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Abstract

The problem of reflection and refraction of elastic waves due to an incident quasi-
primary (qP) wave at a plane interface between two dissimilar nematic elastomer half-
spaces has been investigated. The expressions for the phase velocities corresponding
to primary and secondary waves are given. It is observed that these phase velocities
depend on the angle of propagation of the elastic waves. The reflection and refraction
coefficients corresponding to the reflected and refracted waves, respectively, are derived
by using appropriate boundary conditions. The energy transmission of the reflected
and refracted waves is obtained, and the energy ratios and the reflection and refraction
coefficients are computed numerically.
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1. Introduction

Nematic elastomers are materials combining the elastic properties of rubbers with the
anisotropy of liquid crystals. They consist of networks of elastic solid chains formed
by the cross linking of nematic crystalline molecules, called mesogens, as the elements
of their main chains and pendant side groups. Due to this structure, any stress on the
polymer network influences the nematic order and any change in the orientational
order will affect the mechanical shape of the elastomer. The interplay between
elastic and orientational changes is responsible for many fascinating properties of
such materials that are different from the classical elastic solids and liquid crystals.
Liquid crystalline elastomers (LCEs) have a number of applications in the fields of
mechanical actuators (artificial muscles), optics and coatings of materials, which can
dissipate mechanical energy [4, 9]. Several discussions of different problems in liquid
nematic elastomers exist in the literature [2, 19, 22].
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The electroclinic (EC) effect is an electro-optical coupling observed in liquid
crystals, which is the rotation of the optical axis about an electric field,
perpendicular to the optical axis itself. The tilt is linear in the electric field,
and the proportionality coefficient and the EC coefficient are properties of the
material. Greco and Ferrarini [18] derived the molecular expressions for the EC
coefficient and a computational methodology on the basis of the molecular structure.
Finkelmann et al. [14] synthesized side-chain nematic polymer networks, and
performed differential scanning calorimetry (DSC), X-ray, birefringence and thermo-
mechanical characterizations. Selinger et al. [23] developed a phenomenological
theory for the isotropic–nematic transition in liquid-crystalline elastomers through a
variation of Landau theory. DeSimone and Dolzmann [10] analysed the soft defor-
mation paths and domain patterns in nematic elastomers through the minimization of
a nonconvex free energy. Anderson et al. [3] developed a continuum theory for the
mechanical behaviour of rubber materials. Conti et al. [7] showed that the effective
energy results from an instability of fine-scale oscillations for deformation gradients
in part of the phase space, leading to two distinct macroscopic modes of response,
called soft and hard. Clarke et al. [6] reported the theoretical and experimental
study of linear visco-elastic response in oriented monodomain nematic elastomers.
Nematic elastomers exhibit the remarkable phenomenon of soft or semisoft elasticity
in which the effective shear modulus for shears in planes containing the anisotropic
axis, respectively, vanishes or is very small.

Fradkin et al. [16] studied the visco-elastic theory of nematic elastomers in the low-
frequency limit, which was used to investigate the spectral and polarization properties
of acoustic waves propagating in liquid-crystalline nematic elastomers. Gebretsadkan
and Kalra [17] investigated the propagation of linear waves in relativistic anisotropic
magneto-hydrodynamics, and plotted a Fresnel ray surface. Singh [25] discussed
the problem of elastic wave propagation in a nematic elastomer, and obtained the
reflection coefficients using the linear visco-elastic theory of nematic elastomers.
Terentjev et al. [27] developed a theory of elastic waves in oriented monodomain
nematic elastomers, and discussed the effect of soft elasticity combined with the
Leslie–Ericksen version of the dissipation function that results in an unusual dispersion
and anomalous anisotropy of shear acoustic waves. Some other researchers also
contributed in solving problems in nematic elastomers [8, 11, 13, 15, 21, 24].

