THE ENDOMORPHISM RING OF A FINITE-LENGTH MODULE

RAINER SCHULZ

Let M be an R-module of finite length. For a simple R-module A, let ℓ_A denote the nuber of times the isomorphism type of A appears in a composition chain of M, and let σ denote the maximum of the ℓ_A , A ranging over all simple submodules of M. Let S be the endomorphism ring of M. We show that the Loewy length of S is bounded by σ .

It is well-known that the endomorphism ring S of a finite-length module M_R over any ring R is semi-primary, that means the factor ring of S modulo its radical J is semisimple artinian, and J is nilpotent. The smallest number m with the property $J^m = 0$ is called the Loewy length of S. Let ℓ denote the length of M_R . Then the estimate $m \leq \ell$ holds. According to a remark of Bourbaki ([1, Chapter 8, Section 2, exercise 3]), this result is due to A. Rosenberg.

For any simple module A_R , let ℓ_A be the number of times the isomorphism type of A_R appears as a composition factor in a composition chain of M_R . Let h denote the maximum of the numbers ℓ_A , A_R ranging over all simple R-modules. Improving the estimate given above, Smalø [4] showed that the inequality $m \leq h$ holds.

In this paper, we will prove the estimate $m \leq \sigma$, where σ is the maximum of the numbers ℓ_A , A_R ranging only over all simple submodules of M_R . Note that all of the numbers ℓ_A , ℓ , h, σ are invariants of M_R by the Jordan-Hölder Theorem. An analogous result for infinite cardinals was proved in [3, Satz 4], under more general assumptions on M_R , including not only finite-length modules, but also certain semiartinian modules which have perfect endomorphism rings. As the methods in [3] are rather technical, it might be useful to provide a simple proof for the estimate $m \leq \sigma$ in the finite-length case. This is the aim of the present note.

THEOREM. Let M_R be a finite-length module over any ring R. Let S be the endomorphism ring of M_R . Then the Loewy length of S is bounded by the number σ .

PROOF: We need the following lemma (compare [2, Lemma 4], which may be of interest in its own right.

Received 15 April 1988

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.

R. Schulz

LEMMA. Let $_{S}X_{R}$ be a bimodule, where S is a semi-primary ring and X_{R} has finite length. Let X_{R} have a composition factor isomorphic to some simple module A_{R} . Then the socle of $_{S}X$, considered as a right R-module, has also a composition factor isomorphic to A_{R} .

PROOF: Let $J = \operatorname{Rad}(S)$. Recall that $\operatorname{Soc}(SX) = \operatorname{ann}_X(J)$, where ann_X denotes the right annihilator in X. Choose $x \in X$ and $U \subseteq X$ with A_R isomorphic to xR/U. Assume at first $\operatorname{ann}_X(J) \cap xR \not\subseteq U$. Then there are R-isomorphisms $A \cong (\operatorname{ann}_X(J) \cap xR + U)/U \cong \operatorname{ann}_X(J) \cap xR/\operatorname{ann}_X(J) \cap xR \cap U$, and the assertion follows. Assume now $\operatorname{ann}_X(J) \cap xR \subseteq U$. As X_R is artinian, there is a finite subset $\{f_1, \ldots, f_k\}$ of J such that $\operatorname{ann}_X(J) \cap xR = \operatorname{ann}_X(f_1, \ldots, f_k) \cap xR$. Then the map $g: xR \to \prod_{i=1}^k f_i xR, g(xr) = (f_1xr, \ldots, f_kxr)$ has kernel $\operatorname{ann}_X(J) \cap xR \subseteq U$. Therefore, the image of g has a composition factor isomorphic to A_R , hence one of the $f_i xR$ and JX have a composition factor isomorphic to A_R .

The Loewy length of JX, considered as a left S-module, is one less than that of $_{S}X$. The Lemma follows by induction over the S-Loewy length of the bimodule in question.

PROOF OF THE THEOREM: Let f be a nonzero element of J^{m-1} , m denoting the Loewy length of S. Let A_R be a simple submodule of M/Ker(f). As M/Ker(f)embeds in M_R , the module A_R , up to isomorphism, is a simple submodule of M_R .

For any bimodule ${}_{S}X_{R}$ and any subset T of S, again let $\operatorname{ann}_{X}(T)$ denote the right annihilator of T in X. Note that $\operatorname{ann}_{X}(T)$ is a S - R-bimodule. By the choice of f, the inclusion $\operatorname{ann}_{M}(J^{m-1}) \subseteq \operatorname{Ker}(f)$ holds, thus A_{R} is a composition factor of $M/\operatorname{ann}_{M}(J^{m-1})$. Consider now the ascending Loewy chain (=chain of iterated socles) of ${}_{S}M$, this is the chain $0 = \operatorname{ann}_{M}(J^{0}) \subset \operatorname{ann}_{M}(J) \subset \ldots \subset \operatorname{ann}_{M}(J^{m-1}) \subset \operatorname{ann}_{M}(J^{m}) = M$.

As A_R appears in the top factor module of this chain, we conclude that A_R is a composition factor of each S - R-bimodule $X_i = M/\operatorname{ann}_M(J^i)$, $0 \leq i \leq m-1$. By our Lemma, the module $\operatorname{ann}_{X_i}(J)$ has a composition factor isomorphic to A_R . Using the identity $\operatorname{ann}_{X_i}(J) = \operatorname{ann}_M(J^{i+1})/\operatorname{ann}_M(J^i)$ and looking again at the ascending Loewy chain of SM, we see that A_R appears at least m times as a composition factor in M_R , and we conclude that $m \leq \ell_A \leq \sigma$.

References

- [1] N. Bourbaki, Algèbre: Modules et Anneaux semi-simples, Chap. 8 (Hermann, Paris, 1958).
- [2] R. Schulz, 'The endomorphism ring of an artinian module whose homogeneous length is finite', Proc. Amer. Math. Soc. 86 (1982), 209-210.
- [3] R. Schulz, 'Die absteigende Loewylänge von Endomorphismenringen', Manuscripta Math. 45 (1984), 107-113.

[4] S.O. Smalø, 'A limit on the Loewy length of the endomorphism ring of a module of finite length', Proc. Amer. Math. Soc. 81 (1981), 164-166.

Department of Algebra, Combinatorics and Analysis Auburn University Alabama 36849 United States of America

[3]