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Rings With Comparability
Miguel Ferrero and Alveri Sant’Ana

Abstract. The class of rings studied in this paper properly contains the class of right distributive rings which
have at least one completely prime ideal in the Jacobson radical. Amongst other results we study prime and
semiprime ideals, right noetherian rings with comparability and prove a structure theorem for rings with
comparability. Several examples are also given.

Introduction

A right distributive ring is a ring whose lattice of right ideals is distributive. It is well-known
that the class of commutative distributive domains coincides with the class of Prüfer do-
mains. Noncommutative right distributive rings were investigated in a paper of Stephen-
son [10]. Brungs [3] proved that right distributive domains are locally right chain rings
(see [2] and the literature quoted therein). Recently several papers showed that some fea-
tures for right chain rings can be carried over to right distributive rings which have at least
one completely prime ideal contained in the Jacobson radical [4], [5], [6], [7], [8].

Elements in a right chain ring R are comparable in the sense that for a, b ∈ R we have
either aR ⊆ bR or bR ⊆ aR. Also, if R is a right distributive ring and P is a completely prime
ideal contained in the Jacobson radical of R, then we can compare elements of R. In fact,
if a, b ∈ R, then one of the following holds: aR ⊆ bR, bR ⊆ aR or (aR)S−1 = (bR)S−1,
where (aR)S−1 = {x ∈ R : ∃ s ∈ S with xs ∈ aR} and S = R \ P ([7, Lemma 3.1];
[5, Section 3]).

A ring R is said to satisfy right P-comparability if for all a, b ∈ R one of the following
conditions holds: aR ⊆ bR, bR ⊆ aR or (aR)S−1 = (bR)S−1, where S = R \ P. We can
prove that several results which are known for right distributive rings are also true for rings
having right P-comparability. In this way we can extend results of several papers, mainly
[5], [6], [7]. However the main purpose of this paper is to obtain results which are new
even for right distributive rings. Finally, examples show that the class of rings with right
comparability is bigger than the class of right distributive rings.

In Section 1 we give the basic definitions and results. In Section 2 we give examples. In
particular, it follows that rings with right comparability can be obtained as a pullback of
a right chain ring T with a maximal ideal M and domains D ⊆ T/M provided that the
skew field of fractions of D exists and equals T/M. In Section 3 we prove a converse of
the main result of Section 2 for prime rings having both left and right comparability. The
corresponding result does not hold if we assume one-sided comparability.
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As we said above most of the results in former papers on distributive rings ([5], [6], [7])
can be extended to the class of rings with comparability. In Section 4 we give an example
of this obtaining an extension of Theorem 2.1 of [6].

Finally, in Section 5 we obtain a criterion for a ring with comparability to be right
noetherian. As a consequence a prime right noetherian ring R with left and right com-
parability is a chain ring, provided there exists a completely prime ideal Q 6= 0 contained
in the Jacobson radical of R.

It should be mentioned here that in [1] the authors studied rings which have some type
of comparability, different from our comparability.

Throughout this paper R is always a ring with identity element. By J(R) we denote the
Jacobson radical of R, β(R) the prime (lower nil) radical of R, and Ng(R) the generalized
nil radical of R. The set of units of R is denoted by U (R). The notations⊂ and⊃ will mean
strict inclusions. Ideals are assumed to be two-sided unless otherwise stated.

1 Definitions and Basic Results

Let R be a ring. A right ideal P of R is said to be completely prime if ab ∈ P implies either
a ∈ P or b ∈ P. Thus, if P is completely prime then R \ P is multiplicatively closed.

A right ideal I 6= R, (0) of R is said to be a (right) waist if for every right ideal K of R we
have either I ⊆ K or K ⊂ I. We point out that I is a waist if for every a ∈ R \ I we have
I ⊂ aR. Also, every waist is contained in the Jacobson radical.

Assume that S is a multiplicatively closed subset of R and a ∈ R. We define (aR)S−1 by
(aR)S−1 = {x ∈ R : ∃ s ∈ S such that xs ∈ aR}. Recall that S is said to be a right Ore set if
for every a ∈ R and s ∈ S there exist t ∈ S and b ∈ R such that at = sb. We begin with the
following

Lemma 1.1 Assume that S ⊆ R is a right Ore set. Then (aR)S−1 is a right ideal for any
a ∈ R.

