 1 k -1, a,tari = 0.

Definition 2.4. Suppose Q is a quiver and p a set of paths of length 2. A path

Or, a,2 art a,,

10 '1 ik-l '0 <1

such that aTar +1 = 0, p=\,...,k— 1 and artari = 0, is called a shortest null cycle if there
are none such with fewer arrows.

The aim is to show that if p consists of paths of length 2 and the Loewy length is ^ 3
then a shortest null cycle always gives a Cartan matrix of determinant ^ 1.
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The first observation about a shortest null cycle is that it can have no repeated
arrows. Hence the following notation can be used:

Q "l Q °2 o
 ak "l

'0 >i 12 i t - I io I'I

In future references to P the indices of the arrows and corresponding generators of G
are always taken modulo k, with representatives 1,2,...,k.

Lemma 2.5. Let A = kQ/I be of Loewy length ^ 3 and such that p may be chosen to
consist of paths of length 2. Assume that det H = 1 and that there is a shortest null cycle P.
Then along P

(i) if aras makes sense and s^r+l or r = k and s£l, then aras^0.

(ii) if a vertex j appears more than once among io,il,...,ik_l (j is then called a multiple
vertex for P), then the vertices ( and m in

are distinct and neither appears again in P.

Proof, (i) If aras = 0 with s^r+l or r = k and s=f 1, then P could be shortened by
removing the arrows between ar and as.

(ii) Since there are no loops in Q (2.2), <f =)=j and m £j.

Suppose (— m. Then we have

Since the Loewy length is ^ 3 , ar+laras = 0 which implies that ar+lar — 0 or aras = 0 (by
the hypothesis on p). Both possibilities are excluded by (i).

Next suppose ( appears again. We have

4—o d
j

Then asara, = 0, which is impossible unless s = r— 1. A possible repetition of m is dealt
with similarly. •

Theorem 2.6. Let A = kQ/I be a O-relations algebra of Loewy length ^ 3 such that I is
generated by a set p consisting of paths of length 2. Then if H is the G-graded Carton
matrix, d e t / / = l iff g ld im/ l<oo. Further, if s is the number of arrows and N the
cardinality of p, gl dim A < oo implies gl dim A^min{s,N+l}.
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Proof. One direction is already available. The proof of the converse is by
contradiction. Suppose that gl dim ,4 = 00 and detH=l. There is a shortest null cycle P
(by 2.3). We shall examine the matrix H' given by P (as in 2.1); detif' = 1.

The vertices of P correspond to the rows and columns of H'. The entries come from
non-zero paths, including "paths" of length zero which give the constant 1 in each
diagonal entry. There are two possibilities for a con-constant term in the m£ entry, a
degree one term xr if there is an arrow

and a degree two term xsx, if there is a non-zero path

In the latter case,; is necessarily a multiple vertex (as in 2.5(ii)). According to (2.5(ii)),
the two cases cannot occur in the same entry and no entry can have more than one
non-constant term. However a diagonal entry of the form l+xu + 1xu is possible coming
from a configuration

it is in the mm entry.
Let us examine a row, say the mth, which has a degree 2 entry arising from

Note that a, is the only arrow ending in m. Further j is a multiple vertex so that there is
another arrow ending in j ; there is

and there may be others, let

a

P j

represent a typical one. Consider also the _/th row. Since vertices of P adjacent to j are
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not multiple, there are no degree 2 entries in the jth row. In the illustration below any
entry not listed is zero.

columns: p / q m j
xux, xsx, 0 1 x, nth row
xu xs x,_! 0 1 ;th row

Now subtract x, times the jth row from the mth. We obtain

p i q m j
0 0 -x,_,x, 1 0 mth

(A degree 2 diagonal entry l+x u x u + 1 would be converted to 1 by this process.) If this
is done for each row with degree 2 entries we get a new matrix, K. Of course
det .K = det H'. A row of K has at most one degree 2 entry, and it would be of the
form — x,_1x,.

Each arrow of P either appears in a configuration

O—» O—» O.
9 J

where j is a multiple vertex, or as

where p and i are simple vertices. This shows there is a term of detK of the form
±XiX2...xk. It is obtained by using all the degree 2 entries from K and the degree 1
entries corresponding to arrows whose end vertices are simple. Any unused columns and
rows correspond to multiple vertices. From these the entry 1 is taken from the diagonal.

Next, no other term of detK has the form + x,x2...xk. To see this note that if a, has
initial vertex which is a multiple vertex, x, only appears in the degree 2 entry — x,-^ , .
Similarly if the end vertex of au is a multiple vertex, xu only appears in the degree 2
entry — xuxu + 1. If both vertices of ar are simple, xr only appears in degree 1. Hence
there is only one way of obtaining ±X!X2 ...xk.