The problems of wave propagation are very common in the field of earthquake
engineering, geophysics and seismology. They give us information about the medium
(or material) through which the waves travel. The seismic signals propagating through
the interior of the Earth are very helpful in exploration of the valuable minerals,
crystals and metals buried inside the Earth’s crust. Examples of such problems are
given by Achenbach [1], Carcione [5] and Singh [26]. In this article, we discuss the
problem of transmission of elastic waves in anisotropic and nematic elastomers. The
reflection and refraction coefficients corresponding to the reflected and refracted elastic
waves are obtained analytically and numerically along with the energy distribution at
the interface.
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2. Basic equation

The elastic potential energy density in a nematic solid takes the form [9, 27]

F = C1(n · ε · n)2 + 2C2tr[e](n · ε · n) + C3(tr[e])2 + 2C4(n × ε × n)2

+ 4C5(n × (ε · n))2 + 1
2 D1(n × Θ)2 + D2n · ε · (n × Θ),

where the Frank elastic energy that describes the nonuniform directors is not included
due to the assumption of uniform director rotations in nematic elastomers. Here,
Θ = Ω − (n × δn) is an independent rotational variable, δn is a small variation in the
undistorted nematic director, n ·Ω = (1/2) curl u is the local rotation vector, (n × δn)
are director rotations, εik = eik − (1/3) tr[e]δik (i, k = 1, 2, 3) is the traceless part of the
linear symmetric strain, eik = (1/2)(δkui + δiuk), Ci are elastic constants and D1,D2 are
coupling constants.

Using the Leslie–Ericksen theory [12, 20] of anisotropic viscous dissipation in a
nematic liquid, the Rayleigh dissipation function (for entropy production density) can
be written in the quadratic form of corresponding velocities [27] as

T ṡ = A1(n · ε̇ · n)2 + 2A2tr[ė](n · ε̇ · n) + A3(tr[ė])2 + 2A4(n × ε̇ × n)2

+ 4A5(n × (ε̇ · n))2 + 1
2γ1(n × Θ̇)2 + γ2n · ε̇ · (n × Θ̇),

where Ai are viscous coefficients and the superimposed dots represent the derivative
with respect to time. This equation describes two types of dissipation; dissipation
by shear flow and dissipation by rotation of the director (which vanishes for rigid
rotations).

The equations of motion of a viscous nematic solid after neglecting the effects of
Frank elasticity on the director gradient [16] are

∇ · τ = ρü,
n × [(D1 + γ1δt)n ×Θ + (D2 + γ2δt)n · ε] = 0, (2.1)

where u = (u1, u2, u3) and equation (2.1) gives the balance of the torques.
The components of the visco-elastic symmetric stress tensors with the choice of the

coordinate axis x3 to lie in the direction of the undistorted director n are

τ11 = (1 + τR∂t)(c11ε11 + c12ε22 + c13ε33),
τ22 = (1 + τR∂t)(c12ε11 + c11ε22 + c13ε33),
τ33 = (1 + τR∂t)(c13ε11 + c13ε22 + c33ε33),
τ12 = τ21 = 2(1 + τR∂t)c66ε12,

τ13 = 2(1 + τR∂t)c44ε13 −
1
2 D1(1 + τ2∂t)Θ2,

τ23 = 2(1 + τR∂t)c44ε23 + 1
2 D2(1 + τ2∂t)Θ1, (2.2)

where τR is the characteristic time of rubber relaxation, and τ1, τ2 are director rotation
times. We have the following relations [25]:

Ai = CiτR, γ1 = D1τ1, γ2 = D2τ2.
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The Rayleigh dissipation function is positive if

τ2
2 ≤

8C5D1

D2
2

τRτ1,

where C5 is the shear modulus. Using equations (2.2) and (2.1), the components of the
rotational variable Θ are given by the author [25] as

Θ1 = −
D2

D1

1 + ıωτ2

1 + ıωτ1
ε23, Θ2 =

D2

D1

1 + ıωτ2

1 + ıωτ1
ε13,

where ω is the angular velocity.

3. Problem formulation

Let us consider two-dimensional wave propagation in the x1x3-plane with the
x1-axis lying horizontally and the x3-axis vertically downward. The dissimilar
anisotropic nematic elastomer half-spaces, M = {x3 | x3 > 0} and M′ = {x3 | x3 < 0},
are separated by x3 = 0. Note that the corresponding parameters in M′ are denoted by
inserting a (′) to that of M.