Proof If x, y ∈ (aR)S−1 there are s, t ∈ S such that xs, yt ∈ aR. Since S is a right Ore set
there exist u, v ∈ S with su = tv. Then (x− y)su = xsu− ytv ∈ aR and so x− y ∈ (aR)S−1.
Similarly we obtain xb ∈ (aR)S−1 for any b ∈ R.

Denote by P a completely prime right ideal of R and let S = R \ P.

Definition 1.2 We say that R satisfies right comparability with respect to P if for every
a, b ∈ R one of the following conditions holds: aR ⊆ bR, bR ⊆ aR or (aR)S−1 = (bR)S−1.

In the above case we simply say that R has (right) P-comparability and we will omit right
if there is no possibility of misunderstanding.

Lemma 1.3 Assume that R has P-comparability, where P is a completely prime right ideal of
R. Then P is a waist. In particular, P is a two-sided completely prime ideal contained in J(R).

Proof Suppose a ∈ P, b /∈ P. Notice that bR ⊆ aR and (aR)S−1 = (bR)S−1 imply
contradictions. So aR ⊆ bR and thus P is a waist and so P ⊆ J(R). Apply now Lemma 2.5
of [5].
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The above lemma shows that P-comparability makes sense only when P is a two-sided
completely prime ideal contained in J(R). The following proposition gives several equiva-
lent conditions for R to have P-comparability.

Proposition 1.4 Let R be a ring, P a (two-sided) completely prime ideal contained in J(R)
and S = R \ P. The following conditions are equivalent:

(i) R has P-comparability.
(ii) For all a, b ∈ R we have either aR ⊆ bR or (bR)S−1 ⊆ (aR)S−1.
(iii) For all a, b ∈ R we have either aR ⊆ bR or bR ⊆ (aR)S−1.
(iv) S is a right Ore set and for all a, b ∈ R we have either aR ⊆ bR or b ∈ (aR)S−1.
(v) (aR)S−1 is a right ideal and a waist, for every a ∈ R.

Proof The proofs of (i)⇔ (ii)⇔ (iii) are straightforward.
(iii)⇒ (iv). Take a ∈ R, s ∈ S. If aR ⊆ (sR)S−1 there exist t ∈ S and b ∈ R such that

at = sb. Otherwise we have sR ⊆ aR and then s = ar, for r ∈ S, because s /∈ P. Therefore,
S is a right Ore set. The other part of (iv) is clear.

(iv)⇒ (v). (aR)S−1 is a right ideal for every a ∈ R, by Lemma 1.1. Assume b /∈ (aR)S−1

and suppose there exists x ∈ (aR)S−1 such that x /∈ bR. Then b ∈ (xR)S−1 and so there
exists s ∈ S with bs ∈ xR ⊆ (aR)S−1. Thus bst ∈ aR for some t ∈ S and we obtain
b ∈ (aR)S−1, a contradiction. It follows that (aR)S−1 ⊂ bR and so (aR)S−1 is a waist.

(v) ⇒ (ii). Assume that for x, y ∈ R, (yR)S−1 * (xR)S−1. Since (xR)S−1 is a waist
we have (xR)S−1 ⊂ (yR)S−1. In this case the assumption y ∈ (xR)S−1 easily gives a
contradiction and hence we have xR ⊆ (xR)S−1 ⊂ yR. The proof is complete.

If S ⊆ S′ are multiplicatively closed subsets of R we have (aR)S ′−1 ⊆ (aR)S−1, for
any a ∈ R. Using this we can easily see that if P ′ ⊆ P are completely prime ideals and
R has P-comparability, then R also has P ′-comparability. The following is an immediate
consequence.

Proposition 1.5 Assume that R has P-comparability, where P ⊆ J(R). Then the set of all the
completely prime right ideals contained in P coincides with the set of all the completely prime
two-sided ideals contained in P. Furthermore, this set is linearly ordered and so the generalized
nil radical Ng(R) is completely prime and a waist.

Now we give another definition.

Definition 1.6 A ring R is said to be a ring with right comparability if R has right P-
comparability for every completely prime right ideal P contained in J(R).

As in [5] we say that R satisfies condition (MP) if there exists a completely prime ideal
of R contained in J(R). By the above results, if R is a ring with comparability, then we can
find a largest completely prime ideal Q ⊆ J(R) and R has Q-comparability. The following
is clear.