The argument works vacuously when P has no multiple vertices, and, hence, H' = K
has no degree 2 entries.

Hence detH'^1 and we have a contradiction. The last statement of the theorem
follows immediately from [7, 1.2]. •

The remainder of the article is to look at two special cases, where Q has 2 or 3
vertices. The first lemma does not require any assumptions on p or the Loewy length.

Let A = KQ/I be any Q-relations algebra. If Q contains a cycle of length
and detH = 1, then exactly one of a^a^ or a2al is 0.
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Proof. The two arrows give a term —x1x2 in det//. It must be cancelled by xxx2

which can only come from a^a2^0 and a2a1=0 (giving l+x,x 2 in (ii) or 0^2 = 0 and
0. •

Proposition 2.8. Let A = KQ/I be a O-relations algebra where Q has 2 vertices. Then
gl dim A < oo iff det // = 1. If gl dim A < oo then gl dim A ̂  2.

Proof. Let the arrows
gives that

-o be au..., ar and those o- -o be s. Lemma 2.7

H =
I*. 1+

If de t / /= l then either all atbj±O or all a,fc, = 0. In either case A is clearly of global
dimension fS2, since in the former case, for example, the indecomposable projective Pt

has radical which is a direct sum of s copies of P2. •

Notice that in the above setting, det H = 1 implies that p may be taken to consist of
paths of length 2 and the Loewy length is automatically 3. Now consider the case of 3
vertices. By Proposition 1.6 there is no loss in generality in assuming that Q is strongly
connected, for otherwise we can reduce the question of the finiteness of the global
dimension to the case of 2 vertices and use 2.8.

Proposition 2.9. Let A = KQ/I be a O-relations algebra of Loewy length 3, where Q is
strongly connected with 3 vertices. Then det H = 1 implies that I can be generated by p,
where p consists of paths of length 2.

Proof. It is assumed that there is a "bad" relation a1a2a3 = 0 with ala2, a2a3^0.
There are three configurations possible.

(iii) (A fourth case,

is already excluded by 2.8.)
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In (i) the terms of H just using xu x2 and x3 would be

1 x2x3 x3

xt 1 u
V V 1

1A7 Ai I

, where u = x3x1 or 0.

The determinant is l + xlx2

(Note if Q looks like (i) and detH = 1 then exactly one of a ^ , a2a3,

(ii) Since Q is strongly connected, there is

is

Consider first a4. By (i) exactly one of a2a3, a3a4, aAa2 is =£ 0. Hence a3a4 = a4a2 = 0; also
by 2.7, a2a! =0. The corresponding part of detH is

x2 0

x3 x2x3

= 1 — 1.

With x5, a2al = 0, by 2.7, and similarly exactly one of a3a5 or asa3 = 0. Put w = x3x4 or
0, v = x5x3 or 0. Let w = x5x1 or 0.

1 + x ^ + u

* i

* 3

1, regardless of w.

(iii) There is

* 2

1

X2X3

X 5

w

1+f

J1 j —X2X3X5W —XjX2X3W

-o or o-
1 3

With x4 there are two choices, either X!X4=0 or x4X!=0. Put u =
0, w = x3x4 or 0.

w

^1

*1*2 x2

= <

or 0, t) = x4xt or

1+XJX2X3X4 — xtx2x3w if

https://doi.org/10.1017/S0013091500026742 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500026742


With x5,
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= xsx1=x3x2 = 0 by (i). We get

Xj 1+X 2 X 3 X3

X\X2 X2 1

361

•
Corollary 2.10. Let A = KQ/I be a O-relations algebra where Q has 3 vertices. Assume

further that the Loewy length of A is 3. Then if H is the G-graded Cartan matrix,
gl dim A < oo iff det H = 1.

Proof. This follows from 1.5, 2.8, 2.9, and 2.6. •
The next example shows that for 4 vertices, Theorem 2.6 does not cover all cases of

Loewy length 3.

Example 2.11.

Q'

The corresponding algebra is of Loewy length 3 and global dimension 5. Of course

To conclude, the following example is one where the algebra has a Z-grading whose
Cartan matrix has determinant 1, but which is of infinite global dimension. However the
G-grading Cartan matrix detects this.

Example 2.12.

= {a1a2,a3aii,a2ala3}.

The most natural Z-grading has Cartan matrix

1 x
x 1+x2 , with determinant 1.

x2 x 1+x3

There are other Z-gradings also yielding matrices with determinant 1, but de tH^l , as
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follows by computation or by 2.9. (This example was found by Fuller and
Zimmermann-Huisgen and is presented here as a O-relations algebra.)

Note added in proof. T. Belzner, in a thesis being written at the University of Passau,
has used the gradings due to Green and has obtained Theorem 2.6 without the
restriction on the Loewy length.
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