The equations of motion in the nematic elastomer M after neglecting the effects of
Frank elasticity on the director gradient are written as

ρü1 = (1 + ıωτR){c11u1,11 + cR
44u1,33 + (c13 + cR

44)u3,13},

ρü3 = (1 + ıωτR){c33u3,33 + cR
44u3,11 + (c13 + cR

44)u1,13},

where

cR
44(ω) = 2C5 −

1
4

D2
2

D1

(1 + ıωτ2)2

(1 + ıωτ1)(1 + ıωτR)
.

Similarly, the equations of motion in the nematic elastomer M′ can be written as

ρü′1 = (1 + ıωτ′R){c′11u′1,11 + c′R44u′1,33 + (c′13 + c′R44)u′3,13},

ρü′3 = (1 + ıωτ′R){c′33u′3,33 + c′R44u′3,11 + (c′13 + c′R44)u′1,13},

where

c′R44(ω) = 2C′5 −
1
4

D′22
D′1

(1 + ıωτ′2)2

(1 + ıωτ′1)(1 + ıωτ′R)
.

Suppose that a plane wave propagating in the half-space M is incident at the plane
interface x0 = 0, in which a part of the incident energy is reflected to the half-space
M and another part is refracted to the half-space M′. The displacement of the elastic
waves may be represented as

u( β)
1 (x1, x3, t) = A( β)d( β)

1 exp{ı(ωt − k( β)
1 x1 − k( β)

3 x3)}, (3.1)

u( β)
3 (x1, x3, t) = A( β)d( β)

3 exp{ı(ωt − k( β)
1 x1 − k( β)

3 x3)}, (3.2)

where A( β) is the amplitude constant, d( β)
1 is the component of the unit displacement

vector, ω is the angular frequency and k( β)
1 and k( β)

3 are corresponding wavenumbers
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with β = 0 for the incident wave, β = 1 for the reflected qP-wave, β = 2 for the reflected
quasi-shear vertical qSV-wave, β = 3 for the refracted qP-wave and β = 4 for the
refracted qSV-wave. The relation of the angles of incident and reflected as well as
refracted waves is given by Snell’s law [25]

sinα
c0(α)

=
sinα1

c1(α1)
=

sinα2

c2(α2)
=

sinα3

c′1(α3)
=

sinα4

c′2(α4)
=

1
ca
, (3.3)

where ca is the apparent velocity, c0(α) is the phase velocity of the incident wave,
c1(α1) is the phase velocity of the reflected qP-wave, c2(α2) is the phase velocity of the
reflected qSV-wave, c′1(α3) is the phase velocity of the refracted qP-wave and c′2(α4)
is the phase velocity of the refracted qSV-wave.

The phase velocity of the incident qP-wave is given by

c2
0(α) =

B + E +
√

(B − E)2 + 4D
2ρ

, (3.4)

where p = (p1, p2, p3), B = (1 + ıωτR)(c11 p2
1 + cR

44 p2
3), E = cR

44 p2
1 + c33 p2

3 and D =

(1 + ıωτR)(c13 + cR
44)p1 p3. The expressions for the phase velocity corresponding to

the reflected and refracted waves are given by

c2
1(α1) =

B(α1) + E(α1) +
√

(B(α1) − E(α1))2 + 4D(α1)

2ρ
,

c2
2(α2) =

B(α2) + E(α2) −
√

(B(α2) − E(α2))2 + 4D(α2)

2ρ
,

c′21 (α3) =
B(α3) + E(α3) +

√
(B(α3) − E(α3))2 + 4D(α3

2ρ′
,

c′22 (α4) =
B(α4) + E(α4) −

√
(B(α4) − E(α4))2 + 4D(α4)

2ρ′
,

where p( β) = (p( β)
1 , p( β)

2 , p( β)
3 ). For β = 1 and 2,

B(αβ) = (1 + ıωτR)(c11 p( β)2

1 + cR
44 p( β)2

3 ), E(αβ) = cR
44 p( β)2

1 + c33 p( β)2

3 ,

D(αβ) = (1 + ıωτR)(c13 + cR
44)p( β)

1 p( β)
3

and, for β = 3 and 4,

B(αβ) = (1 + ıωτ′R)(c′11 p( β)2

1 + c′R44 p( β)2

3 ), E(αβ) = c′R44 p( β)2

1 + c′33 p( β)2

3 ,

D(αβ) = (1 + ıωτ′R)(c′13 + c′R44)p( β)
1 p( β)

3 .