Corollary 1.7 Let R be a ring which satisfies condition (MP). Then R is a ring with com-
parability if and only if the set of completely prime ideals of R contained in J(R) has a largest
member Q and R has Q-comparability.
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2 Examples

We begin with the following natural example which initiated the study of the subject in this
paper.

Example 2.1 Assume that R is a (right) distributive ring and P is a completely prime ideal
contained in J(R). Then R has P-comparability. In fact, if a, b ∈ R, aR * bR and bR * aR,
then aP = bP [7, Lemma 3.1]. Also, in this case a and b are non-zero and so we may use
Lemma 3.4 of [5] to obtain (aR)S−1 = (bR)S−1.

The next proposition leads to a large class of examples. We use here a construction which
is an extension of the one used in [6, Proposition 4.2] to obtain examples of distributive
rings.

Let T be a right chain ring with maximal ideal M and let D be a domain contained in
the skew field F = T/M. Consider the canonical mappings π : T → F and j : D → F.
We denote by R the pullback of D and T. Recall that R is the subring of the ring D × T
consisting of all the elements (a, x) ∈ D × T such that j(a) = π(x). Under this notation,
we have the following

Lemma 2.2 Let Q be the set of all the elements (0, x) ∈ R, where x ∈ M. Then Q is a
completely prime two-sided ideal of R and is a waist as right and left ideal.

Proof It is clear that Q is an ideal of R. Also, Q is completely prime since D is a domain.
Assume that (a, x) ∈ R \Q, i.e., a 6= 0. So x /∈ M and there exists x−1 ∈ T. For any y ∈ M
we have (0, x−1 y) ∈ R and (0, y) = (a, x)(0, x−1 y) ∈ (a, x)R. Consequently Q ⊂ (a, x)R.
In the same way we obtain Q ⊂ R(a, x) and so the proof is complete.

Remark 2.3 Note that since Q is a waist we have Q ⊆ J(R). Also, the projection of R
into T is injective and so allows us to identify R with π−1

(
j(D)
)

. Under this identification
Q = M, i.e., we may assume M ⊆ R.

We show that under some additional assumption R has Q-comparability. As usual we say
that F is a right skew field of fractions of D if every z ∈ F can be written as z = j(a) j(b)−1,
for a, b ∈ D, b 6= 0. Thus we have the following

Theorem 2.4 Under the above situation, if F is a right skew field of fractions of D, then R has
Q-comparability.

Proof Let (a, x) ∈ R and (b, y) ∈ S = R \ Q. Then we have y ∈ U (T). If a = 0, then
(a, x) ∈ (b, y)R by Lemma 2.2. Assume a 6= 0. Then x ∈ U (T) and it follows that there
exists u ∈ U (T) with x = yu. Thus we can write π(u) = j(c) j(d)−1 for some c, d ∈ D\{0}.
Let z ∈ T such that π(z) = j(d). We have j(a) = π(x) = π(y)π(u) = j(b) j(c) j(d)−1

and it follows that j(ad) = j(bc), i.e, ad = bc since j is a monomorphism. Moreover,
we have that (c, uz) ∈ R and (a, x)(d, z) = (ad, xz) = (bc, yuz) = (b, y)(c, uz), where
(d, z), (c, uz) ∈ S. The argument shows that S is a right Ore set, (a, x) ∈ (b, y)R when
a = 0, and

(
(a, x)R

)
S−1 =

(
(b, y)R

)
S−1 = R when a 6= 0 6= b.

It remains to consider the case a = b = 0. In this case x, y ∈ M and we may assume that
there exists t ∈ T with x = yt . If t ∈ M, then (0, t) ∈ R and we have (0, x) = (0, y)(0, t).
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If t /∈ M then t is invertible in T and there exist non-zero elements c, d ∈ D with π(t) =
j(c) j(d)−1. A similar argument as above shows that

(
(0, x)R

)
S−1 =

(
(0, y)R

)
S−1, which

completes the proof.

Note that in general if T = F ⊕M is a right chain domain with maximal ideal M, then
the pullback R ' D ⊕ M (cf. Proposition 4.2 in [6]). We have a particular case of this
situation if we take R = D ⊕ tF[[t ;σ]], where D is a right Ore domain, F is the skew field
of fractions of D, σ is the extension to F of an automorphism of D and F[[t ;σ]] is the skew
power series ring over F.