Thus, we have seen that the phase velocity of the elastic waves in the nematic
elastomers depends on the angle of propagation. Consequently, the elastic waves in
anisotropic nematic elastomers are quasi in nature.
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4. Boundary conditions

The boundary conditions of the problem are the continuity of displacement and
stress tractions at x3 = 0, given by:

(a) continuity of displacements at x3 = 0

u( β)
1 (M) = u( β)

1 (M′) and u( β)
3 (M) = u( β)

3 (M′); (4.1)

(b) continuity of stress tractions at x3 = 0

τ33(M) = τ33(M′) and τ13(M) = τ13(M′). (4.2)

Using equations (3.1)–(3.3) and the stress tractions in (4.1) and (4.2), we get

AX = G, (4.3)

where A is a matrix of order 4 × 4 with elements

a11 = d(1)
1 , a12 = d(2)

1 , a13 = −d(3)
1 , a14 = −d(4)

1 ,

a21 = d(1)
3 , a22 = d(2)

3 , a23 = −d(3)
3 , a24 = −d(4)

3 ,

a31 = k(1)
1 d(1)

1 c13 + k(1)
3 d(1)

3 c33, a32 = k(2)
1 d(2)

1 c13 + k(2)
3 d(2)

3 c33,

a33 = −τ0(k(3)
1 d(3)

1 c′13 + k(3)
3 d(3)

3 c′33), a34 = −τ0(k(4)
1 d(4)

1 c′13 + k(4)
3 d(4)

3 c′33),

a41 = k(1)
3 d(1)

1 + k(1)
1 d(1)

3 , a42 = k(2)
3 d(2)

1 + k(2)
1 d(2)

3 ,

a43 = −τ′0(k(1)
3 d(3)

1 + k(3)
1 d(1)

3 ), a44 = −τ′0(k(4)
3 d(4)

1 + k(4)
1 d(4)

3 ),
τ0 = (1 + ıωτ′R)/(1 + ıωτR), τ′0 = (1 + ıωτ′R)c′44(ω)/{(1 + ıωτR)c44(ω)};

X and G are column matrices given by

X =
1

A(0) [A(1) A(2) A(3) A(4)]t, G = −[b1 b2 b3 b4]t,

with b1 = d(0)
1 , b2 = d(0)

3 , b3 = k(0)
1 d(0)

1 c13 + k(0)
3 d(0)

3 c33, b4 = k(0)
3 d(0)

1 + k(0)
1 d(0)

3 .
In the next section, equation (4.3) will be used in finding the reflection and

refraction coefficients of the reflected and refracted qP- and qSV-waves.

5. Reflection and refraction coefficients

Solving the equations in the matrix form (4.3), we get the reflection and refraction
coefficients of the reflected and refracted waves as

r(1) =
A(1)

A0
=

∆1

∆
, r(2) =

A(2)

A0
=

∆2

∆
,

r(3) =
A(3)

A0
=

∆3

∆
, r(4) =

A(4)

A0
=

∆4

∆
,
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Curve I: Reflected qP-wave
Curve II: Reflected qSV-wave
Curve III: Refracted qP-wave
Curve IV: Refracted qSV-wave
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Figure 1. Variation of angles of the reflected and refracted waves with angle of incidence.

where

∆ =

∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

∣∣∣∣∣∣∣∣∣∣∣ .
The expressions for ∆1, ∆2, ∆3 and ∆4 are obtained by replacing the first, second,
third and fourth columns, respectively, of the determinant ∆ with the column matrix
G. The coefficients r(1) and r(2) correspond to the reflection coefficients of the reflected
qP-wave and the reflected qSV-wave, respectively, while r(3) and r(4) correspond
to the refraction coefficients of the refracted qP-wave and the refracted qSV-wave,
respectively.

5.1. Special case In the absence of the upper half-space M′, the problem reduces
to the reflection of elastic waves due to a free surface. Considering the boundary
condition (4.2), the reflection coefficients are given by

r(1) =
b4a32 − b3a42

a41a32 − a31a42
and r(2) =

b3a41 − b4a31

a41a32 − a42a31
.