Remark 2.5 In former papers ([4], [5], [6], [7]) another comparability condition has
been used instead of the one of Definition 1.2. In fact, we say that R satisfies weak (right)
P-comparability if for every a, b ∈ R one of the following conditions holds: aR ⊆ bR,
bR ⊆ aR or aP = bP, where P is as above. It can easily be seen that comparability implies
weak comparability. The following example shows that the converse is not true.

Example 2.6 Let R = Z ⊕ tQ(X)[[t]], where Z denotes the ring of integer numbers and
Q(X) the field of rational functions over the field of rational numbers Q. Thus R is a com-
mutative domain contained in T = Q⊕ tQ(X)[[t]] and P = tQ(X)[[t]] is a (completely)
prime ideal of R since R/P ' Z.

Assume that f = tnh ∈ P, h = b + tk ∈ Q(X)[[t]], b 6= 0 and n ≥ 1. Then h ∈
U
(
Q(X)[[t]]

)
and it follows that f P = tn+1Q(X)[[t]] = tnP. From this remark we can

easily see that for f , g ∈ R, we have f R ⊆ gR, gR ⊆ f R or f P = gP.
Finally, R does not have P-comparability. In fact, for f = tX and g = t(X − 1) it is not

hard to show that g /∈ f R and f /∈ (gR)S−1, S = R \ P.

3 Prime Rings With Comparability

The purpose of this section is to prove a converse of Theorem 2.4 when R is a prime ring.
Let us first state the following proposition whose easy proof is left to the reader.

Proposition 3.1 Assume that R and T are as in Theorem 2.4. Then R is a prime ring if and
only if T is a prime ring.

We will need also the following

Lemma 3.2 Let R be a prime ring which has right Q-comparability and suppose that Q is a
waist as a left ideal. Then the localization RQ exists and is a prime right chain ring which is an
extension of R.

Proof Assume s ∈ S = R \ Q and sx = 0, for x ∈ R. Then Rsx = 0 and since Rs ⊃ Q
we have x = 0. Thus the localization RQ does exist since S is a right Ore set (Proposi-
tion 1.4(iv)). We easily can see that RQ is prime and the canonical mapping R → RQ is
injective. Finally, take a

1 ,
b
1 ∈ RQ. Then a, b ∈ R and so either aR ⊆ bR or b ∈ (aR)S−1.

Consequently we have either a
1 RQ ⊆

b
1 RQ or b

1 RQ ⊆
a
1 RQ, and the result follows easily.
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Now we are in position to prove the main result of this section.

Theorem 3.3 Let B be a ring and P a completely prime ideal contained in J(B). Then B is a
prime ring having right P-comparability such that P is also a left waist of B if and only if there
exists a prime right chain ring T and a right Ore domain D ⊆ T/ J(T) such that T/ J(T) is
the right skew field of fractions of D, and an isomorphism ϕ : B

∼
→ R such that ϕ(P) = Q,

where R and Q are as in Theorem 2.4.

Proof The “if” part is an immediate consequence of Lemma 2.2, Theorem 2.4 and Propo-
sition 3.1. Assume that B is a prime ring having right P-comparability such that P is a left
waist of B. Then BP is a prime right chain ring, by Lemma 3.2. Denote by f : B → BP the
canonical mapping: f (x) = x

1 , for all x ∈ B. If a ∈ P, then f (a) ∈ PBP, where PBP is
the maximal ideal of BP. Hence f induces a mapping j : B/P → BP/PBP, where B/P is a
domain, and j is injective because P is completely prime. Also, if xs−1 + PBP ∈ BP/PBP,
then xs−1 + PBP = j(x + P) j(s + P)−1. Hence BP/PBP is a skew field of fractions of B/P.

Denote by R the pullback defined by R = π−1
(

j(B/P)
)

, where π : BP → BP/PBP is
canonical (see Remark 2.3). Take x ∈ B and consider x

1 ∈ BP. Then π( x
1 ) = x

1 + PBP =
j(x + P) and so x

1 ∈ R. Put ϕ(x) = x
1 . We easily see that ϕ : B→ R is a monomorphism of

rings with ϕ(P) = Q, where Q = PBP.
Assume that ys−1 ∈ R, s /∈ P. Then ys−1 + PBP = j(x + P) = x

1 + PBP, for some x ∈ B,
and so y − xs ∈ P. Since P is a waist as a left ideal of B we have that y − xs = ps, for some
p ∈ P. Hence ys−1 = x+p

1 = ϕ(x + p), where x + p ∈ B. Thus ϕ is a surjective mapping
and the proof is complete.

The above theorem applies when B has both left and right Q-comparability. In particular
we have

Corollary 3.4 Assume that R is a prime left and right distributive ring with (MP) and let Q
be the largest completely prime ideal of R contained in J(R). Then there exists a prime two-
sided chain ring T and a two-sided Ore domain D such that the right skew field of fractions of
D is T/ J(T) and R is isomorphic to the pullback of D and T as in Theorem 2.4.

Now we give an example to show that the converse of Theorem 2.4 does not hold when
we assume one-sided conditions.

Example 3.5 Let K be a field, B = K(X2,X3, . . . )[X1] and F = K(X1,X2,X3, . . . ), where
K(X) denotes the field of fractions of the integral domain K[X], for X = (X2,X3, . . . )
(resp. X = (X1,X2,X3, . . . )). Then F is the field of fractions of B. Let σ : B → B be the
K-monomorphism of rings defined by σ(Xi) = Xi+1 (i ≥ 1), and denote also by σ its
extension to a monomorphism of F. It is clear that σ(F) ⊆ U (B). Put T = F[[t ;σ]] the
skew power series ring defined by at = tσ(a), a ∈ F, and consider the subring R = B[[t ;σ]]
of T. Then P = tB[[t ;σ]] is a completely prime ideal of R since R/P ' B. We show that R
has right P-comparability and R is not a pullback.

Let f = a0 + ta1 + t2a2 + · · · ∈ R where a0 6= 0. Thus f ∈ U (T) and it is easy to show
that if q = t p ∈ P, where p ∈ B, we have q = f tσ( f−1)p, where tσ( f−1)p ∈ R. It follows
that P is a waist as a right ideal and so P ⊆ J(R). Also, it is easy to check that (gR)S−1 = R,
for all g ∈ R \ P, and consequently S = R \ P is a right Ore set.
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Consider f = tnh, g = tml, where h = h0 + th1 + · · · ∈ B, l = l0 + tl1 + · · · ∈ B, h0 6= 0
and l0 6= 0. If m > n we have g ∈ f R. If m = n, then f ∈ (gR)S−1 as it is easy to see.
Hence R has right P-comparability.

Finally, note that R is not a pullback of the type of Theorem 2.4 since P is not a left waist
of R. In fact, tX2 ∈ P and tX2 /∈ RX1.

4 Prime and Semiprime Ideals

Following [5], a subset T of R is said to be a right multiplicative ideal if for every a ∈ T
and r ∈ R we have ar ∈ T. A right multiplicative ideal T of R is said to be prime (resp.
semiprime) if for a, b ∈ R we have that for aRb ⊆ T (resp. aRa ⊆ T) implies either a ∈ T
or b ∈ T (resp. a ∈ T).

The purpose of this section is to prove an extension of Theorem 2.1 of [6]. Note that the
proof here is easier than the one given in that paper. We will use the following remark: if P
is a completely prime ideal of R, then P is a waist as a right ideal if and only if aP = P, for
every a /∈ P.

Theorem 4.1 Let R be a ring which has P-comparability, where P is a completely prime ideal
of R contained in J(R). Then any semiprime right multiplicative ideal of R contained in P is a
prime right ideal and a waist.

Proof Let L be a semiprime right multiplicative ideal contained in P. Suppose a, b ∈ L. If
a = br, for some r ∈ R, it follows easily that a + b ∈ L. Assume b ∈ (aR)S−1, S = R \ P.
Thus bs = at , for some s ∈ S, t ∈ R. Hence (a + b)P = (a + b)sP = a(s + t)P ⊆ L and so
(a + b)R(a + b) ⊆ (a + b)P ⊆ L. Therefore a + b ∈ L and consequently L is a right ideal.

Now, assume a ∈ L and b /∈ L. If b ∈ (aR)S−1 there exists s ∈ S with bs ∈ aR ⊆ L ⊆ P.
Since s /∈ P we get b ∈ P, hence bRb ⊆ bP = bsP ⊆ L, a contradiction. Thus we have
a ∈ bR and L is a waist as a right ideal.