These results are similar to the results obtained by Singh [25] for the relevant problem.
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Figure 2. Variation of r(1) with angle of incidence α.

6. Energy partition

Let us consider the energy distribution of the incident longitudinal wave due to the
reflection and refraction of elastic waves at the plane interface between two dissimilar
nematic elastomers. The rate of energy transmission is given by Achenbach [1] as

℘∗ = τ31 · u̇1 + τ33 · u̇3.

The energy due to an incident longitudinal wave may be represented as

Einc = f0ωA2
0 exp[2ı{ωt − k(0)

1 x1 − k(0)
3 x3}], where

f0 = (1 + ıωτR)[c13d(0)
1 k(0)

1 + c33d(0)
3 k(0)

3 + cR
44(d(0)

1 k(0)
3 + d(0)

3 k(0)
1 )].

The incident energy is distributed to various reflected and refracted waves. The energy
ratios of the various waves are defined as the ratios of the energies of the corresponding
waves to the energy of the incident wave. These ratios of the reflected and refracted
waves are given as

Eβ =

∣∣∣∣∣ fβ
f0

∣∣∣∣∣∣∣∣∣∣Aβ
1

A0

∣∣∣∣∣2 ( β =1, 2 for reflection and β = 3, 4 for refraction),
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Figure 3. Variation of r(2) with angle of incidence α.

where

f1 = (1 + ıωτR)[c13d(1)
1 k(1)

1 + c33d(1)
3 k(1)

3 + cR
44(d(1)

1 k(1)
3 + d(1)

3 k(1)
1 )],

f2 = (1 + ıωτR)[c13d(2)
1 k(2)

1 + c33d(2)
3 k(2)

3 + cR
44(d(2)

1 k(2)
3 + d(2)

3 k(2)
1 )],

f3 = (1 + ıωτ′R)[c′13d(3)
1 k(3)

1 + c′33d(3)
3 k(3)

3 + c′R44(d(3)
1 k(3)

3 + d(3)
3 k(3)

1 )],

f4 = (1 + ıωτ′R)[c′13d(4)
1 k(4)

1 + c33d(4)
3 k(4)

3 + c′R44(d(4)
1 k(4)

3 + d(4)
3 k(4)

1 )].

The energy ratio E1 corresponds to the reflected qP-wave and E2 corresponds to the
reflected qSV-wave, while the energy ratio E3 corresponds to the refracted qP-wave
and E4 corresponds to the refracted qSV-wave. Thus, we have seen that energy ratios
corresponding to the reflected and refracted waves are functions of elastic constants,
the coupling constants, the characteristic time of rubber relaxation and the director
rotation-time elastic parameter. These energy ratios satisfy

E1 + E2 + E3 + E4 = 1.

The sum of the energy ratios is equal to the energy of the incident wave, which proves
the conservation of energy.

7. Numerical results and discussion
In order to compute the reflection and refraction coefficients and energy ratios of

the reflected and refracted waves, the following parameter values are used.
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Figure 4. Variation of r(3) with angle of incidence α.

(1) For the half-space M:
C1 = 1.42 × 105 N m−2, C2 = 2.25 × 105 N m−2, C3 = 4.88 × 105 N m−2,
C4 = 2.15 × 105 N m−2, C5 = 1.06 × 105 N m−2, D1 = 0.12, D2 = 0.05,
ρ = 1.66 × 103 kg m−3.

(2) For the half-space M′:
C′1 = 3.52 × 105 N m−2, C′2 = 2.28 × 105 N m−2, C3 = 1.65 × 105 N m−2,
C4 = 1.60 × 105 N m−2, C5 = 4.34 × 105 N m−2, D1 = 0.15, D2 = 0.17,
ρ = 1.26 × 103 kg m−3.

Using equations (3.3) and (3.4), we obtained the angles corresponding to the reflected
and refracted waves. The variation of these angles with the angle of incidence is
depicted in Figure 1. Curves I–IV correspond to the angle of the reflected qP-wave,
reflected qSV-wave, refracted qP-wave and refracted qSV-wave, respectively. All
these angles increase with the increase of the angle of incidence α.