Finally, suppose aRb ⊆ L and a /∈ L. If a ∈ (bR)S−1, there exist s ∈ S, r ∈ R such that
as = br. Thus asRas = asRbr ⊆ aRbr ⊆ L, and so as ∈ L. Hence a ∈ P since s /∈ P, and it
follows that aRa ⊆ aP = asP ⊆ L, a contradiction. Consequently, there exists t ∈ R such
that b = at and so atRat ⊆ aRb ⊆ L. Therefore b = at ∈ L. The proof is complete.

The following is an immediate consequence.

Corollary 4.2 Let R be a ring which has P-comparability.

(i) If L ⊆ P is a prime right multiplicative ideal, then L is a right ideal and a waist.
(ii) The prime radical β(R) is a prime ideal and a waist.

5 Noetherian Rings With Comparability

Recall that a ring R is said to satisfy accw (ascending chain condition on waists) if every
family of waists of R has a maximal member. Right distributive rings which satisfy accw
were studied in [6, Section 3].
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We begin this section with the following lemma whose proof is straightforward.

Lemma 5.1 Let R be any ring. If every right ideal of R which is a waist is finitely generated,
then R satisfies accw.

We will see soon that the converse of Lemma 5.1 is not true.
The purpose of this section is to give a criterion for a ring which satisfies P-comparability

to be right noetherian. We will need the following

Lemma 5.2 Let R be a ring with P-comparability. If I ⊆ P is a right ideal and a waist, then
aI is also a waist, for every a ∈ R.

Proof Assume that x /∈ aI. If x = ar, r ∈ R \ I, we have I ⊂ rR and so aI ⊆ arR = xR.
Otherwise there exists s ∈ S with as ∈ xR. Thus aI ⊆ aP = asP ⊆ xP ⊂ xR, and we are
done.

Theorem 5.3 Assume that R is a ring with P-comparability, P ⊆ J(R). Then the following
conditions are equivalent:

(i) R is right noetherian.
(ii) R/P is right noetherian and every waist of R which is contained in P is finitely generated

as a right ideal.

Proof It is enough to prove (ii)⇒ (i). Assume that I1 ⊆ I2 ⊆ · · · is a sequence of right
ideals of R. If there exists n ≥ 1 such that P ⊆ In, then the sequence must stabilize since
R/P is right noetherian. So we may assume I j ⊂ P, for all j.

For every i ≥ 1 there exists a smallest waist Li of R with Ii ⊆ Li , and we have L1 ⊆ L2 ⊆
· · · . Hence by Lemma 5.1 there exists n ≥ 1 such that Ln = Ln+1 = · · · . Thus it is enough
to show, changing notation, that if I1 ⊆ I2 ⊆ · · · ⊆ L, where L is the smallest waist of R
containing I1, then the sequence stabilizes.

By assumption L = a1R + · · · + anR. For i ≥ 1 and 1 ≤ l ≤ n we put

Hil = {r ∈ R : ∃ r1, . . . , rl−1 ∈ R with a1r1 + · · · + al−1rl−1 + alr ∈ Ii}.

Then Hil is a right ideal of R. Also, by Lemma 5.2 aiP is a waist of R and clearly aiP ⊂ L.
Hence aiP ⊆ I1 and then we have P ⊆ Hil, for i ≥ 1 and 1 ≤ l ≤ n. Furthermore
H1l ⊆ H2l ⊆ · · · and so there exists m ≥ 1 such that Hml = Hm+ jl, for all j ≥ 1 and
1 ≤ l ≤ n, because R/P is right noetherian. We show that Im+ j = Im, for j ≥ 1.

If x = a1r1 ∈ Im+ j , then r1 ∈ Hm+ j1 = Hm1 and so x ∈ Im. Assume that if x =
a1r1 + · · · + as−1rs−1 ∈ Im+ j then x ∈ Im and take y = a1t1 + · · · + as−1ts−1 + asts ∈ Im+ j ,
t j ∈ R. Thus ts ∈ Hm+ js = Hms and so there exists z = a1t ′1 + · · · + as−1t ′s−1 + asts ∈ Im.
Therefore z− y = a1(t ′1 − t1) + · · · + as−1(t ′s−1 − ts−1) ∈ Im+ j and hence z− y ∈ Im. Thus
y ∈ Im and the proof is complete.