The variations of reflection and refraction coefficients with angle of incidence for
different values of ωτ1, ωτ2, ωτr and ωτ′1, ωτ′2, ωτ′r are shown in Figures 2–5, while
the variations of energy ratios with α are depicted in Figures 6–9.

In all these figures, we magnify the coefficients or energy ratios in Curves II and III
by multiplying with 1.5 and 2, respectively, in order to see their variation clearly and
assign the following parameter values for the three curves:
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Figure 5. Variation of r(4) with angle of incidence α.

Curve I:
(ωτ1 = 0.1, ωτ2 = 0.15, ωτr = 0.2) and (ωτ′1 = 0.05, ωτ′2 = 0.14, ωτ′r = 0.1);
Curve II:
(ωτ1 = 0.3, ωτ2 = 0.35, ωτr = 0.3) and (ωτ′1 = 0.25, ωτ′2 = 0.34, ωτ′r = 0.2);
Curve III:
(ωτ1 = 0.5, ωτ2 = 0.55, ωτr = 0.4) and (ωτ′1 = 0.55, ωτ′2 = 0.54, ωτ′r = 0.3).

In Figure 2, the reflection coefficient, r(1), corresponding to the reflected qP-wave
starts from a certain value at normal incidence, increases up to α = 14◦ and decreases
thereafter with the increase of the angle of incidence. We have observed that the
director rotation-time parameters ωτ1, ωτ2, ωτr and ωτ′1, ωτ

′
2, ωτ

′
r are affected

much near the grazing angle of incidence. Figure 3 shows that r(2) of the reflected
qSV-wave starts from a certain value and decreases up to α = 9◦; thereafter it increases
up to α = 30◦ and then decreases with the increase of α. In Figure 4, the refraction
coefficient, r(3), of the refracted qP-wave decreases with the increase of the angle of
incidence up to α = 67◦ and increases thereafter. Figure 5 shows that the values of r(4)

decreases with the increase of angle of incidence up to α = 30◦ and then it increases
with α. We have observed that the values of r(4) increase with the increase of director
rotation-time parameters.

In Figure 6, the energy ratio E1 corresponding to the reflected qP-wave decreases
with the increase of α. Figure 7 shows that the energy ratio, E2, corresponding to
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Figure 6. Variation of E1 with angle of incidence α.
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Figure 7. Variation of E2 with angle of incidence α.
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Figure 8. Variation of E3 with angle of incidence α.

the reflected qSV-wave starts at a certain value at the normal angle of incidence,
decreases up to α = 38◦ and forms a parabolic region at 38◦ ≤ α ≤ 90◦. In Figure 8,
the energy ratio corresponding to the refracted qP-wave forms two parabolic regions
at 0 ≤ α ≤ 45◦ and 45◦ ≤ α ≤ 90◦. Figure 9 shows that E4 decreases up to α = 33◦ and,
thereafter, it increases with the increase of α. We have observed that the sum of the
energy ratios is close to one.

8. Conclusion

Using appropriate boundary conditions, the reflection and refraction of elastic
waves due to an incident qP-wave at a plane interface between two dissimilar nematic
elastomer half-spaces has been investigated. The reflection and refraction coefficients
and energy ratios corresponding to the reflected and refracted waves were obtained
analytically and numerically for a particular model. The analysis concludes with the
following points.

(i) The phase velocities of the elastic waves depend on the angle of incidence.
(ii) The reflection and refraction coefficients and energy ratios are functions of

elastic constants, coupling constants, the characteristic time of rubber relaxation,
the director rotation-time parameter and the angle of incidence.
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Figure 9. Variation of E4 with angle of incidence α.

(iii) The angles corresponding to the reflected and refracted waves increase with the
increase in the angle of incidence.

(iv) The effect of director rotation-time parameters on the reflection coefficient, r(1),
is prominent near the glazing angle of incidence.

(v) The values of the refraction coefficient, r(4), increase with an increase in the
director rotation-time parameters.

(vi) The energy ratio, E1, corresponding to the reflected qP-wave decreases with the
increase in the angle of incidence.

(vii) The sum of the energy ratios is close to one.
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