Corollary 5.4 Let R be a ring with comparability and let Q be the largest completely prime
ideal of R contained in J(R). Then R is a right noetherian ring if and only if R/Q is a right
noetherian ring and every waist of R is finitely generated.
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It is natural to ask whether it is enough to assume that R satisfies accw instead of that
every waist of R is finitely generated, for R to be noetherian. The following example shows
that this is not the case. It also shows that the converse of Lemma 5.1 does not hold.

Example 5.5 The commutative domain R = Z ⊕ tQ[[t]] is a ring with P-comparability
and R/P ' Z is noetherian, where P = tQ[[t]]. As in [6, Example 4.1], we can easily see
that every ideal of R is of the type H = tnH0 ⊕ tn+1Q[[t]], where H0 is a Z-submodule of
Q for n ≥ 1 and of Z for n = 0. It follows that every waist of R is of the type tnQ[[t]] since
the lattice of Z-submodules of Q does not have waists. Consequently R has accw. Finally,
note that P is not finitely generated over R (since Q is not finitely generated over Z). Hence
R is not a noetherian ring.

Remark 5.6 Assume that R is a right distributive domain. Since accw is not enough for
having finitely generated waists it is a natural question to ask under what conditions we
have a converse of Lemma 5.1. We can see that every waist of R is finitely generated if and
only if R satisfies accw and every prime ideal of R contained in J(R) is finitely generated as
a right ideal. In fact, if R satisfies accw and I is a waist of R, then I = aP, for some a ∈ R
and P ⊆ J(R) a completely prime ideal [6, Theorem 3.1]. So the result holds. We are able
to show that the same is true for domains with comparability, since the results of [6] can be
easily extended to our case.

Now we show that under some additional assumption a ring with comparability is not
a noetherian ring unless in trivial cases.

Assume that R is a prime ring with left and right comparability and denote by Q the
largest completely prime ideal of R in J(R). We also assume that R has at least two prime
ideals contained in J(R), i.e., Q 6= 0. We have

Proposition 5.7 Under the above conditions, if R is a right noetherian ring, then R is a chain
domain. In particular, a left and right distributive domain having at least two prime ideals in
J(R) is noetherian if and only if it is a noetherian chain domain.

Proof By Theorem 3.3, R is a pullback of a right Ore domain D = R/Q and a prime chain
ring T with maximal ideal Q, where the skew field of fractions of D is F = T/Q.

Since R is right noetherian and aQ is a waist, for every a ∈ R, there exists b ∈ Q such
that 0 6= Q2 = bQ. Consider the R-homomorphism ϕ : T → Q given by ϕ(x) = bx, for
all x ∈ T. Then ϕ induces a homomorphism ψ : T/Q → Q/Q2 which is injective. In fact,
if x ∈ T \ Q and bx ∈ Q2 = bQ we have bx = bq, for q ∈ Q. Then b(x − q) = 0 and
x − q /∈ Q. Since x − q is invertible in T we obtain b = 0 and so Q2 = 0, a contradiction.

Now Q is a noetherian right R-module. Hence Q/Q2 is a noetherian D-module as well.
Thus F = T/Q is also a noetherian D-module and so F is finitely generated as a right
D-module. Since F is the left skew field of fractions of D this is impossible if D 6= F. It
follows that F = D and so R = π−1

(
j(F)
)
= T is a chain ring. Finally, since R is a prime

noetherian ring it is a domain.

The result of the above proposition is not true if R does not have both left and right
comparability.
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Example 5.8 Let B be the ring given in Example 3.5. Thus R = B[[t ;σ]] has right P-
comparability but not left P-comparability, where P = tB[[t ;σ]]. We claim that R is right
noetherian but it is not a right chain ring. In fact, the same arguments of [6, Example 4.1]
show that every right ideal of R is of type H = tnH0 ⊕ tn+1B[[t ;σ]], where H0 is a right
ideal of B. Thus it is clear that the waists of R are the ideals of the type tnR, since the ring B
has not any waist. So R is right noetherian by Theorem 5.3.
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[9] A. Sant’Ana, Anéis e Módulos com comparabilidade. Ph. D. thesis, Unicamp, Brazil, 1995.
[10] W. Stephenson, Modules whose lattice of submodules is distributive. Proc. London Math. Soc. 28(1974), 291–

310.

Instituto de Matemática
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